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ABSTRACT 

With the increasing scale of farms and the correspondingly higher number of laying hens, 

it is increasingly difficult for farmers to monitor their animals in a traditional way. Early 

warning of abnormal animal activities is helpful for farmers’ fast response to the negative 

impact on animal health, animal welfare and daily management. This study introduces an 

automatic and non-invasive method for detecting abnormal poultry activities using a 3D 

depth camera. A typical region including eighteen Hy-line brown laying hens was 

continuously monitored by a top-view Kinect during 49 continuous days. A mean 

prediction model (MPM), based on the frame difference algorithm, was built to monitor 

animal activities and occupation zones. As a result, this method reported abnormal 

activities with an average accuracy of 84.2% and a rate of misclassifying abnormal events 

of 15.8% (PFPR). Additionally, it was found that the flock showed a diurnal change pattern 

in the activity and occupation quantified index. They also presented a similar changing 

pattern each week. 
 

 

INTRODUCTION 

Livestock management decisions are mostly based 

on the observation, judgement, and experience of farmers. 

However, with the increasing scale of farms and the 

correspondingly higher number of animals, it is 

increasingly difficult for farmers to monitor their animals in 

a traditional way. Moreover, it is impossible for farmers to 

monitor their animals continuously for a full 24 hours. 

Modern technology now makes it possible to use cameras, 

microphones, and sensors sufficiently close to and 

sometimes on the animal so that they can, in effect, assist 

farmers’ eyes and ears in everyday farming (Kashiha et al. 

2013a). These techniques can facilitate the development of 

“early warning systems”, which shorten the response time 

to individual animal needs (Norton & Berckmans 2017). 

Employing such a tool to monitor flocks can help farmers 

substantially manage their animals and houses more 

efficiently (EFSA 2012). More detailed individual 

information can be perceived with image analysis 

techniques. For example, depth image processing can 

realize automatic detection of hens’ behaviours (Lao et al. 

2017). By using modified cameras, researchers found that 

problematic events can be detected with an automatic 

method to predict the distribution index of broilers (Kashiha 

et al. 2013b). A computer vision-based system can be used 

for automatic detection of dairy cow lying behaviour in 

free-stall barns (Porto et al. 2013). The health and welfare 

status of animals is often closely related to their active state 

and behavioural changes, so a better understanding of 

animal activities is of great help in the study of animal 

behaviour, animal welfare, and animal productivity (Ni et 

al. 2017). 

Abnormal animal activity and declining production 

performance indicate problems in the chicken house. For 

example, sudden changes in animal activity may be related 

to animal heat stress, human disturbance, environmental 

control system failures, and feeding and drinking water 

system failures, all of which will have varying degrees of 

influence on production performance: egg production rate, 

rate of death and elimination, and drinking water and 

consumption (Kashiha et al. 2013b). If these abnormal 

events can be monitored and identified in real time and 

problems can be found quickly, it will be of great help to 

production management. Usually, in animal research and 
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production, the activity index is an important animal 

activity parameter that is available. Optical flow analysis is 

a popular method for studying animal movement, which 

involves detecting the rate of changes in brightness in each 

area of an image frame (Dawkins et al. 2012). In a large-

scale henhouse, however, researchers found that the quality 

of colour images and videos are easily affected by light 

levels and the distance between cameras and animals 

(Dawkins et al. 2012). Therefore, the optical flow method 

might not be a good choice for monitoring flocks in a low-

light level environment. Moreover, 2D digital image 

segmentation and recognition can be problematic under real 

farm conditions due to dynamic background restrictions, 

such as dim or uneven light intensity in the house and 

varying floor status. These factors can affect the robustness 

of the algorithm for accurate classification (Lao et al. 2016). 

While 3D depth cameras can solve this problem, 

information captured by a depth image sensor differs 

considerably from that of colour digital images in that each 

pixel in the depth data reflects the distance between the 

object and the depth image sensor (Lao et al. 2016). Depth 

image analysis is a new method that helps detect not only 

horizontal but also vertical distribution attributes of animals 

(Gregersen et al., 2013) without restricting the light 

environment. This feature allows for continuous monitoring 

of animal behaviours throughout the day. Depth image 

analysis has been used in the automatic detection of animal 

lameness (Van Hertem et al., 2013; Viazzi et al., 2013). 

Additionally, this method is non-invasive and contactless, 

and it can measure animal movement in real time (Springer 

& Seligmann 2016). 

Given the above rationale, this study aims to explore 

whether the application of 3D depth sensors is competent in 

contactless continuous 24-h monitoring of laying hen 

activities. The objectives are as follows: (i) development of 

the activity monitoring model and (ii) application and 

testing of the algorithm. 

