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ABSTRACT 

Tamarind is used in the food and pharmaceutical industry, and its seed is the main 

means for the reproduction of this species, thus justifying studies that ensure its 

post-harvest viability. This research aimed to study the thermodynamic properties 

of tamarind seeds as a function of the equilibrium moisture content. The 

experimental data of the water activities were obtained by the indirect static 

method. The Cavalcanti Mata model was used to determine the thermodynamic 

properties of tamarind seeds, as it was the model that best fitted the experimental 

data of the desorption isotherms. The results showed that the thermodynamic 

properties are influenced by the moisture content and temperature, with an 

increase in the energy required to remove water from the product with a decrease 

in moisture content. The net isosteric heat of desorption increases with a reduction 

of moisture content ranging from 2,618.85 to 2,510.25 kJ kg−1 for the moisture 

content range of 10.52 to 21.10% db. The latent heat of vaporization, the 

differential enthalpy, and the Gibbs free energy increase with a reduction of the 

moisture content of tamarind seeds. 
 

 

INTRODUCTION 

Tamarind seeds have a well-defined coat region, 

being irregular, rectangular, and rough, with a bright dark 

brown color and about 1.5 cm long and 1.2 cm wide (Sousa 

et al., 2010). Tamarind is used in the food and 

pharmacological industry, and its seeds, as well as those 

from woody fruit trees, are the main means for the 

reproduction of most of this species (Oliveira et al., 2006), 

thus requiring studies that ensure its post-harvest viability. 

Drying stands out among the most used processes for 

maintaining the quality of plant products after harvest, as it 

is an indispensable technique for the quality control of plant 

products (Oliveira et al., 2011). The knowledge of this 

moisture content reduction process, which simultaneously 

involves the transfer of heat and mass, is essential for an 

efficient drying at technical and economic levels (Resende 

et al., 2011). 

Thermodynamic properties aim to understand the 

water properties and calculate the energy demands 

associated with heat and mass transfer in biological systems 

(Cladera-Oliveira et al., 2008). Moreover, the study of these 

properties is essential in the analysis of projection and the 

dimensioning of equipment in various processes of product 

preservation and calculate the energy required in these 

processes (Corrêa et al., 2010). 

The latent heat of vaporization of water, differential 

enthalpy, net isosteric heat of desorption, and Gibbs free 

energy are among the thermodynamic properties of the 

product. These thermodynamic properties have been 

extensively studied in the literature due to their importance 

for different plant products, such as cassava (Koua et al., 

2014), Barbados nut (Chaves et al., 2015) seeds, castorbean 

seeds (Goneli et al., 2016), crambe fruits (Oliveira et al., 2017), 

and baru (Dipteryx alata Vogel) fruits (Resende et al., 2017). 

Due to the importance of the post-harvest processes 

of plant products for their preservation during storage, this 

work aimed to study the thermodynamic properties of 

tamarind seeds as a function of the equilibrium moisture 

content and temperature. 
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MATERIAL AND METHODS 

The experiment was conducted at the Laboratory of 

Post-harvest of Plant Products of the Federal Institute of 

Education, Science, and Technology Goiano (IF Goiano), 

located in Rio Verde, GO, Brazil. Tamarind seeds with an 

initial moisture content of 21.00 ± 0.10% dry basis (db) 

were used. Fruits were collected manually in the rural 

region of Rio Verde, GO, Brazil (17°51′57″ S and 

50°50′05″ W). 

Different moisture contents were obtained after 

cleaning the seeds. For this, they were submitted to drying 

in a forced-air ventilation oven at a temperature of 45 °C 

and relative humidity of 20.6% until moisture contents of 

17.27, 15.04, 14.15, 12.40, and 10.62 ± 0.12% db were 

reached. The moisture contents were verified by the oven 

method at 105 ± 1 °C for 24 hours (Brasil, 2009). 

Desorption isotherms were determined using the 

indirect static method, with the water activity (aw) 

determined using the equipment HygroPalm AW1. 

