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ABSTRACT: The penetration resistance (PR) is a soil attribute that allows identifies areas with 

restrictions due to compaction, which results in mechanical impedance for root growth and reduced 

crop yield. The aim of this study was to characterize the PR of an agricultural soil by geostatistical 

and multivariate analysis. Sampling was done randomly in 90 points up to 0.60 m depth. It was 

determined spatial distribution models of PR, and defined areas with mechanical impedance for 

roots growth. The PR showed a random distribution to 0.55 and 0.60 m depth. PR in other depths 

analyzed showed spatial dependence, with adjustments to exponential and spherical models. The 

cluster analysis that considered sampling points allowed establishing areas with compaction 

problem identified in the maps by kriging interpolation. The analysis with main components 

identified three soil layers, where the middle layer showed the highest values of PR. 
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ANÁLISIS DE LA RESISTENCIA A LA PENETRACIÓN DEL SUELO MEDIANTE 

MÉTODOS GEOESTADÍSTICOS Y MULTIVARIADOS 

 

RESUMEN: La resistencia a la penetración (RP) es un atributo del suelo que permite identificar 

zonas con restricciones debido a la compactación, que se traduce en impedancia mecánica para el 

desarrollo de las raíces y en una menor productividad de los cultivos. El objetivo del presente 

trabajo fue caracterizar la RP de un suelo agrícola, mediante análisis geoestadístico y multivariado. 

El muestreo se realizó de manera aleatoria en 90 puntos, hasta una profundidad de 0,60 m. Se 

determinaron los modelos de distribución espacial de la RP y se delimitaron áreas con problemas de 

impedancia mecánica de las raíces. La RP presentó distribución aleatoria a 0,55 y 0,60 m de 

profundidad. La RP en las otras profundidades analizadas mostraron dependencia espacial, con 

ajustes a modelos exponenciales y esféricos. El análisis jerárquico que consideró puntos de 

muestreo, permitió establecer zonas con problemas de compactación, identificadas en los mapas 

obtenidos mediante interpolación por kriging. El análisis de componentes principales permitió 

identificar tres capas de suelo, donde la capa intermedia fue la que presentó los mayores valores de 

RP. 

 

PALABRAS CLAVE: compactación, análisis jerárquico, componentes principales, Andisol. 

 

INTRODUCTION 

Some soils show signs of structural degradation due to continues application of high pressure 

from inappropriate use of agricultural machinery for crops or animals production. Characterize soils 

physical properties are required in these cases, for taking management decisions and to determine 

the effects of agricultural practices on soil properties. The level of characterization may range from 

visual observations of selected properties of the soil on field or laboratory detailed evaluations 

(BOWEN, 1981). 
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The penetration resistance (PR) is an appropriate index to evaluate soil compaction problems, 

limiting plant root development. PR is a physical property of soil, which represents the behavior 

and effects of different soil properties such as bulk density, moisture content, porosity and 

permeability, which, result from the particles size distribution, the structure, and the mineral and 

organic content of soil (SOANEN et al., 1981). 

Soil compaction is a detrimental factor that has been evaluated because it causes poor 

emergency capacity of the plants, affecting soil characteristics such as: availability of nutrients 

(CONTE et al., 2007), and water storage, causing inefficient use of water resources (SERAFIM et 

al., 2008) and reducing directly crop yield (STELLUTI et al., 1998). 

  The PR is an index that can be evaluated through a simple, fast and punctual determination, 

made directly on the field, by penetrometer or recording penetrometer that are effective and fast 

(BOWEN, 1981). The PR determined in this way is an indirect measure of the force exerted by the 

roots to penetrate the pores of the channels, or to deform the soil structure. 

Usually, the analysis of this information is performed by univariate techniques that only allow 

characterizing on time the PR behavior and other soil properties. Therefore, it requires a 

considerable number of measurements at different locations and depths, to obtain an accurately 

estimate (LIPIEC & HATANO, 2003). For the analysis of data thus generated, it recommended the 

use of geostatistical tools, that allow evaluate and understand the spatial variability of soil variables 

(RAMIREZ-LOPEZ et al., 2008), looking to solve problems such as variability of morphological 

properties (SALVADOR-BLANES et al., 2006), variability in physical properties (CRUZ et al., 

2010, MARTINS et al., 2010), determination of management units and analysis of crop yield 

(CUCUNUBA-MELO et al., 2011). 

Although the geostatistics permit to identify the spatial dependence of a soil property, the 

multivariate analysis permit to classify an attribute, from the same data set, into groups with 

common characteristics or similar behaviors, allowing a "natural division" (GRUNWALD et al, 

2001), useful to identify management zones in crop areas. 

