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ABSTRACT 

In China, low levels of accuracy in predicting when pineapple crops will reach maturity 
can result from environmental variation such as light changes, fruit overlap, and shading. 
Therefore, this study proposed the use of an improved RetinaNet algorithm (ECA-
Retinanet) based on the ECA attention mechanism. The ECA attention mechanism was 
embedded into the classification subnet of RetinaNet to improve accuracy in detecting 
different levels of maturity in pineapples. A new pineapple dataset was collected 
comprising four different growth stages under mild and severe complex scenarios. The 
experimental results have shown that the mAP (Mean Average Precision) and F1 score 
(Balanced Score) of the ECA-Retinanet model were 97.69%, 94.75%, 93.2%, and 90% 
for identification in mild and severe complex scenarios. These values are 0.42%, 2%, 
1.78%, and 1.5% higher than the original RetinaNet model which exceeds those of the 
six existing state-of-the-art detection models. The results have indicated that the proposed 
algorithm could be used for accurate identification of pineapple fruit and can detect fruit 
maturity using ground color images in the natural environment. The study findings 
provide a technical reference for automatic picking robots and early yield estimation. 

 
 
INTRODUCTION 

In recent years, artificial intelligence technologies 
have been widely used in agriculture. Deep learning can solve 
various problems in precision agriculture with the 
development of various systems (Solemane et al., 2022). A 
powerful technical tool in artificial intelligence, computer 
vision (Wang et al., 2022) has provided a strong technical 
guarantee in the vision system of agricultural robots. 
Agricultural robots (Nguyen et al., 2021) can help farmers to 
solve farming, pesticide, and picking problems in an 
environmentally friendly, energy-saving, and cost-saving way 
to improve agricultural production efficiency and increase 
income. Among them, fruit detection is one of the important 
aspects. By accurately detecting fruit maturity, their 
harvesting time can be predicted to ensure effective 
management and increases in yield. 

At present, pineapples are widely distributed in Brazil, 
Thailand, the United States, Mexico, the Philippines, and a 
range of other countries. As one of the major producers of 
pineapples, China has extensive areas under pineapple 

cultivation in Guangdong, Guangxi, Fujian, Hainan, Yunnan, 
and Taiwan, which has created a high level of economic value 
in the market (Li et al., 2022). High-level orchard mechanical 
automation products are being developed to achieve accurate 
positioning and classification of pineapple maturity while 
improving crop quality and yields. 

However, in natural orchard scenarios, detection of 
pineapple maturity can be influenced by a range of factors, 
such as being obscured by branches, leaves, and weeds, 
overlapping between pineapple fruits, light transitions that 
can severely affect imaging, and fruits that are similar in color 
to their background. Therefore, accurate measurement of 
pineapple maturity remains an important challenge to be 
addressed (Liu et al., 2022). 

To date, there has been some progress locally and 
internationally in fruit detection research. Based on Philippine 
standards, Aguilar et al. (2021) proposed that a support vector 
machine and HSV color space could be used to automatically 
determine the level of maturity of pineapple fruit. However, 
this technique could not be applied successfully to detection 
in real scenarios and could not accurately determine the 
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maturity of the pineapple fruit. This technique is the 
traditional object detection method used based on the color 
and texture of the images. In recent years, object detection 
(Liu et al., 2020, Wu et al., 2020) has become a key research 
focus in the field of artificial intelligence. As a powerful 
technical tool in artificial intelligence, deep learning has 
considerable advantages in the context of conducting object 
detection (Huang, 2020, Kong, 2021) tasks in fruit. Chen and 
Bu (2019) proposed a fruit identification algorithm based on 
multi-color features and texture features. However, in the 
action task, Tang (2020) suggested that the improved 
YOLOv3 could be used for real-time detection of passion 
fruit in real orchards, but the detection success in passion fruit 
with different levels of maturity was relatively poor. Xiong et 
al. (2020) proposed a multi-scale convolutional neural 
network Des-YOLOv3 algorithm to realize the identification 
and detection of ripe citrus in a complex environment at night, 
with an average accuracy (mAP) of 90.75% under the test set. 
Zhao et al. (2019) proposed the apple location method based 
on the YOLOv3 deep convolutional neural network. The mAP 
under the verification set was 87.71%, but it was difficult to 
achieve real-time detection using the network. The fruit 
detection system based on the Faster R-CNN model (Sa et al., 
2016) has been used to detect sweet pepper, which has 
improved its level of the accuracy. However, if the detection 
speed is low the real-time monitoring cannot be realized. 
Mohd Basir Selvam et al. (2021) proposed the use of the 
YOLOv3 algorithm to detect mature palm oil clusters in real-
time. However, this project has poor robustness and a 
relatively low level of accuracy in detecting palm oil clusters. 
Based on the Faster R-CNN model (Zhu et al., 2020), 
blueberry fruits with different levels of maturity could be 
accurately identified and classified, with a high level of 

accuracy for factors such as background interference and 
fruit occlusion. 

