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ABSTRACT 

The parameter optimization of the tractor’s steering trapezoid mechanism is a traditional 
optimization problem, and the teaching-learning-based optimization (TLBO) has a better 
solving ability for parameter optimization of the tractor’s steering trapezoid. However, the 
teacher stage and student stage of TLBO limit the accuracy and stability and the ability to 
jump out of the local optimization solution. To obtain an optimal solution with an higher 
accuracy, an improved adaptive direction strategy teaching-learning-based optimization 
(IADS-TLBO) was used. This improved the feedback stage based on the adaptive 
direction strategy teaching-learning-based optimization (ADS-TLBO). The IADS-TLBO 
was verified by three different testing functions, and the results showed that the improved 
ideas are valid and feasible. Finally, the IADS-TLBO was used to optimize the steering 
trapezoid mechanism of JOHN DEERE T600. The optimal parameters obtained were as 
follows: the bottom angle was 35.4°, and the steering arm length was 154 mm. A 
verification experiment was conducted in the farm tool laboratory of Northeast 
Agricultural University (China). The experimental results showed that the average bottom 
angle was 35.48°, and the relative error between the measured and optimized bottom 
angles was 0.23%, which is less than 5%. This result showed that the results obtained by 
IADS-TLBO were reliable. 

 
 
INTRODUCTION 

The parameter optimization of the tractor’s steering 
trapezoid mechanism is a constrained optimization problem. 
The nonlinear optimization model established for practical 
problems has many problems, such as multiple variables and 
multiple optima, and the objective function is complex. The 
traditional methods (complex method, gridding method) 
have difficulty in solving these problems (Wang et al., 2018). 
The heuristic intelligent optimization algorithm is an active 
research topic in artificial intelligence because it only 
depends on computing ability to solve the constrained 
optimization problem without considering the complexity of 
the optimization problem. In recent years, many heuristic 
intelligent algorithms have been designed and applied to 
optimize the parameters of tractor’s steering trapezoid 

mechanism which include the genetic algorithm (Zhao et al., 
2017; Wang et al., 2018; Wang et al., 2015), particle swarm 
optimization (PSO) (Liu et al., 2013), ant colony 
optimization (Liang & Guan, 2013), artificial bee colony 
(Karaboga & Akay, 2009), and fireworks explosion 
optimization (Pan et al., 2009; Xie et al., 2016). Practices 
have shown that a heuristic intelligent algorithm is effective 
in solving the tractor’s steering trapezoid. However, these 
algorithms have the general characteristic that some special 
parameters need to be determined in the solving process. 
Furthermore, the precision of such parameters seriously 
affects the efficiency and this can even determine whether 
the algorithm can solve the optimization problem at all. 
Therefore, these shortcomings limit engineering applications 
in some fields. 
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Teaching-learning-based optimization (TLBO) was 
proposed to realize the evolution of the population by 
simulating the teaching and the learning between teachers 
and students. Compared with traditional intelligence 
optimization algorithms, TLBO has the advantages of 
having fewer parameters, a simple structure, easy 
implementation, and fast solution speed (Niknam et al., 
2012). This algorithm has been widely used in cooling and 
heating device optimization (Rao & Patel, 2013), 
mechanical design optimization (Rao et al., 2011), 
secondary assignment problems (Dokeroglu, 2015), image 
retrieval (Bi & Pan, 2017) and other problems. Similar to 
other intelligence optimization algorithms, TLBO tends to 
fall into a local optimum, and the convergence speed and 
accuracy of the algorithm are not ideal when solving 
high-dimensional and multipeak complex problems. To 
overcome these shortcomings, many improvements have 
been made and applied. These advances have improved the 
accuracy of the algorithm, its convergence speed and the 
ability to jump out of the local optima. In this connection, Bi 
& Pan proposed an adaptive teaching optimization algorithm 
based on a hybrid strategy, which used a comprehensive 
crossover learning strategy and perturbation strategy using 
multiple factors to prevent the algorithm from falling into a 
local optimum prematurely. Bi & Pan (2017) integrated the 
mutation strategy of the differential evolution algorithm in 
the learning stage of TLBO and imported the individual 
disturbances in the later stage of the evolution thereby 
improving the optimization performance of the algorithm. 
Zou et al. (2017) proposed a teaching optimization algorithm 
based on local learning and repulsive learning. The 
algorithm added a self-learning method combined with 
historical information and a regrouping operation based on a 
certain algebra. However, the solution accuracy is low, the 
later convergence speed is slow, and the evolution process 
easily falls into the local optimum. All these are the main 
problems of TLBO and the later improved algorithms. Thus 
TLBO still has much room for improvement. 