Given the importance of this physical property in the crop growth and development, the aim 

of this research is to characterize the PR spatial variability in the ‘Silvania’ county (Cundinamarca, 

Colombia), in an area planted with tomato tree ( Cyphomandra betacea) with the use of 

geostatistical tools and multivariate analysis. 

 

MATERIALS AND METHODS  

The research area is located in the Silvania county (Cundinamarca, Colombia), in a 

production lot under tomato tree (Cyphomandra betacea), with 74°21'53, 46'' WL, 4 ° 28 '14, 24'' 

NL, with 2.025 (m elevation), with bimodal rainfall distribution, located in a region with high 

agricultural vocation. The soil of the area is an ‘Andisol’, with clay loam texture, volcanic ash, and 

organic matter (7.72%), humidity (15.00%), and mean values: sand (15.12%), silt (40.24), and clay 

(44.64 %). 

The sampling was performed in an area of 0.5 ha, in March 2010, ending the in dry period, in 

which 90 points were established following a randomly alternate course with a spacing of 3.0 m 

between plants in alternate rows (Figure 1). To obtain the PR values it was used an Eijkelkamp 

recording penetrometer, measuring at each point, reaching up to 0.6 m. depth. For the measuring 

was used a B penetrometer tip (ASAE S313.3, 2009), with an accuracy of 0.05 MPa. At each net 

site the measurements were made with constant speed, obtaining three curves, which shows the PR 

behavior trough the depth. Subsequently, it was generated the data set or database, taking the values 

at different soil depths: 1, 3, 6, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60 cm. 

Initially it was conducted a statistical descriptive analysis using SPSS v.17 software (SPSS 

Inc., Chicago, IL), with were determined mean or average, maximum, minimum, coefficient of 

variation (CV), skewness and kurtosis, for each depth, including the Kolmogorov-Smirnov 



Soil penetration resistance analysis by multivariate and geostatistical methods 

Eng. Agríc., Jaboticabal, v.32, n.1, p.91-101, jan./fev. 2012 

93 

normality test,  that is sensitive to values close to the median and the edges of the distribution. In 

this way, it was verified both empirically and numerically the normality fit to each variable, 

although not essential, provides better predictions when combined with geostatistical techniques 

(DIGGLE & RIBEIRO, 2000). For analysis of the CV it was taken the criteria of WARRICK & 

NIELSEN (1980), with low variability for CV under 12%, mean variability between 12 to 60%, and 

high variability above 60%. 

                            
FIGURE 1. Sampling grid distribution. 

 

Then spatial dependence of the attributes was established using the theory of regionalized 

variables (WEBSTER & OLIVER, 2007), in which the data set were fitted by semivarigram 

theoretical models   (h), defined by: 

                                                                                     (01)
 

where z (x) is the variable value at a site x, z (xi + h) another sample value separated at the h 

distance, and N the number of separated pairs by an h distance. The semivariograms is the 

arithmetic mean of all squared differences between experimental pairs of values separated by an h 

distance, or the variance increases of the regionalized variable at locations separated by an h 

distance. 

There are several theoretical models that can fit the experimental semivariogram. In general, 

these models can be divided into unbounded (linear, logarithmic, potential) and bounded (spherical, 

exponential, Gaussian). Bounded models are widely applied in the study of the spatial variability of 

soil attributes. Equations 2, 3 and 4 present the expressions that define the spherical, exponential 

and Gaussian semivariogram; respectively. These models have three common parameters, which 

are the nugget effect (C0), the plateau (C0 + C) and the range or scope (a). The nugget effect 

indicates the discontinuity between samples; it is the spatial variability not detected during the 

sampling process. The plateau is the value of the semivariance where the model is stable and has a 

constant value. The range represents the distance where the correlation is constant; indicating that 

from this distance there is not correlation between samples. For the points above the range is 

possible to say that the correlation between pairs of points is zero and is called statistically 

independent values (Moncayo et al., 2006). 
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                                                                                    (02) 

                                                                                                     (03) 

                                                                                                   (04) 

 

The spherical model has a high growth rate, although for large distances, marginal increments 

decrease until it becomes zero. Exponential and Gaussian models are applied when the spatial 

dependence shows a steady increase in proportion to the distance between observations, where the 

spatial dependence vanishes for a distance that tends to infinity. 