To address these above problems, the purpose of this 
study was to develop an improved RetinaNet algorithm. The 
ECA attention mechanism was embedded into the 
classification subnet to selectively increase the weight values 
of channels containing pineapple fruits to improve the 
detection accuracy for pineapples with different levels of 
maturity. A new pineapple dataset was collected with four 
pineapple maturity complexes in natural orchards from mild 
to severe.  
 
MATERIAL AND METHODS 

Dataset 

In this study, the images of pineapples were collected 
at a natural orchard plantation in Danzhou City, Hainan 
Province, China. Filming was carried out using smartphones 
and a total of 6,000 images and 30 videos were collected. Data 
was collected from December 2021 to April 2022, with time 
slots of 9:00–12:00, 14:20–17:00, and 19:00–19:30 on four 
days of each month selected for filming. The video resolution 
was 1920 × 1080 at 30 FPS. The video was pre-processed, 
and the video frames were extracted with using the FFMPEG 
tool. To prevent data redundancy, one video frame was 
extracted at 3 s intervals to obtain a pineapple object detection 
image dataset. A total of 2873 relatively representative images 
were selected as the experimental dataset in jpeg image 
format with a resolution of 4032 × 3024 pixels. The pineapple 
dataset was captured under weather conditions with and 
without cloud cover. The lighting conditions included smooth 
light, backlighting, and metering, and complex backgrounds 
of overlapping branches, leaves, weeds, and fruits (Figure 1). 

 

 

 

 

 

 

 

 

(a) Obscure (b) Obscure (c) Front-lighting (d) Cloudy 

    

(e) Imaging instability (f) Metering (g) Backlight (h) Metering 

FIGURE 1. Examples of the pineapple images of the complex natural environment captured.  
 
Image pre-processing 

The LabelImg tool (Darrenl, 2019) was used to manually annotate the level of maturity of the pineapples in images (Figure 
2). The rectangular frame in standard time was used to fit the outline of pineapple fruits. The dataset format of PASCAL VOC 
2007 was used in the experiment.  
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FIGURE 2. LabelImg interface while conducting annotation and marking the position of the pineapple in the image.  
 

For ease of observation, these four different stages of 
pineapple maturity were indicated by four labels, based on the 
experience of the growing experts. The 
young_mature_pineapple label represents the first stage of 
Bromelia with red-purple flowers as shown in Figure 3 (a). 
The near_young_mature_pineapple label represents the 

second stage of Bromelia with red-purple flat fading flowers 
shown in Figure 3 (b). The near_mature_pineapple label 
represents the third stage of Bromelia as being is flat as shown 
in Figure 3 (c). The mature_pineapple label represents the 
fourth stage of Bromelia with dark green to yellow fruit as 
shown in Figure 3 (d).  

 

    

(a) (b)  (c)  (d)  

FIGURE 3. Classification sketch of pineapple images.  
 

The LabelImg tool was used to annotate 2873 images 
from the dataset, and the total number of pineapple fruits was 
approximately 10,000 images, including 1156 images from 
the first stage, 2487 images from the second stage, 4585 
images from the third stage, and 1,966 images from the fourth 
stage. The labeled pineapple dataset was randomly divided 

into a training set and test set at a ratio of 9:1. A total of 2585 
images in training sets and 288 images in test sets were 
obtained, among which the test set was divided into mildly 
and severe complex scenarios. Figure 4 shows the mild and 
severe complex scenarios for the pineapple images. This 
meets the requirements of the experimental data.  