This paper selects the parameter optimization of 
tractor’s steering trapezoid as the research objective, and an 
improved adaptive direction strategy 
teaching-learning-based optimization (IADS-TLBO) is 
proposed based on the TLBO. The IADS-TLBO increases 
the directional adaptive feedback learning to improve the 
accuracy, stability and ability to jump out of the local 
optimum. The validity of the improved algorithm was 
verified by three test functions. Finally, the improved 
algorithm was applied to optimize the parameters of the 
tractor’s steering trapezoid, and the reliability and feasibility 
of the optimization result were verified experimentally. 
 
MATERIAL AND METHODS 

Improved adaptive direction strategy 
teaching-learning-based optimization (IADS-TLBO) 

Teaching-learning-based optimization 

The supervised learning algorithm is a new 
population-based simulation algorithm. It imitates the two 
basic processes of the traditional teaching and learning 
phenomena: one is to acquire new knowledge from the tutor, 
which is called the teacher stage. The other is to obtain new 
knowledge by communicating with other students, which is 
called the student stage (Li, 2004; Zhao, 2006; Rao et al., 
2011). All the learners are considered to be a population for 

the population-based simulation algorithm. The solution of 
the objective function contains different variables and 
corresponds to different courses that the student has learned. 
The fitness value corresponding to the objective function is 
regarded as the course score of different students, and the 
optimal solution in the entire population is regarded as the 
tutor of the population. 

(1) Teacher stage 

The teacher stage imitates the teaching process in 
reality. Suppose Mi is the average of the entire population in 
the ith iteration, Xj is an individual (student) in the whole 
population, and Xbest is the best individual in the whole 
population. The teacher increases the level of each 
individual by increasing the mean value of the whole 
population. The learning ability of each student is 
determined as follows: 

Difference_Meanj – rj(Xbest,i – TFMi)            (1) 

Where:  

rj is a random number in (0,1), which denotes the index of 
students’ learning ability;  

TF is the teaching influence factor, which denotes the index 
of tutors’ teaching ability. The value of TF is 1 or 2 and can 
be determined as follows: 

TF = round(1 + rand(0, 1))                  (2) 
 

According to [eq. (1)], the individual is updated as 
follows: 

Xnew,j = Xold,j + Difference_Meanj               (3) 

Where:  

Xold,j is the jth original individual in the whole population and 
Xnew,j is the updated individual for Xold,j. If Xnew,j has a better 
fitness than Xold,j, Xold,j is replaced by Xnew,j. The update 
process repeats until the whole population is updated in the 
teacher stage. 

(2) Student stage 

The student stage imitates the exchange process of 
students in reality. The individual improves the quality of 
the solution for the whole population that communicates 
with each other (Sun et al., 2016). For an individual of the 
whole population, the quality of the solution can be 
improved by exchanging with another if the solution of the 
other individual is better than it. The update process of an 
individual is shown as follows. 

Suppose Xi, Xj are the ith, jth individuals of the whole 
population, Xj(i≠j), which is randomly selected from the whole 
population. If the fitness value of Xi is superior to Xj, then 

Xnew,i = Xi + r(Xi – Xj)                  (4) 

otherwise, 

Xnew,i = Xi + r(Xj – Xi)                (5) 
 

As in case of the teacher stage, if Xnew,i is superior to 
Xi, Xnew,i is selected as the new individual. Repeating the 
abovementioned process, the whole population has a new 
update process in the learner phase. The update process repeats 
until the whole population is updated in the student stage. 

The teaching-learning stage is repeated, and the whole 
population is updated. The teaching-learning process will stop 
when the termination condition of the algorithm is reached. 
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Improved adaptive directions strategy 
teaching-learning-based optimization 

Because the learning of the teacher stage and the 
exchange of the student stage are carried out in a random 
manner, the optimum obtained by teaching-learning-based 
optimization is unstable, and improved solutions are 
obtained by increasing the population numbers or the 
number of iterations. After self-adaptive teacher-stage and 
student-stage learning with mentor-based learning 
algorithms, the level of the individual would to a certain 
extent, resulting in the level of the teacher failing to meet the 
requirements of the students. Thus the teacher also needs to 
improve his/her personal teaching ability to participate in 
teaching at the teaching stage. 