Approximately 35 g of seeds were used for each moisture 

content in triplicate. The apparatus was placed in B.O.B. 

regulated at temperatures of 10, 20, 30, and 40 °C. After 

reading the water activity values in the equipment, the 

moisture content of the samples was determined in an oven, 

following the methodology of Brasil (2009). 

The thermodynamic properties were obtained using 

the Cavalcanti Mata model (1), as it presented the best fit to 

the experimental data of the desorption isotherms, with a 

coefficient of determination (R2) of 0.9961, relative mean 

error (P) of 1.42%, average error of estimate (SE) of 0.232, 

calculated chi-square (χ2) of 0.0540, AIC of 2.94, and BIC 

of 6.03. 

Xe = ([ln(1 − aw)) (−0.005527∗∗ ∙ T0.12914∗∗

)⁄ ]
1

1.831766∗∗⁄  (1) 

Where:  

Xe is the equilibrium moisture content (% db);  

aw is the water activity, and  

T is the temperature (°C). 

 

The estimated water activity was obtained from the 

manipulation of the Cavalcanti Mata equation, generating 

[eq. (2)]: 

aw = 1 − exp[Xe1.831766∗∗
(−0.005527∗∗ ∙ T0.12914∗∗

)]  (2) 

Where:  

** is significant at 1% by the t-test. 

 

Brooker et al. (1992) proposed Equation (3), with a 

reference to the Clausius-Clapeyron studies, to quantify the 

partial vapor pressure contained in porous systems: 

Ln(Pv) = (
𝐿

𝐿′) ∙ Ln(Pvs) + C (3) 

Where:  

Pvs is the saturation vapor pressure of free water for 

a given equilibrium temperature;  

Pv is the vapor pressure of free water for a given 

equilibrium temperature;  

L is the latent heat of vaporization of water of the 

product (kJ kg−1);  

L′ is the latent heat of vaporization of free water at 

equilibrium temperature (kJ kg−1), and  

C is the integration constant. 

 

The saturation vapor pressure of free water was 

calculated using the Thétens [eq. (4)]: 

Pvs = 0.61078 ∙ 10((7.5T) (273.3+T)⁄ ) (4) 

 

The vapor pressure value was determined according 

to [eq. (5)]: 

Pv = aw ∙ Pvs (5) 

 

The desorption isotherm allowed determining the 

L/L′ ratio of [eq. (6)], according to the methodology 

described by Pereira & Queiroz (1987) for different 

equilibrium moisture contents (Xe). Thus, the equation for 

enthalpy of vaporization of water, presented by Rodrigues-

Arias (Brooker et al., 1992), was adjusted with the inclusion 

of one more parameter in [eq. (6)] to improve the L/L′ 

estimates (Corrêa et al., 1998): 

(
L

L'
) − 1 = a ∙ exp(−b ∙ Xem) (6) 

Where:  

a, b, and m are parameters determined by regression. 

 

The latent heat of vaporization of free water (kJ kg−1) 

at equilibrium temperature (°C) was calculated using the 

average temperature (°C) within the range under study, 

using [eq. (7)]: 

L' = 2502.2 − 2.39T (7) 

 

The latent heat of vaporization of water of the 

product (kJ kg−1) was estimated by combining eqs (6) and 

(7) (Corrêa et al., 1998), as shown in [eq. (8)]: 

L = (2502.2 − 2.39T) ∙ [1 + a ∙ exp(−b ∙ Xem)] (8) 

 

The Clausius-Clapeyron equation (9) (Iglesias & 

Chirife, 1976) was used to calculate the differential 

enthalpy for each equilibrium moisture content: 

∂ln(aw)

∂T
=

∆hst

RTabs
2  (9) 

Where:  

Tabs is the absolute temperature (K);  

Δhst is the differential enthalpy (kJ kg−1), and  

R is the universal gas constant for water vapor 

(0.4619 kJ kg−1 K−1). 