For the geostatistical analysis was used GS + v. 9 software (Gamma Design Software, LLC, 

Plainwell, MI), determining the theoretical model of semivariogram, whose selection is based on 

the lower value of the sum of residuals squared, the R 
2
 of the fitting equation and the similar values 

obtained between the actual value and the estimated value, that are obtained in the cross validation 

(FARAC et al., 2008, JOHANN et al., 2010). It also established the degree of spatial dependence 

(DSD) as the ratio between the nugget effect and the plateau (100 * C/C0 + C), which is classified 

as strong if it exceeds 75%, moderate with values between 25% and 75%, and weak when it less 

than 25% (CAMBARDELLA et al., 1994). When the DSD is close to zero, the fitted model to the 

experimental semivariogram is called nugget pure effect (NPE) (WEBSTER & OLIVER, 2007) and 

is defined by   (h) = C0, for h> 0, denoting a random spatial distribution of the variable. 

Interpolation was subsequently performed by the classic method of Kriging, which is 

considered the best linear neutral estimator and with minimum variance, presenting results by 

digital elevation maps. This procedure was performed with the Sufer v. 9 software (Golden 

Software Inc., Golden, CO). 

To improve the understanding of spatial behavior determined through the geostatistical 

methods it was applied multivariate statistics using SPSS v.17 software (SPSS Inc., Chicago, IL), 

for the purpose to identify the behavior by the depth and by the PR point , by hierarchical cluster 

analysis (HCA) and principal component analysis (PCA). In this study it was considered that PR 

values were correlated both horizontally and vertically (multicollinearity), for which the univariate 

analysis provides redundant information. This can be eliminated by the use of PCA, because this 

method reduces the dimensionality and shows the different basic components, which are called 

principal components. Each principal component (PC) is described in terms of new components, 

defined as a linear combination from the original variables. The first component represents the 

maximum value of the total variance and is associated with the largest auto data. The second 

component is the second linear combination, uncorrelated with the first, which represents the 

maximum residual variance, and so on, until totally account the variance. It is desirable that a small 

number of components explain the higher percentage of the total variance, it means, the data set can 

be described in a lower dimensional space (RAMOS et al., 2007). 

On the other hand, the HCA allows to group variables that have similarities. The difference 

between groups is an estimated distance, which separates a set of variables or attributes in groups. 

The results are obtained using different algorithms, which calculate the distance through the sum of 

the squares between two groups, rising over all variables. In each estimate, the sum of squares 

between groups is minimized over the partitions, through the combination of two groups, estimated 

in a previous step (RAMOS et al., 2007). 

In the HCA was complete group formation by depth and point, to establish the presence of 

layers and limiting compaction areas, using the Euclidean distance to separate the groups to be 

identified in the respective Dendrograms. The results were obtained using Ward's algorithm, which 
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calculates the distance through the sum of the squares between two groups.  PCA was then carried 

out for the different depths considered, using Varimax's rotation. 

 

RESULTS AND DISCUSSION 

The results obtained from descriptive statistics analysis to demonstrate that it has a symmetric 

distribution, with similar average and median values for each depth analyzed with a rising trend, 

associated with this kurtosis values (Table 1). The data set tend to a normal distribution, which is 

confirmed by the results of the Kolmogorov – Simonov’s test. 

In the PR averages is observed that for the soil surface layers is given a lower rank up to six 

centimeter deep, caused by the recent agricultural management performed in these layers, plus the 

effect of slope that does not allow the soil stabilization by the effect of dragging of sediments in the 

area under study. Furthermore, these trends are similar in other studies (VERONESE JUNIOR et 

al., 2006; RAMIREZ-LOPEZ et al, 2008). 

 

TABLE 1. Descriptive statistics for soil penetration resistance (MPa) at different depths.  

Depth (cm) Mean     

or average 

Median Minimum Maximum Asymmetry Kurtosis CV K-S 

1 1.59 1.61 0.55 2.60 0.05 -0.35 26.79 ns 

3 1.80 1.811 0.90 2.78 -0.13 -0.14 21.81 ns 

6 1.99 2.00 0.65 3.23 -0.28 0.41 24.83 ns 

10 2.12 2.10 1.00 3.23 -0.23 0.02 21.48 ns 

15 2.16 2.20 0.95 3.20 -0.47 0.04 22.95 ns 

20 2.19 2.20 1.00 3.28 -0.08 -0.28 23.52 ns 

25 2.17 2.15 1.05 3.31 0.10 -0.13 22.00 ns 

30 222 2.25 1.05 3.35 -0.03 -0.30 22.55 ns 

35 2.19 2.20 1.15 3.45 0.22 -0.36 22.87 ns 

40 2.10 2.12 0.38 3.45 -0.20 -0.01 25.92 ns 

45 2.16 2.14 1.20 3.43 0.20 -0.51 24.00 ns 

50 2.12 2.11 0.90 3.37 -0.06 -0.35 23.59 ns 

55 2.22 2.19 1.00 3.57 -0.13 0.03 22.53 ns 

60 2.19 2.20 1.15 3.30 -0.13 -0.40 22.17 ns 
CV: coefficient of variation, KS: Kolmogorov – Smirnov´s test, ns: not significant 

 

According to WARRICK & NIELSEN (1980) criteria, CV values show variability average 

for all depths, getting greater dispersion the first superficial layer, which may be due to soil and 

climatic conditions to the area and the agricultural management of land under study. 