(1) Adaptive directions strategy in the teacher stage 

In the teacher stage, it is assumed that the tutor's 
knowledge level is the highest among all student 
populations, which is expressed as f(Xbest). Each student has 
a different learning ability when the teacher teaches. 
Suppose Ti

t  is the learning ability of the ith student 
individual after the tth iteration. f(Xi) denotes the learning 
ability of the ith student individual. The update process of the 
student population is expressed as follows: 

( )

( ) ( )
iTi

t
best i

f X

f X f X
 


                    (6) 

 
(1)

, (1 )new i best iX X X                       (7) 

 
(2) (1)

, , ,( )newi best best i best iX X X X                 (8) 

Where:  

Xbest is the tutor of the student population, and  

Xi is the ith student individual. 
 
(2) Adaptive directions strategy in the student stage 

In the exchange process, the student individual will 
learn more knowledge if he/she has a stronger learning 
ability, and the learning ability of the students corresponds 
to the fitness of the function solution. The individual of the 
whole population updates based on his/her fitness rather than 
in a random way as in TLBO. Adaptive direction strategies 
have many similarities in the teacher and student stages. 
Suppose Si

t  is the exchange influence factor of the ith 

student individual after the tth iteration. 

( )

( ) ( )
iSi

t
i j

f X

f X f X
 


                      (9) 

Where:  

f(Xi) denotes the fitness of Xi. There are two situations for an 
individual to update; if Xi is superior to Xj, the 
student individual updates as follows: 

(1)
, (1 )new i i jX X X                       (10) 

 
( 2) (1)

, , )new i i i new iX X X X  （                      (11) 

 
 

Otherwise, the student individual updates as follows: 

(1)
, (1 )new i i jX X X                       (12) 

 
( 2) (1)

, , )new i j j new iX X X X  (                      (13) 

 
If the new solution is superior to Xi, the possibility of 

finding a better solution from the updated individual is 
greatly improved, and it is easier to jump out of the local 
optimum. 

(3) Adaptive directions strategy in the feedback stage 

In the teacher stage of the adaptive direction strategy, 
improving the level of the whole population is the focus, and 
the improvement of self-ability for the tutor is ignored. This 
is inconsistent with the actual teaching-learning process. 
Hence a feedback learning process is added to the teacher 
stage, and the tutor improves his/her own level by 
communicating with students. Suppose Ci

t  is the 
communication impact factor between the teacher and the ith 
student individual after the tth iteration. 

( )

( ) ( )
bestCi

t
best i

f X

f X f X
 


                   (14) 

Where:  

Xbest is the tutor of the contemporary population;  

f(Xbest) is the fitness of Xbest;  

Xi is the ith individual of the population, and  

f(Xi) is the fitness of Xi. The level of tutor is updated by 

(1)
, (1 )best ibest iX X X                      (15) 

 
( 2) (1)

, , , )best i best best i best iX X X X  （                   (16) 

 

If 
(2)

,best iX  is superior to Xbest, Xbest is replaced by 

(2)
,best iX . The positional relationships of Xi, 

(1)
,best iX , 

(2)
,best iX  

and Xbest are shown in Fig. 1. 
 

 

FIGURE 1. The position relationship of the updated teacher. 
 

If all the above variables are located in a peak value 
of the objective function, the fitness of the updated tutor is 
shown in Fig. 2. It has a high possibility of obtaining a better 

tutor from 
(1)

,best iX  and 
(2)

,best iX . At the same time, because 

different individuals are located in different positions of the 
solution interval, the tutors can be constantly updated and 
improved. If all above variables are divided into different 
peaks that are similar to the single peak, the chance of 
obtaining the best tutor is equal. 

(4) Algorithms implementing the procedures 

The evolutionary process of IADS-TLBO is 
described below. 
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Step 1: Initialize, setting the parameters of the 
algorithm, including population size, dimension, number of 
iterations, length, width, and level. 

Step 2: An initial population is randomly generated, 
the best individual is selected, and the fitness of each 
individual is calculated. 

Step 3: Teaching stage: all individuals are updated 
according to eqs (6)~(8). 

Step 4: Student stage: all individuals are updated 
according to eqs (9)~(13), saving the best individual. 

Step 5: the number of iterations reach the preset 
number, and the optimal individual is the optimal solution. 
Otherwise, go to step 6. 

Step 6: In the feedback stage, the self-ability of the 
tutor is updated according to eqs (14)~(16); let t = t + 1, and 
go to step 3.

 

    
a                                      b 

FIGURE 2. Relationship between the updated teacher and the original teacher. 
 