 

  

(a) Mild complex scenarios  

  

(b) Severe complex scenarios 

FIGURE 4. Two complex scenarios shown in the pineapple images.  
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Improved RetinaNet based on ECA attention mechanism 

The ECA-RetinaNet pineapple maturity identification 
network structure is shown in Figure 5. The ECA-RetinaNet 
model uses ResNet50 (He et al., 2016) as the backbone feature 
network to extract the backbone features. It removes the C3, C4,  

and C5 feature layers to construct Feature Pyramid Net (FPN) 
(Lin et al., 2017). It then merges the multi-scale features to 
obtain the P3, P4, P5, P6, and P7 effective feature layers. The 
prediction results for the level of pineapple maturity can be 
obtained by transmitting these five effective feature layers to 
the classification and regression subnets.

 

 

FIGURE 5. ECA-RetinaNet Architecture. 
 

In Figure 5 a, the input pineapple RGB images were 
adjusted to 600 × 600 size and ResNet50 was used for 
preliminary feature extraction from the pineapple image. 
ResNet50 introduces residual blocks to solve the problem of 
network degradation, such as when the network depth 
increases. The structure diagram of the residual network is 
shown in Figure 6, which introduces the data output of a 
specific layer of the leaning several layers directly to the input 
component of the later data layers by skipping multiple layers. 

  

 
FIGURE 6. ResNet structure. 

 
In Figure 5 b, ResNet50 was used to obtain three 

feature layers C3 (75 × 75 × 512), C4 (38 × 38 × 1024), and 
C5 (19 × 19 × 2048) with different perceptual fields through 
the backbone feature extraction network. These three feature 
layers were passed through the feature pyramid to obtain five 
effective feature layers P3 (75 × 75 × 256), P4 (38 × 38 × 256), 
P5 (19 × 19 × 256), P6 (10 × 10 × 256), and P7 (5 × 5 × 256). 
The use of FPN ensures that achieves each layer can be used 
for object detection with different object sizes, and its main 
function was to fuse multi-scale features to achieve effective 
prediction results. FPN is a fusion of multi-scale features in a 

structure that combines high-level semantics with the 
underlying semantics. Given that the high-level features have 
rich semantic information, the object classification accuracy 
is relatively high, but the object localization ability is weak. 
Meanwhile, the underlying features have less semantic 
information and stronger object localization ability. 

Given that Figure 5 c is the classification subnet, the 
ECA attention module (Wang et al. 2020) was introduced, and 
the effective feature layers of the feature pyramid P3, P4, P5, 
P6, and P7 were refined again in the classification subnet. 
This attention model was used to identify the most important 
parts of the network for processing, with a focus on the 
information of interest while suppressing useless information, 
which improved the conciseness and efficiency of the network. 

Figure 7 shows the ECA attention module after a 
channel-level global averaging without dimensionality 
reduction. The features obtained in the previous step were 
then subjected to 1D convolution for learning. Among them, 
the size of the convolution kernel of 1D convolution affects 
the coverage of cross-channel interactions, that is, it affects 
the number of channels considered for the calculation of each 
weight of the attention mechanism, defined in [eq. (1)]. 

2log ( )C b
K

 
  , of which   = 2, b = 1    (1) 

 
After completing the 1D convolution, the Sigmoid 

function is taken once more to fix the value to between 0 and 
1. At this point, the weight of each channel of the input 
feature layer (between 0 and 1) is obtained. After obtaining 
this weight, this weight is multiplied by the original input 
feature layer.
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FIGURE 7. ECA-Net Architecture. 
 

Without affecting the feature extraction of the previous 
feature pyramid, the subdivision operation of weight 
redistribution was carried out on the extracted feature graph. 
The refined feature map was passed through four 3 × 3 
convolution layers of 256 channels × W × H and a 3 × 3 
convolution layer with 9 × K filters, where K is the number 
of object categories. The sigmoid activation function is 
applied to the output to output the final classification result 
for the level of pineapple maturity. The main function of a 
classification subnet is to classify objects. The foreground and 
background are distinguished and categories of objects are 
identified. The main function of the classification subnet is to 
achieve the task of border regression, and the specific task is 
to correct the border error. 

Figure 5 d is a regression subnet, with a network 
structure that is almost the same as that of the classification 
subnet but does not share parameters. The regression subnet 
produces a 4 × 9 linear output for each spatial location. For 
each anchor in each spatial position, the frame regression 
subnet calculates the offset between the anchor frame and the 
real data frame calibrated nearby and revises the frame 
regression positioning of pineapple maturity to obtain a more 
accurate object frame.   