 

Integrating [eq. (9)] and assuming that the 

differential enthalpy is independent of the temperature, each 

equilibrium moisture content was obtained from [eq. (10)] 

(Wang & Brennan, 1991): 

ln(aw) = − (
∆hst

R
) ∙

1

Tabs
+ C (10) 

Where:  

C is the model coefficient. 
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Net isosteric heat of sorption was obtained by adding 

the value of latent heat of vaporization of free water (L′) to 

the values of differential enthalpy, according to [eq. (11)]: 

Qst = ∆hst + L' = a ∙ exp(−b ∙ Xe) + c (11) 

Where:  

Qst is the net isosteric heat of sorption (kJ kg−1), and  

a, b, and c are the model coefficients. 

 

Gibbs free energy can be calculated by [eq. (12)]: 

 

G = R ∙ T ∙ ln(aw) (12) 

Where:  

G is the Gibbs free energy (kJ kg−1). 

 

Gibbs free energy for each temperature can be 

described by the exponential regression shown in [eq. (13)], 

according to Resende et al. (2017): 

G = 𝛼 ∙ exp(𝛽 − Xe) + 𝛿 (13) 

Where:  

α, β, and δ are equation regression parameters. 

 

The significance of the regression parameters was 

performed by the t-test to verify the degree of adjustment of 

each model, the magnitude of the coefficient of 

determination (R2), and the relative mean error (P), 

calculated according to [eq. (14)]: 

P =
100

n
∑

|Y−Ŷ|

Y
 (14) 

Where:  

Y is the experimental value;  

Ŷ is the value estimated by the model, and  

n is the number of experimental observations. 

 

RESULTS AND DISCUSSION 

Table 1 shows the water activity values estimated by 

the Cavalcanti Mata model for the moisture content range 

from 10.52 to 21.10% db at temperatures of 10, 20, 30, and 

40 °C. The water activity increases in response to an 

increase in temperature and moisture content. The same 

trend was observed by Resende et al. (2017) studying the 

thermodynamic properties of baru (Dipteryx alata Vogel) 

fruits from sorption isotherms at temperatures of 20, 25, 30, 

and 35 °C with an equilibrium moisture content range from 

4.2 to 29.5% db. 

TABLE 1. Water activity values (decimal) of tamarind 

(Tamarindus indica L.) seeds estimated by the Cavalcanti 

Mata model as a function of temperature and equilibrium 

moisture content. 

Xe 

(% db) 

Temperature °C 

10 20 30 40 

10.52 0.4253 0.4544 0.4719 0.4845 

10.74 0.4375 0.4670 0.4848 0.4975 

12.39 0.5267 0.5587 0.5777 0.5912 

12.49 0.5320 0.5641 0.5831 0.5967 

14.15 0.6150 0.6480 0.6672 0.6807 

15.04 0.6560 0.6887 0.7076 0.7209 

17.27 0.7468 0.7774 0.7946 0.8066 

20.94 0.8585 0.8822 0.8950 0.9036 

21.10 0.8624 0.8857 0.8983 0.9067 

 

Table 2 shows the L/L′ ratio values for different 

equilibrium contents. The values decrease as the moisture 

content increases. 

 

TABLE 2. Values of the L/L′ ratio for different equilibrium 

moisture contents of tamarind (Tamarindus indica L.) seeds 

Moisture content  

(% db) 

L/L′ 

ratio 

Moisture content  

(% db) 

L/L′ 

ratio 

10.52 1.0721 15.04 1.0523 

10.74 1.0712 17.27 1.0426 

12.39 1.0640 20.94 1.0283 

12.49 1.0636 21.10 1.0277 

14.15 1.0562   

 

Table 2 shows that the values of the L/L′ ratio tend 

to be close to 1.0. This response is due to an increase in 

vapor pressure as moisture contents increase. Oliveira et al. 

(2014a) observed a similar trend for the different 

equilibrium moisture content of Barbados nut seeds. 

The linear regression equation proposed by Corrêa et 

al. (1998) can be used to estimate the latent heat of 

vaporization of tamarind seeds. It has a high coefficient of 

determination (R2), a low relative mean error (P), and 

significant parameters at 1% by the t-test. Figure 1 shows 

the latent heat curves of vaporization of water of tamarind 

seeds at temperatures of 10, 20, 30, and 40 °C within the 

equilibrium moisture content range of 10.52 to 21.10% db. 
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**Significant at 1% by the t-test. 