Mathematical model of the tractor’s steering trapezoid 
mechanism 

Fundamental assumption 

In the steering process, the tractor’s steering 
trapezoid mechanism exhibits a motion error between the 
actual movement track and the theoretical track, which 
increases tire wear and decreases the safety and stability of 
the steering. Through the optimization of the parameters of 

the steering mechanism, the error will be effectively reduced 
and the tractor’s steering performance and handling safety 
will be improved. To minimize the error between the actual 
movement track with the theoretical, the weighted sum of 
the relative error of the theoretical rotation angle with the 
actual of the external front steering wheel was selected as 
the objective functions of structural optimization in this paper. 
The schematic diagram of the tractor’s ideal steering process 
and the actual steering process are shown in Figs. 3 and 4.

 

  

FIGURE 3. Theoretical steering process schematic          FIGURE 4. Schematic of the actual steering process. 
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Optimization model of the tractor’s steering trapezoid mechanism 

We can obtain the following equation according to the geometric relationship of Fig. 3: 

arccot( cot )
M

L
                                                                           (17) 

Where:  

β is the theoretical rotational angle of the external front steering wheel, (°);  

M is the distance between the left and right vertical shafts, (mm);  

L is the distance between the rear and front axles of the vehicle wheel, (mm), and  

α is the rotational angle inside the front steering wheel, (°). 
 

In the process of tractor bending, when the turning radius reaches the minimum, the rotational angle of the inside front 
steering wheel reaches the maximum rotational angle; then, 

max
2 2

min

arctan
( )

L

R a L M
 

  
                                                              (18) 

Where:  

αmax is the maximum rotational angle of the inside front steering wheel (°);  
Rmin is the minimum turning radius (mm). 
 

Fig. 4 shows a schematic of the actual steering process when the rotational angle of the inside steering wheel is α. The 
dotted line represents the positional relationship of the steering trapezium mechanism when the steering is not started, as 
shown in Fig. 4. 

N2 = M2 + m2 – 2 mMcos(θ – α)                                                                   (19) 

Where:  

N is the length of the auxiliary line (mm);  

m is the steering arm length of the steering trapezoid mechanism (mm), and  

θ is the bottom angle of the steering trapezoid mechanism (°). 
 
S2 = N2 + m2 – 2mNcosδ1                                                                         (20) 

Where:  

S is the length of the tie rod (mm) and δ1 and δ2 are the interior angles of the auxiliary calculation (°). 
 

We can obtain the following from eqs (19)-(20) and Fig. 4: 

1 2 1 2( )                                                                                (21) 
 

2
3 sin( )

arcsin arcsin
GE m

N N

  
                                                               (22) 

Where: 

β' is the ideal rotational angle of the external front steering wheel, (°). 
 

Therefore, 
 

2 2 2

2 2 2 2

2 ( 2 cos ) 2 cos( ) sin( )
arccos arcsin

2 2 cos( ) 2 cos( )

M m M m Mm m

m m M Mm m M Mm

     
   

        
     

          (23) 

 
To ensure the steering performance of the tractor, the actual rotational angle function of the external front steering 

wheel should be as close as possible to the ideal rotational angle function in the process of tractor bending. The objective 
function of steering trapezoidal structure optimization is hence as follows: 

max
'

1

min( ( )) min( ( ))F X




   


 
                                                              

(24) 
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Where:  

ω(α) is weighting function. The computational method is as follows: 

1.25, 1 10
( ) 0.90, 10 20

0.45, 20


  



   
 

                                                                    (25) 

 
The design variables selected by the objective function are the steering trapezoidal bottom angle  and the trapezoidal 

arm length m, let X=[m,]. According to the design experience of the literature, the constraint conditions of the steering 
trapezium mechanism are 

0.11 0.15M m M                                                                            (26) 
 

1.2
arctan 4 / 9

L

M
  

                                                                        
(27) 

 

2 2

min

( 2 cos ) 2 cos( arcsin )
cos(7 / 9) 0

2 ( 2 cos )

L
M m M Mm

R a
m M m

 




    
  

                                   
(28) 

 
Method for detecting the steering angle of the tractor 

Sensor selection 

To test the correctness and feasibility of the 
optimized design results, a new type of magnetic sensing 
element was used to convert the mechanical rotation into 
electrical signal change output, and the tractor’s rotation 
angle was measured without contact. The sensor used in the 
experiment was a WYH-3 noncontact angle sensor. This 
avoided the influence of the working environment and 
mechanical vibration on the photoelectric angle sensor and 
displacement sensor and was suitable for measuring the 
steering angle of agricultural machinery. The sensor is 
shown in Fig. 5. 