The PR average values higher than 2 MPa for depths evaluated, except the first one, can argue 

that is a soil that has a potential restriction on the crop roots growth by compaction levels (CARR et 

al., 2007; RAMIREZ-LOPEZ et al., 2008); however, there are areas with lower values close to 0 

MPa and higher values close to 4 MPa. 

The spatial dependence evaluated with semivariograms indicates that most of the PR of 

different depths fit to exponential models, followed by the spherical model (Table 2). The depths at 

0.55 and 0.60 m did not show spatial dependence; it indicates that the spatial distribution was 

random, showing a pure nugget effect (PNE). C0 values for the variables that showed spatial 

dependence close to zero, indicating the existence of spatial correlation between neighboring points. 

On the other hand, the nugget was lower than 50% of the plateau, showing that the correlation 

model adequately describes the PR distribution.  
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TABLE 2. Parameters of the theoretical semivariograms of soil penetration resistance adjusted to 

different depth.  

Depth, cm Model Co Co+C Range, m C/Co+C R
2
 CVC  

1 Spherical 0.035 0.183 20.1 0.81 0.77 0.79  

3 Spherical 0.052 0.143 18 0.64 0.61 0.85  

6 Exponencial 0.024 0.173 14.4 0.86 0.54 0.71  

10 Spherical 0.032 0.192 14.4 0.83 0.53 0.73  

15 Exponencial 0.029 0.24 18.6 0.88 0.59 0.93  

20 Exponencial 0.103 0.261 107 0.66 0.7 0.95  

25 Spherical 0.116 0.233 57.9 05 0.71 1.01  

30 Exponencial 0.108 0.217 48.6 0.5 0.68 0.94  

35 Exponencial 0.108 0.232 87.9 0.53 0.77 1.02  

40 Exponencial 0.114 0.229 42 0.5 0.57 0.78  

45 Exponencial 0.107 0.229 58.2 0.53 0.63 1.09  

50 Exponencial 0.122 0.281 106.8 0.57 0.74 1.04  

55 PNE 0.258 0.258      

60 PNE 0.24 0.24      
PNE: pure nugget effect; CVC: cross-validation coefficient  

 

The determination coefficient (R
2
) was always greater than 0.53 for properties that showed 

spatial dependence, being the depth of 0.15 m the best fit. These values of R
2
, with values close to 

one (1) of the cross-validation coefficient (CVC) for all properties, indicate appropriate confidence 

of the results. Studies carried out by different authors obtained theoretical adjustments 

semivariograms models with higher tendency to exponential models (RAMIREZ-LOPEZ et al., 

2008; VERONESE JUNIOR et al., 2006), suggesting that PR is commonly adjusted to this model. 

The lower ranges were obtained for the first depths, which in turn present the lowest values of 

C0 and higher values of DSD, which shows that for future sampling this distance can be lower, 

indicating that the sampling distance is considered appropriate for the majority of measurements 

and the predictions for not sampled points by the Kriging method are reliable (VALVUENA 

CALDERON et al., 2008). 

 The use of hierarchical cluster analysis (HCA) allows identified management zones, based on 

different values of PR, both in space and depth. While it is possible to define several areas, in 

addition to the Euclidean distance is also considered the PR value which occur limiting crop root 

development for different depths. This value is very controversial and may vary between 1.5 and 

3.0 MPa, depending on soil texture and crop. Whereas the crop of the study area is a medium-sized 

tree, for the present study a value of 2.0 MPa is assumed, a value that is commonly accepted by 

researchers (HAMZA & ANDERSON, 2005). Based on these criteria, it was defined two 

management zones, considering a breakpoint Euclidean distance of 30 (Figure 2A). 