The loss function of this model is: 

( ) (1 ) log( )
tt tFL p p p    (2) 

Where: 

if e=1

1  otherwiset

p
p

p


  

 (3) 

( ) log( )t tCE P P  (4) 

 
Focal Loss(Lin et al. 2017) is a simple deformation of 

Cross Entropy Loss where  (1 )p  in [eq. (2)] represents a 

modulation factor,  in eq (2) represents weighting factor, 

𝑝௧  in [eq. (3)] represents the estimated probability of binary 

classification, and e is the true label; [eq. (4)] represents Cross 

Entropy Loss. 

Performance metrics 

The test was evaluated by calculating the mAP and F1 
score. FPS is how many frames per second the object network 
could detect. The mAP and F1 score are related to Precision 
(P,%), Recall (R,%), using True Positives (TP), True 
Negatives (TN), False Positives (FP), False Negatives (FN) 
in the confusion grid matrix. The calculation equation is: 

Precision
TP

TP FP



 (5) 

 

Recall
TP

TP FN



 (6) 

 
1

0

AP ( )P R dR   (7) 

 

1

1
mAP ( ) 100%

M

K

AP k
M 

   (8) 

 

1

2
F

+

Recall Precision

Precision Recall

 
  (9) 

 
 
RESULTS AND DISCUSSION 

Experimental environment 

The experimental platform configuration for this paper 
was the following: OS, Win10; GPU, RTX 2070 SUPER; 
CPU, Intel(R) Core(TM) i7-9700K CPU @ 3.60 GHz; 
Memory, 16 GB; Hard disk, 1TB; NVIDIA driver, 456.71. 
The programming language Python and deep learning 
framework PyTorch versions 3.8 and 1.7 were used. All seven 
models were trained on this configuration. 

Model training and testing 

In this study, the migration learning approach was used 
and fine-tuned for a specific pineapple maturity detection task. 
In the pineapple maturity detection task, the object needed to 
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be divided into five categories that is, the four stages of 
pineapple maturity and background, so the subnet parameters 
were set to five. The specific parameters of the ECA-
RetinaNet are as follows: the maximum learning rate of the 
model is set to 1e-4, the minimum learning rate of the model 
is the maximum learning rate × 0.01, the Adam optimizer is 
used, and the model train a total of 100 epochs. 

The curve of the loss value of ECA-Retinanet with the 
number of epochs during training. As shown in Figure 8, 
when the network epoch exceeds 85, the loss value leveled 
off and dropped to approximately 0.054. From the parameter 
convergence, the network training results are in line with the 
values required.

 

 

FIGURE 8. Loss changing graph.  
 
Comparison experiment 

ECA-RetinaNet detection results 

The ECA-RetinaNet structure in this study is based on 
the RetinaNet backbone network, while incorporating the 
ECA module for improvement. This has demonstrated the 
effectiveness of the improved ECA-RetinaNet based on the 
RetinaNet-based network. A comparative analysis of the 
detection network performance before and after the 

improvement is required.  
The test set results of the four mature precision, total 

average precision, accuracy, recall, F1 score, and FPS are 
shown in Table 1. The F1 score of ECA-RetinaNet are 2% and 
1.5% higher in the mild and severe complex scenarios, 
respectively, without affecting the real-time detection. The 
average precision of ECA-RetinaNet was almost always 
higher than the original RetinaNet in terms of detection 
accuracy.

 

TABLE 1. Comparison of test results from the detection network before and after improvement. 

Scenarios Algorithm 
Mean Average Precision mAP/% Precision 

/% 
Recall 

/% 
F1 
/% 

FPS 
Young Near young Near mature Mature Mean 

Mild 
complex 

RetinaNet 99.6 92.01 97.46 100 97.27 94.4 97.38 92.75 27 

ECA-RetinaNet 99.73 93.29 97.73 100 97.69 94.8 95.41 94.75 26.9 

Severe 
complex 

RetinaNet 85.18 94.59 92.98 92.94 91.42 90 84.86 88.5 27 

ECA-RetinaNet 87.52 94.43 95.75 95.08 93.2 91.6 88.84 90 26.9 

Young_mature_pineapple (Young), near_young_mature_pineapple (Near young), near_mature_pineapple (Near mature ), mature_pineapple 
(Mature), Precision value (Precision), Recall value (Recall), F1 score ( F1) 