 

 

FIGURE 5. WYH-3 type noncontact angle sensor. 
 
Sensor conformation 

The WYH-3 sensor was installed on the steering 
column of the left front wheel of the tractor. One part of the 
sensor was installed at the static position relative to the body, 
and the other part was installed at the position that can rotate 
with the wheel. It can be simplified that two front wheels of 
the tractor are directly installed on the same front axle, and 
the center of the front axle is connected with the hinge of the 

body. The nonrotating part of the upper end of the sensor 
was tightly connected to the front axle of the tractor, and the 
rotating axle of the sensor was fastened to the rotating wheel 
part of the tractor, as shown in Fig. 6a. The installation 
position is shown in Fig. 6b. 

 

 
          a.                      b. 
1. WYH-3 angle sensor; 2. Sensor base; 3. Coupling; 4. Connecting rod; 
5. Connecting rod position adjusting piece; 6. Connecting rod bracket; 
7. Steering shaft; 8. Front wheel steering column; 9. Front wheel; 

FIGURE  6. Sensor installation diagrams. 
 
Detection method 

A dial with scale was used to measure the steering 
angle of the tractor’s front wheel to avoid the measurement 
error caused by the plane movement of the contact point 
between the wheel rotation and the ground (Zhang et al. 
2019). During the test, the driver, depending on experience, 
placed the tractor equipped with the sensor along a straight 
line and believed that the front wheel position at this time 
was the 0° position of steering. The sampling value output 
was recorded by the sensor at this time, the front wheel was 
turned to the limit position to the left, and the sampling 
value output was recorded by the sensor. Using the same 
method as above, the front wheel was turned to the right to 
the limit position, and the corresponding value was recorded. 
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RESULTS AND DISCUSSION 

Algorithmic testing and analysis 

To verify the feasibility and correctness of IADS-TLBO, three different typological functions were selected as the test 
functions. 

Function 1: 

2 5
2 2

1 1 2
11

1 2

min ( ) cos[( 1) ] 0.5( 1.42513) ( 0.80032)

         10 , 10

j
ij

f x i i x i x x

s.t. x x



        
 

  


                            (29) 

 
Equation (29) was a multifunction with 760 local optimal solutions but only had one global optimum. The optimal 

solution was x* = (–1.42513, –0.80032), and the optimal value was f (x*) = –186.7309 (Wang et al., 2016; Cheng et al., 2021). 

Function 2: 

2

2 2 2
2 1 22 2

1 2

1 2

3
max ( ) ( )   

0.05

             5.12 , 5.12

f x x x
x

s.t. x x

      
  

                                                         (30) 

 
The optimal solution of [eq. (30)] was surrounded by different solutions, and there were four local optimal solutions 

distributed in the boundary of the global optimization solution. Therefore, the global optimization was difficult to obtain. The 
optimal solution of this function was x*=(0,0), and the optimal value was f (x*)=3600 (Sun et al., 2014). 

Function 3: 

2

3
1

1 2

min ( ) sin          1, 2

             500 , 500

i i
i

f x x x i

s.t. x x


  

  

                                                          (31) 

 
The function had symmetry and severability, and the global optimal solution was located at the boundary of the feasible 

region, which was far from the suboptimal solution. The optimal solution was x*=(420.968, 420.968), and the optimal value 
was f (x*)= –837.9658 (Yu et al., 2014). 

The algorithm testing program was carried out by MATLAB R2010a, which was calculated on the processor for an 
AMD A8-4555 M CPU with Radeo™ HD Graphics, 64-bit Windows7 operating system. The algorithm analysis selected the 
ADS-TLBO as the comparison algorithm, and the relevant parameters were set as follows. The initial population number was 
N = 50, and the maximum generation number was set as G = 300. To verify the validity and stability of the algorithm, two 
termination conditions were set. One was that the error of the iteration optimal solution with a known optimal solution met the 
preset accuracy of 10-6, and the other was that the iteration number reached the maximum generation. The testing results are 
shown in Table 1. 

 
TABLE 1. Testing results of different algorithms. 