The first group corresponds to sites with PR low values, while group II show high values, 

which may be a limitation to root development and consequently for crop productivity, presumably 

those that do not represent mechanical constraints for plants. The maps obtained at different depths 

(Figures 2B, 2C, 2D and 2E), have in common that most limiting areas are located in the center and 

in the upper right and lower left of the study area, associated with the groups obtained in the HCA 

The HCA for depth also presented two groups (Figure 3A), differing from the principal 

component analysis, which showed three groups (Figure 3C) of which provides a clear performance 

of the PR in three soil layers: a surface between 0 and 0.10 m deep, which recorded the lowest 

values of PR, an average between 0.10 and 0.35 m deep, which presents the highest values of PR,  

and finally a third layer to 0.60 m depth, where the PR has lower values than the second layer, but 

above the topsoil. These three groups represent the typical curve of PR in agricultural soils (Figure 
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3B) and confirm different behavior for each depth considered (WERICH NETO et al., 2006), which 

also allows subsequent decisions related to soil preparation and partly depends on the crop root 

system to be establish. 
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FIGURE 2. Points clustering dendrogram (A), and maps of penetration resistance at 10, 20, 30 and 

40 cm deep (B, C, D and E; respectively). 
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FIGURE 3. Penetration resistance dendrogram grouping (A), Penetration resistance curves (B) and 

principal components (C), for different depths. 

 

To facilitate the analysis of the PR using multivariate techniques, it was considered as 

independent of PR variables measuring at each depth. In addition, it was analyzed the principal 

components with auto data greater than one (1), which for this study was considered an appropriate 

interval, since the first three principal components explain more than 80% of the total variance 

(Table 3), and as indicated by KAISER & RICE (1974), it is desirable that the main components 

analyzed to explain at least 75% of the total variance. 

Communality values close to one (1), for the PR at different depths, showing the 

representative of the components analyzed for this study. Each principal component is directly 

related to a soil layer, where the first component (PC1), accounting for 53.39% of the total variance, 

corresponds to the depth of the soil where they presented the highest values of PR located between 

0,40 and 0.60 m, an area that is less influenced by the natural processes of soil weathering and 

where the tillage and machinery traffic probably had little effect, since in this area are not used 

heavy equipment, obeying this behavior mainly to natural features and drainage conditions, as also 

reported by WERICH NETO et al. (2006). 
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TABLE 3. Coefficients of the first three principal components of soil penetration resistance at 

different depths. 

Depth, cm Principal 

component 1 

Principal    

component 2 

Principal 

component 3 

Communal

ity 

1 0.13044 0.91430 -0.00044 0.85296 

3 0.15623 0.92840 0.16708 0.91425 

6 0.09989 0.84357 0.40142 0.88272 

10 0.04743 0.52743 0.72165 0.80121 

15 0.06683 0.41945 0.80137 0.82259 

20 0.19515 0.20792 0.89525 0.88278 

25 0.34083 0.11556 0.85140 0.85441 

30 0.57466 -0.06636 0.71620 0.84758 

35 0.67210 -0.00031 0.62219 0.84005 

40 0.76142 0.05744 0.47933 0.81282 

45 0.77510 0.10651 0.39931 0.77157 

50 0.88959 0.17620 0.18969 0.85839 

55 0,88097 0.19733 0.08431 0.82215 

60 0.85248 0.13606 0.01758 0.74555 

Self-value (auto data) 7.47 2.56 1.68  

Total Variation % 53.39 18.27 11.98  

Accumulated 

Variation % 

53.39 71.66 83.64  

  

In sequence, the second component is related to the surface layer, which presents the major 

changes, both agronomic management and soil formation processes. This layer shows the lowest 

values of PR and higher reconsolidation processes occurring in agricultural soils after being 

subjected to external forces, such as tillage. The third component (PC3) accounts for 11.98% of the 

total variance and it is represented mainly by the soil layer between 0.10 and 0.30 m, which is the 

transition zone between A and B horizons of soils of the study area, also showing the side effect of 

soil preparation labor. 

Moreover, most of the resulting coefficients for each component, allow to verify a positive 

correlation between the different PR between different depths, showing relative continuity between 

adjacent soil layers, behavior also reported by STELLUTI et al. (1998), because when pressure is 

exerted on the soil surface, it is transmitted to subsurface layers, dissipating its effect at 0.50 m 

depth, primarily depending on the texture and soil moisture content (SOANA et al., 1981). 

 

CONCLUSIONS 

The study of soil penetration resistance by and multivariate analysis characterized this 

property both vertically and horizontally, which it identified correlation of penetration resistance 

independently to each soil depth, and thus allows identifying areas with limitations for crop 

development.  

The multivariate analysis helps to establish management zones, by grouping areas that have 

similarities both vertically and horizontally, which makes this tool an appropriate complement to 

classify and divide an attribute, according to the characteristics of the study area.  

Another benefit of multivariate analysis in the penetration resistance study is the principal 

component evaluation by depth, because this allows identifying and characterizing different soil 

layers, indicating accurately the depth for different agriculture practices, such as tillage. 
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