FIGURE 1. Latent heat of vaporization of water of tamarind (Tamarindus indica L.) seeds as a function of the equilibrium 

moisture content for temperatures of 10, 20, 30, and 40 °C. 

 

The latent heat of vaporization of water of tamarind 

seeds ranged from 2,656.90 to 2,473.34 kJ kg−1. The 

decrease in the equilibrium moisture content leads to an 

increase in the energy required for water evaporation from 

seeds. According to Brooker et al. (1992), moisture content 

and temperature are the main factors influencing the latent 

heat of vaporization of water of the product. 

The latent heat of vaporization of water of tamarind 

seeds decreases with increasing temperature for the same 

moisture content, presenting an inversely proportional 

relationship and corroborating with results obtained by 

Oliveira et al. (2017). 

The latent heat value of vaporization of water of 

cayenne pepper (Capsicum frutescens L.) seeds ranged from 

3,615.01 to 2,455.14 kJ kg−1 in the study conducted by Silva 

& Rodovalho (2016) at the moisture content range of 4.6 to 

21.3% db and temperatures of 30, 40, and 50 °C. The latent 

heat of vaporization of Barbados nut seeds was 2,762.92 to 

2,495.56 kJ kg−1 within the equilibrium moisture content 

range of 5.61 to 13.42% db and at temperatures of 10, 20, 

30, and 40 °C (Oliveira et al., 2014a). 

Figure 2 shows the experimental and estimated 

values for the differential enthalpy (∆hst) as a function of the 

different equilibrium moisture contents (% db) of tamarind 

seeds. The equation had a high coefficient of determination 

(R2), low relative mean error (P), and all equation 

parameters were significant at 1% by the t-test, showing the 

adequacy of the equation to the experimental data. 

 

 
**Significant at 1% by the t-test. 

FIGURE 2. Observed and estimated values of differential enthalpy (∆hst) of desorption of tamarind (Tamarindus indica L.) seeds. 
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Differential enthalpy increased with a reduction in 

moisture content (Figure 2), corroborating with the results 

obtained for cocoa (Theobroma cacao) seeds (Oliveira et 

al., 2011) and tucumã-de-Goiás (Astrocaryum huaimi 

Mart.) seeds (Oliveira et al., 2014b). In addition, the 

differential enthalpy value varied from 176.40 to 67.80 kJ 

kg−1 for a moisture content range of 10.52 to 21.10% db. 

The variation in enthalpy values provides a measure of the 

energy variation required to remove water when its 

molecules interact with constituents of the product during  

the sorption processes (McMinn et al., 2005). 

The values of the net isosteric heat of desorption as 

a function of the equilibrium moisture content for tamarind 

seeds were calculated according to Equation (11) and shown 

in Figure 3. The Qst adjustment equation presented a high 

coefficient of determination (R2), low relative mean error 

(P), and significant parameters at 1% by the t-test, which 

can be used to estimate the net isosteric heat of desorption 

of tamarind seeds. 

 

 
**Significant at 1% by the t-test. 

FIGURE 3. Experimental and estimated values of the net isosteric heat of desorption as a function of the equilibrium moisture 

content of tamarind (Tamarindus indica L.) seeds. 

 

Figure 3 shows that as the moisture content of the 

product decreases, more energy must be provided to remove 

water, corroborating with the results obtained for different 

plant products, such as baru (Dipteryx alata Vogel) beans 

(Furtado et al., 2014), forage radish (Raphanus sativus L.) 

seeds (Sousa et al., 2015), cajuzinho-do-cerrado 

(Anacardium humile A.St.-Hil.) achenes (Barbosa et al., 

2016), and pequi (Caryocar brasiliense Camb.) diaspores 

(Sousa et al. 2016). 

The values of the net isosteric heat of desorption for 

tamarind seeds in the equilibrium moisture content range of 

10.52 to 21.10% db varied from 2,618.85 to 2,510.25 kJ 

kg−1. Seeds of fourleaf buchenavia (Buchenavia capitata 

(Vahl) Eichler) showed values of the net isosteric heat of 

desorption ranging from 2,667.93 to 2,819.56 kJ kg−1 and 

equilibrium moisture contents ranging from 13.31 to 7.21% 

db (Costa et al., 2015). Chaves et al. (2015) studied the net 

isosteric heat of desorption of Bermuda nut seeds in the 

moisture content range of 5.6 to 13.4% db and obtained 

values a variation of 3,035.61 to 2,631.89 kJ kg−1. 