 
Figure 9 shows a comparison of the detection network 

recognition effect before and after improvement. Figure 9 (a) 
and Figure 9 (c) are the original RetinaNet model detection 
effect, and Figure 9 (b) and Figure 9 (d) are the ECA-
RetinaNet model detection effect. In the mild complex 
scenario, there is a missed detection in the lower right corner 
of Figure 9 (a). The missed pineapple is severely obscured by 
the branches and leaves. Meanwhile, it was detected in Figure 
9 (b) and the detection result was as expected. In the severe  

complex scenario, Figure 9 (c) had a missed detection in both 
the upper left and upper right corners, and a false detection in 
the upper left corner. Figure 9 (d) did not have a missed 
detection and the improved network recognition resulted in 
correct identification of all the pineapples encompassing 
different levels of maturity. The detection effect of the ECA-
RetinaNet model was found to be more effective than the 
detection using the RetinaNet model.   
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Mild 

complex 

  

(a) (b) 

Severe complex 

  

(c) (d) 

 RetinaNet ECA-RetinaNet 

FIGURE 9. Comparison of detection network recognition effect before and after improvement. The yellow boxes indicate the 
pineapples that were not detected.  
 

The results have shown that to some extent, this 
method effectively solves the problem of pineapples being 
difficult to detect in complex environments. Detection errors 
can be caused by light transitions that can severely affect the 
imaging quality with shading between fruit and weed 
branches and leaves. According to Sabóia et al. (2022), the 
low proportion of objects detected in the image may be 
because of the constant search for focus with movement, as 
the camera equipment used performs auto-zoom and fails to 
improve the focus. According to Zheng et al. (2017), for 
natural RGB images, detection becomes difficult due to 
changes in lighting and weather, with difficulty in 
distinguishing colors in shadow areas. According to Li et al. 
(2022), a near-colored background containing leaves and 
canopy affects the recognition accuracy of different maturity 
levels for flat dates in the field. Therefore, the algorithm was 
improved using an attention mechanism to improve the 
extraction of small targets at a shallow level against similar 
backgrounds and to improve the detection accuracy. Karthik 
et al. (2020) proposed an attention-based residual deep 
network for disease detection in tomato leaves. The inclusion 
of an attention mechanism gives more weight to features that 
need to be the key focus, which allows for accurate 
classification. In this study, the detection accuracy was further 
improved by the introduction of the ECA attention module, 
which assigns different features to different channels of the 
feature map that has already been extracted and selectively 

increases the weight value of the channel containing 
pineapple fruit. 

Comprehensive comparison of different object detection 
networks 

The experiment aimed to compare different object 
detection networks with the improved model detection 
capability metrics in detail. The ECA-RetinaNet, RetinaNet, 
Faster R-CNN (Ren et al., 2015), CenterNet (Duan et al., 
2019), YOLOv3 (Redmon & Farhadi 2018), YOLOv4 
(Bochkovskiy et al., 2020), and SSD (Liu et al., 2016) object 
detection algorithm models were trained using the datasets 
produced in this study, and the optimal models were derived 
and then tested on the mild and severe complex test set, and a 
total of seven sets of experimental data results were obtained.  

Liu et al. (2022) proposed a model based on binocular 
stereo vision and improved YOLOv3. It is used for intelligent 
picking, detecting, and positioning of pineapple fruit. On the 
test set with slight occlusion, the AP and F1 score of the 
improved YOLOv3 model were 97.55% and 93.18% 
respectively. In this study, for the mild complex scenarios, as 
shown in Table 2, the precision value, and F1 score of ECA-
RetinaNet were the highest among these seven object 
detection networks. The mAP of ECA-RetinaNet was 0.42%, 
1.69%, 1.22%, 0.46%, and 2.83% higher than that of 
RetinaNet, Faster R-CNN, CenterNet, YOLOv3, and 
YOLOv4, respectively.
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TABLE 2. Performance comparison of different models in mild complex scenarios. 

Algorithm 
Mean Average Precision mAP/% Precision 

/% 
Recall 

/% 
F1 
/% 

FPS 
Young Near young Near mature Mature Mean 

ECA-RetinaNet 99.73 93.29 97.73 100 97.69 94.8 95.41 94.75 27 

RetinaNet 99.6 92.01 97.46 100 97.27 94.4 97.38 92.75 26.9 

Faster R-CNN 98.95 88.37 96.75 99.93 96.0 92.8 96.61 82 11 

CenterNet 99.52 88.65 97.71 100 96.47 94 92.65 94.5 52 

YOLOv3 99.22 92.42 97.28 100 97.23 94.4 95.34 93.25 26 

YOLOv4 99.18 81.71 98.56 100 94.86 93.1 91.48 89.75 28 

SSD 98.29 93.83 99.32 100 97.86 88.6 97.04 92 63 

Young_mature_pineapple (Young), near_young_mature_pineapple (Near young), near_mature_pineapple (Near mature ), mature_pineapple 
(Mature), Precision value (Precision), Recall value (Recall), F1 score ( F1) 