MATERIAL AND METHODS 

Animals and house 

Experiments were conducted on a small-scale 

experimental farm (116° E 40° N, Beijing, China) from 7 

July 2017 to 7 September 2017. The Hy-line brown laying 

hens (48-57 weeks) were reared in stacked cages, and the 

stock was more than 1,000 birds. Due to space limitations, 

a top-cage area (1.2 m L×1.2 m W× 0.6 m H) including 

eighteen hens was selected for device installation (Figure 

1). The tested cage was modified to an open roof cage 

covered by Perspex sheets to meet the image collection 

requirement. There was ad libitum access to food and water 

during the experiment. The light schedule was from 4:00 

a.m. to 8:00 p.m.), and the poultry flock was fed twice a day, 

once between 7:30 and 8:30 a.m. and again between 4:00 

and 6:00 p.m. Temperature and relative humidity 

parameters were recorded every five minutes. Additionally, 

production performance data were recorded, such as laying 

rate, number of dead and culled chickens, feed consumption 

and water consumption. 

Data collection 

Successive 24-hour images were recorded over 49 

days. A top-view Kinect camera for Windows V1 

(Microsoft Corp., Washington, USA), installed at a height 

of 1.8 m from the bottom of the cage, was used to monitor 

the flock (Figure 2). Depth images (the resolution is 

640×480 pixels) were recorded in .txt format at one frame 

per three seconds (Jana, 2012). The Kinect was connected 

to a mini industrial personal computer (IPC) that stored the 

depth images for subsequent analysis. NI LabVIEW 2015 

(American National Instrument Corp., Texas, USA) was 

used for preprocessing and analysing depth images based on 

a VDM (vision development module). 

 

 

FIGURE 1. On-site test platform. 
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FIGURE 2. The schematic of the experiment platform. 

 

Depth image analysis 

Physical activity as defined in this study, quantified by 

an activity index, is the animal group movement, and it        

was expressed using the neighbour frame difference in      

pixel intensity. Original depth images were preprocessed and  

 

analysed in LabVIEW software (Figure 3). The activity index 

can be used to measure animal movement, and the principle 

of this technique is to calculate the change in pixel intensity 𝐼 
between two adjacent frames (Bloemen et al. 1997). If 

chickens are inactive, the change is smaller than that when 

they are active. The preprocessing steps are as following: 

 
a. Original image b. Image cropping 

 
c. Morphological processing d. Binarization processing 

FIGURE 3. Flowchart of depth image processing. 

 

Image cropping 

To discard irrelevant edges, it is necessary to crop 

the original image to remove useless pixel points. For 

example, the original image size is 640×480 pixels, and 

some areas, such as chicken feeding trough areas including 

useless pixel points in one image, were removed (after 

cropping 510*480 pixels). 

 

Morphological processing 

Close, dilate and open operations and a 7*7 median 

filter were applied to depth image processing to obtain a 

filtered image. 

Binarization processing 

Depth images were converted to binary images to 

extract significant features, including chicken pixels and 

pixel intensity changes (threshold range: 1,200-1,700 mm). 
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The change in pixels was calculated as (Costa et al. 

2009): 

𝐼𝑚𝑜𝑣(𝑥, 𝑦, 𝑡) = 𝐼(𝑥, 𝑦, 𝑡) − 𝐼(𝑥, 𝑦, 𝑡 − 1)             (1) 

Where:  

Imov = neighbour frame difference in pixel intensity; 

(𝑥, y) = coordinate of images; 

𝑡 = time index (s), 

I = pixel intensity values. 

 

The image activity index was calculated as the ratio 

between the total change in pixels and the total number of 

pixels per image (Bloemen et al. 1997): 
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Where:  

activity = animal activity index (%); 

𝑡 = time index (s); 

Imov = pixel change of two frames, 

(𝑥, y) = image coordinates. 

 

The image occupation index was calculated as the 

ratio between the pixel values of the area with chickens and 

the total number of pixels in one image to obtain the animal 

occupation index (Bloemen et al. 1997): 
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Where:  

occupation = animal occupation index (%); 

𝑡 = time index (s); 

Ianimal = the total pixel values of areas with chickens, 

(𝑥, y) = image coordinate. 

 

Frame difference data were analysed in ways that 

avoided the influence of increasing the body size of the 

birds (all birds were of similar size over the experimental 

period because they had grown to a stable body weight 

between 48 and 57 weeks old). 

 

STATISTICAL ANALYSIS 

Statistically, the experimental data were calculated 

to obtain the mean value and standard deviation of the 

activity index as well as the occupation index in different 

weeks. The mean prediction model (MPM) based on the 

normal mean value (no human intervention, immune 

operation and facility breakdown) of both the activity and 

occupation index of the last week was modelled in the 

training set (38 days with full 24-hour data per day) to detect 

abnormal activity or occupation events (including human 

intervention, immune operation and facility breakdown) 

(Du et al. 2018a). When measured values deviated from the 

mean value, a warning signal occurred. More than 25% of 

negative or positive deviation from measured values raised 

the alarm when it lasted for 30 min or longer (Kashiha et al. 