Functions Algorithm Optimum value Mean The worst value Variance 

f1 
ADS-TLBO –186.7309 –186.7119 –186.3405 0.048 

IADS-TLBO –186.7309 –186.7309 –186.3406 0.0015 

f2 
ADS-TLBO 3600.0000 3600.0000 3600.0000 7.0063e-14 

IADS-TLBO 3600.0000 3600.0000 3600.0000 2.86003e-21 

f3 
ADS-TLBO –837.9658 –837.9658 –837.9658 1.61884e-11 

IADS-TLBO –837.9658 –837.9658 –837.9658 2.53283e-20 
 

As shown in Table 1, the IADS-TLBO algorithm has 
higher accuracy and stability under the same conditions for 
solving the constrained problem. Compared with the 
ADS-TLBOA, the IADS-TLBO algorithm has better 
convergence, higher stability and better ability to jump out of 
the local optimal solution. The improvisation ideas are 
correct, and the algorithm is feasible. 

Parameter optimization of the tractor’s steering 
trapezoid mechanism 

Optimization calculation 

JOHN DEERE T600: The IADS-TLOA was used to 
optimize the steering trapezoid mechanism of the JOHN 
DEERE T600. The initial population was N=50, and the 
maximum generation number was G=300. The parameters 
of the steering arm length, bottom angle, and objective 
function are shown in Table 2. The optimized value was 
obtained by 200 generations, and the ideal value was the 
actual value of the objective function that the tractor’s 
steering trapezoidal mechanism was designed. 
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TABLE 2. Optimal value of tractor’s steering trapezoidal 
mechanism. 

 L (mm) M (mm) m (mm) θ (°) F(X) 

Original 2435 1202 175 36.7 1.8 

Postoptimality - - 154 35.4 1.3 

 
Steering characteristic analysis 

To observe and verify the difference between the 
steering characteristic curve and the ideal Ackerman curve 
before and after the optimized design, the steering 
characteristic curves were drawn by MATLAB R2010a, as 
shown in Fig. 7. 

 

 

FIGURE 7. Curves between the outside and inside angles. 
 

Fig. 7 shows that when the wheels turn to the left, as 
the inner wheel angle increases, the outer wheel angle also 
increases. Comparing the steering characteristic curves 
before and after optimization, it can be found that the 
steering characteristic curve after optimization was closer to 
the ideal steering characteristic curve than that before 
optimization. This indicated that the wear of tires during 
wheel turning would be reduced after optimization. 

Experimental verification 

To verify the correctness and feasibility of the 
optimization results, a tractor steering angle measurement 
experiment was carried out on March 20, 2022, at the 
agricultural test base of Heilongjiang Bayi Agricultural 
University, Daqing City, Heilongjiang Province, China. 
The test farmland ground was flat, the soil hardness was 
1100 kPa, the length was 200 m, and the moisture content 
was 36%. To ensure the test accuracy, repeated 
measurements were made 20 times. The test results are 
shown in Table 3. 
 
TABLE 3. Test results of the postoptimality parameter. 

Method Index Steer angle (°) 

 Minimum 35.17 

Experiment Maximum 35.81 

 Mean 35.48 

IADS-TLOA Optimum value 35.4 

Relative error  0.23% 

Table 3 shows that the test value of the validation test 
was close to the theoretical value, the average relative error 
was 0.23%, the maximum relative error was 1.16%, the 
minimum relative error was –0.64%, and the error range was 
within the allowable range. Verification test results showed 
that the optimized steering trapezoid met the design 
requirements. Thus the optimization results obtained by 
this method can be used to guide the optimization of the 
product design. 
 
CONCLUSIONS 

In this paper, an improved adaptive directions 
strategy teaching-learning-based optimization 
(IADS-TLBO) is proposed for solving nonlinear 
optimization problems. This strategy increases the feedback 
stage based on the adaptive direction strategy 
teaching-learning-based optimization. In the feedback stage, 
the algorithm improves the self-level of the tutor by 
strengthening the exchanges between the teacher and student 
and the fitness links with the process of learning and 
communication. This avoids the random operation in the 
process of learning and communication of TLBO thereby 
ensuring stability, enhanced global optimization and the 
searching ability of the algorithm. 

The IADS-TLBO was applied to optimize the 
tractor’s steering trapezoid mechanism of JOHN DEERE 
T600. The performance comparison experimental results 
indicated that the relative error of the ideal value with the 
objective function calculated by IADS-TLBOA was 0.23%. 
The optimization result showed that the IADS-TLBO was 
feasible and that the optimization result satisfied the design 
requirements of the project. 

The optimization design method of the steering 
trapezoidal mechanism adopted in this article can be extended 
to the optimization of the integral steering trapezoidal 
mechanism of other wheeled agricultural machinery. 
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