 
As shown in Figure 10, there are four pineapples in the original image. Each pineapple fruit has an occlusion problem, 

and one pineapple is particularly badly occluded. The original RetinaNet, CenterNet, SSD, YOLOv3, YOLOv4, and SSD 
missed the heavily obscured pineapple on the right side of the image. ECA-RetinaNet successfully detected the fruit. The 
yellow boxes indicate the missed fruit that were not detected. 
 

    

(a) Original image (b) ECA-RetinaNet (c) RetinaNet (d) CenterNet 

    

(e) Faster R-CNN (f) YOLOv3 (g) YOLOv4 (h) SSD 

FIGURE 10. Comparison of different model detection effects in mild complex scenarios. The yellow boxes indicate the missed 
fruit that were not detected. 

 
According to Liu et al. (2022), as the occlusion grew more severe in the pineapple detection, the F1 score and AP values 

decreased to 89.15% and 91.47%. In this study, for severe complex scenarios, as shown in Table 3, the mAP, precision value, 
and F1 score for ECA-RetinaNet were higher than the other object detection networks compared with ECA-RetinaNet being the 
most effective.  

 
TABLE 3. Performance comparison of different models in severe complex scenarios. 

Algorithm 
Mean Average Precision mAP/% Precision 

/% 
Recall 

/% 
F1 
/% 

FPS 
Young Near young Near mature Mature Mean 

ECA-RetinaNet 87.52 94.43 95.75 95.08 93.2 91.6 88.84 90 27 

RetinaNet 85.18 94.59 92.98 92.94 91.42 90 84.86 88.5 26.9 

Faster R-CNN 87.04 91.81 94.59 93.6 91.76 90.1 92.35 80.75 11 

CenterNet 84.13 91.76 94.12 91.72 90.43 89 74.98 85.25 52 

YOLOv3 82.59 91.14 93.05 91.49 89.57 87.9 82.12 86.5 26 

YOLOv4 69.02 84.66 85.83 86.8 81.58 80.3 74.77 79.25 28 

SSD 90.13 90.92 89.19 90.98 90.3 88.2 81.4 87.25 63 

Young_mature_pineapple (Young), near_young_mature_pineapple (Near young), near_mature_pineapple (Near mature ), mature_pineapple 
(Mature), Precision value (Precision), Recall value (Recall), F1 score ( F1) 
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In the severe complex scenarios as in Figure 11, there are a total of five pineapples in the original image, which have 
fruit overlapping with branch occlusion. The original RetinaNet, CenterNet, SSD, YOLOv3, and YOLOv4 all showed missed 
or incorrect detections. The faster R-CNN and ECA-RetinaNet detected all five fruits. 

 

    

(a) Original image (b) ECA-RetinaNet (c) RetinaNet (d) CenterNet 

    

(e) Faster R-CNN (f) YOLOv3 (g) YOLOv4 (h) SSD 

FIGURE 11. Comparison of different model detection effects in severe complex scenarios. The yellow and purple boxes indicate 
missed and incorrect detections. 

 
The ECA-RetinaNet proposed in this study has been 

shown to be effective in identifying different levels pineapple 
maturity in mild and severe complex scenario conditions. 
Therefore, it is suitable for detecting pineapple maturity under 
complex scenes in natural orchard scenes. It has a high level 
of research value and importance in realizing yield estimation 
and mechanical automatic picking research and development. 
 
CONCLUSIONS 

In this study, the RetinaNet detection model was 
improved by incorporating the ECA attention mechanism 
method to identify pineapples in orchards with four main 
different maturity levels. The experiments have shown that 
the ECA-RetinaNet has a recognition mAP of 97.69% and an 
F1 score of 94.75% in mild complex scenarios, and an 
average accuracy of 93.2% and an F1 score of 90% in severe 
complex scenarios. The FPS is 27 and meets the requirement 
of real-time detection. The ECA-RetinaNet model performed 
better than the original RetinaNet model and outperformed six 
state-of-the-art fruit detection models such as Faster R-CNN. 
The improved RetinaNet model proved its applicability as   
a method to identify pineapples in the main maturity stages  
in orchards. 
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