2013b). An event logbook was recorded by one trained 

farmer at the same time and was regarded as the ground 

truth to evaluate the MPM accuracy in abnormal event 

warnings in the testing set (11 days with full 24 hours of 

data per day) (Du et al. 2018a). The performance parameters 

were calculated as (Lao et al. 2016): 

𝑃accuracy = 1 − 𝑃FPR − 𝑃FNR                                   (4) 

Where:  

Paccuracy is the accuracy of abnormal event warnings,  

PFPR is the rate of misclassifying normal events as 

abnormal events (i.e., false positives), whereas PFNR 

is the rate of misclassifying abnormal events as 

normal events (i.e., false negatives). 

 

RESULTS AND DISCUSSION 

Figure 4 and Figure 5 depict the MPM of the activity 

and occupation quantified index in the training set (no 

abnormal activities or events included). As shown in these 

figures, the fluctuation in the amplitude of the activity index 

was lower than that of the occupation index. A higher 

activity index and a higher occupation index appeared 

during the daytime. This can be explained by chickens being 

active in the daytime along with a high activity index, and 

they expressed their natural instincts, such as stretching, 

preening and pacing (Kuhne et al. 2013; Pereira et al. 2013). 

However, chickens tend to be silent at night and gather 

together for resting and inactivity, which might result in a 

lower occupation index (Du et al. 2018b). Additionally, the 

flock expressed a regular change pattern of activity and 

occupation index per day. Each week also showed a similar 

change pattern. Chickens tended to be more active during 

the light period from 4:00 a.m. to 8:00 p.m. than during the 

night period. There were great differences in day and night 

according to bird activity and the occupation index, which 

quantitatively confirms diurnal patterns of bird activity. The 

result of this method of perceiving animal activity patterns is 

similar to that of a preliminary experiment (Du et al. 2018a). 
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FIGURE 4. Week MPM of the activity index in the training set. 

 

 

FIGURE 5. Week MPM of the occupation index in the training set. 

 

Then, the MPM method was applied to detect 

abnormal activity events in the testing set to evaluate its 

performance (no abnormal occupation index occurred). 

Abnormal events that occurred in the testing set included 

human intervention, immune operation and feeding 

restriction, which could impose a negative impact on 

chicken activity (Kashiha et al. 2013b; Du et al. 2018a).  

As shown in Figure 6, abnormal activity events were 

easily detected by the MPM method. In Figure 6(a), an 

abnormal activity warning occurred between 4:30 p.m. and 

5:00 p.m. and it was caused by artificial feeding restriction. 

It has been proven that if chickens cannot obtain access to 

food, they might express a strong demand for food, feel 

frustrated, and produce more food calls (Kuhne et al. 2013). 

Figures 6(b), 6(c), 6(d) and 6(f) display similar warnings 

during feeding time, which might be caused by feeding 

restrictions. In Figure 6(b) and 6(g), warning events 

occurred between 2:30 p.m. and 4:30 p.m., which might be 

related to flock stress caused by artificial immune 

operations. Figure 6(b) (from 6:30 p.m. to 7:00 p.m.), 

Figure 6(d) (from 7:30 p.m. to 8:00 p.m.) and Figure 6(g) 

(from 5:30 p.m. to 6:00 p.m.) present warning events; these 

were false positive warning events that were not recorded in 

the farmer logbook. In Figure 6(c), another warning event  

occurred between 11:00 p.m. and 11:30 p.m. This might be 

caused by environmental changes that were related to the 

ventilation control system. The experimental cage was near 

the air intake, and a change in night ventilation control 

strategy might influence flock activity (Du et al. 2018a). In 

Figure 6(d), an abnormal activity warning occurred between 

4:30 a.m. and 5:30 a.m. This might be related to flock stress 

caused by the manual operation of eliminating weak 

chickens, as it broke the poultry’s circadian clock (Hy-Line, 

2016; Shimmura & Yoshimura, 2013). In Figure 6(e), 

another abnormal activity warning occurred between 9:00 

a.m. and 10:00 a.m. This might be related to flock stress 

caused by noise from pipe maintenance. Compared with the 

farmer logbook, this MPM method can detect some 

abnormal activities and might help farmers trace possible 

reasons for activity event warnings. For example, as shown 

in Table 1, 5 days into the testing set with abnormal activity 

displayed that the laying rate was lower than that in the 

neighbouring two days. The lowest laying rate in the testing 

period was 83.7% (24th July), which might be caused by 

higher average relative humidity (Table 1). Additionally, 

abnormal water consumption might exist along with 

abnormal activity warnings. 
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FIGURE 6. Results of the MPM in the testing set of (a) 22nd July in week 49, (b) 24th July in week 50, (c) 25th July in week 50, 

(d) 26th July in week 50, (e) 15th August in week 52, (f) 20th August in week 53, and (g) 23rd August in week 54. A black line 

denotes a week MPM. A black-dotted line denotes the normal activity index. Red-dotted lines indicate the abnormal activity index. 
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TABLE 1. Hens’ production performance and environmental parameters in the testing set. 