Water-holding capacity to product constituents 

increases as the moisture content of the sample decreases due 

to an increase in the concentration of the chemical 

constituents of the product, such as fats, proteins, and salts 

(Hubinger et al., 2009). Low moisture contents indicate 

proximity to monomolecular layers, which are strongly linked 

to dry matter and require a higher energy rate to remove water 

in the form of steam (Al-Muhtaseb et al., 2004). 

Gibbs free energy increased with decreasing 

moisture content and temperature, being positive for all 

studied conditions (Table 3). The values of this 

thermodynamic property tend to stabilize at higher 

equilibrium moisture contents. Resende et al. (2017) and 

Silva et al. (2016) observed similar behaviors. 
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TABLE 3. Gibbs free energy values (kJ kg−1) as a function of the moisture content of tamarind (Tamarindus indica L.) seeds. 

Moisture content (% db) 
Temperature (°C) 

10 20 30 40 

10.52 111.81 106.81 105.17 104.82 

10.74 108.11 103.09 101.39 100.98 

12.39 83.85 78.83 76.84 76.01 

12.49 82.55 77.53 75.53 74.69 

14.15 63.57 58.76 56.67 55.63 

15.04 55.15 50.51 48.43 47.34 

17.27 38.18 34.10 32.19 31.09 

20.94 19.95 16.97 15.54 14.67 

21.10 19.36 16.43 15.02 14.16 

 

The positive values observed for Gibbs free energy 

were expected since desorption is a non-spontaneous 

process, characteristic of an exogenous reaction, i.e., a 

reaction that requires an agent supplying energy to the 

environment. Corrêa et al. (2015) observed positive values 

for the Gibbs free energy of cucumber (Cucumis sativus L.) 

seeds, as well as Goneli et al. (2016) for castorbean (Ricinus 

communis L.) seeds.  

Table 4 shows the exponential regression equations 

for Gibbs free energy. 

 

TABLE 4. Gibbs free energy equations of tamarind (Tamarindus indica L.) seeds for different temperatures. 

Temp. (°C) Equation* R2 (decimal) P (%) 

10 G = 539.7360∗∗ ∙ exp(−0.1445∗∗ ∙ Xe) − 6,2564∗∗ 0.9999 0.069 

20 G = 562.4996∗∗ ∙ exp(−0.1527∗∗ ∙ Xe) − 6,0434∗∗ 0.9999 0.126 

30 G = 585.0464∗∗ ∙ exp(−0.1579∗∗ ∙ Xe) − 5,9386∗∗ 0.9999 0.168 

40 G = 607.3941∗∗ ∙ exp(−0.1618∗∗ ∙ Xe) − 5,8896∗∗ 0.9999 0.202 

*Equation (13): G = α ∙ exp(β − Xe) + δ. **Significant at 1% by the t-test. 

 

Equation (13), described by Resende et al. (2017), 

can be used to determine Gibbs free energy for the studied 

temperatures. The values of Gibbs free energy presented a 

high coefficient of determination (R2), low relative mean 

error (P), and all parameters significant at 1% by the t-test 

under the studied conditions. Table 4 shows that the values 

of the regression parameters (α and β) of [eq. (13)] increased 

with an increase in temperature, while the parameter δ had 

an opposite effect. 

 

CONCLUSIONS 

Thermodynamic properties are influenced by the 

moisture content of tamarind seeds, with an increase in the 

energy required to remove water from the product with a 

decrease in moisture content. 

The net isosteric heat of desorption increases with a 

reduction in the moisture content, ranging from 2,618.85 to 

2,510.25 kJ kg−1 for the moisture content range of 10.52 to 

21.10% db. 

The latent heat of vaporization, the differential 

enthalpy, and the Gibbs free energy increase with a 

reduction of the moisture content of tamarind seeds. 
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