Data set Date 
Laying rate 

(%) 

Dead and culled 

hen number 

Feed-gain 

ratio (g) 

Water 

consumption 

(mL) 

Environmental parameters 

Average 

temperature (℃) 

Average relative 

humidity (%) 

Testing set 

07-22 91.9 1 122.7 28.5 23.0 78.1 

07-24# 83.7* 0 134.7 23.2 23.0 96.0 

07-25 92.5 0 121.5 34.5 23.5 81.0 

07-26 90.5* 0 125.5 30.4 19.5 83.1 

08-15 89.4* 0 129.5 38.3 22.5 80.2 

08-20 90.5* 0 127.1 63.4 22.0 66.3 

08-23# 89.9* 1 129.6 27.2 23.0 79.2 
*denotes that the value is lower than that in the neighbouring two days. # denotes an immune operation day. 

 

Whatever type of physical or mathematical model 

we use, experience shows that the hard work starts when the 

model is implemented in real livestock houses (Dawkins et 

al. 2012). One of the main challenges of the MPM method 

is the lack of enough events in the logbook, especially 

events recorded at night. Although seven weeks (49-55) of 

data detected some abnormal activity events through depth 

image analysis, more abnormally recorded events at 

daytime and nighttime might be more helpful for the 

performance assessment of the MPM method and feature 

description of poultry movement. Additionally, the MPM 

method could be used to predict animal activity conditions 

of the next week, which is simple, fast and implementable 

for real-time application. It was found that 32 out of 38 

abnormal activity events were correctly detected (the false 

positive rate was 15.8%, and the false negative rate was 

0.0%) (Table 2). The accuracy was higher than 73.9%, 

which resulted in a preliminary test (Du et al. 2018a). The 

reference methods show accuracies of 95.2% (Kashiha et al., 

2013b) and 61.9% (Pluk et al., 2010). Compared with the 

optical flow method, the MPM method could detect animal 

movement in full 24 hours without considering the 

influence of the change in light levels, and it can also help 

farmers obtain more details, such as the animal activity 

index and occupation zones, both day and night. 

Furthermore, more data are needed to verify that this MPM 

method would be suitable for monitoring a whole animal 

production period. 

 

TABLE 2. MPM accuracy of abnormal event warnings. 

Testing set Abnormal activities number Number and PFPR Number and PFNR Paccuracy 

Week 49 2 0 (0.0%) 0 (0.0%) 100.0% 

Week 50 24 4 (16.7%) 0 (0.0%) 83.3% 

Week 52 3 0 (0.0%) 0 (0.0%) 100.0% 

Week 53 5 0 (0.0%) 0 (0.0%) 100.0% 

Week54 4 2 (50.0%) 0 (0.0%) 50.0% 

Total 38 6 (15.8%) 0 (0.0%) 84.2% 

 

This study attempts to monitor animal activity 

quantitatively to provide early warning of abnormal events 

that affect production performance. An in-depth exploration 

into the occurrence rule of abnormal events has not yet been 

conducted, which is also the next step in this study. 

Moreover, different image frames can, to some extent, 

influence the analysis results, such as one frame per second 

or one frame per five seconds. However, in this study, deep 

research has not yet been carried out. The key problem may 

be the smaller number of chickens in the experiment 

compared with a similar broiler warning system (Kashiha et 

al. 2013b), which is due to the difficulty of device 

installation caused by stacked-cage design and the viewing 

angle of a depth camera. If the problem can be solved in 

future research, more detailed and associated information 

may be explored, and the relationship between animal 

activity and production performance may be well understood. 

 

 

CONCLUSIONS 

An MPM method was proposed to continuously and 

noninvasively monitor hen activities and quantified 

occupation indices in real time. It can report abnormal 

activity events caused by human intervention, immune 

operation and feeding restriction in daily stacked-cage 

management. This method can help farmers monitor their 

animals and rapidly detect abnormal events in a 24-hour 

day. In the testing stage, MPM was able to detect abnormal 

activity events with an average accuracy of 84.2%. By using 

depth image processing, it is possible to eliminate the 

interference of environmental light and external shielding, 

such as cages and cables. Compared to colour images, depth 

images are more suitable for animal behaviour detection and 

analysis at low illuminance. Additionally, the flock showed a 

diurnal pattern in the change in activity and occupation index, 

and each week presented a similar change pattern. Further 

research will consider the application of this method in other 

systems, such as enriched cages and no-cage systems. 
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