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ABSTRACT 

The global navigation satellite system (GNSS) is the basis for localized crop management 
by allowing the georeferencing of collected data and the generation of maps by different 
systems that compose precision agriculture. There is a demand for low-cost navigation 
systems to enable their use in agriculture. Therefore, the objective of this study is to 
integrate a low-cost GNSS module to a single-board computer using Kalman filtering to 
obtain navigation data. The system was evaluated by performing one static and two 
kinematic experiments, with three repetitions each. In the static experiment, the mean 
error was 3.25 m with a root mean square error (RMSE) of 3.73 m. In the first kinematic 
experiment, data variability was lower at a velocity of 1.39 m s-1. In the second kinematic 
experiment, the mean error was 1.26 and 1.13 m, and the RMSE was 1.45 and 1.27 m for 
data obtained before and after filtering, respectively. In conclusion, the system reduces 
the lateral errors in linear sections but is not indicated for sections that change direction. 
Moreover, this system can be used in agricultural applications such as soil sampling and 
crop yield monitoring. 

 
 
INTRODUCTION 

Global navigation satellite systems (GNSS) are one 
of the pillars of precision agriculture (PA) (De Oliveira, 
2016). GNSS are the basis for localized crop management 
and are used during the stages of planting, agrochemical 
application, and harvesting (Chen et al., 2005; Suprem et 
al., 2013). In addition, GNSS allow the georeferencing of 
the collected data and the generation of maps by the 
different systems that compose PA. The localized 
management of agricultural processes distinguishes PA 
from conventional agriculture (Mondal et al., 2011). 

More recently, there has been a lot of interest in 
ground-based robotic vehicles and remotely-piloted aircraft 
in PA (Bakker et al., 2011; Ji et al., 2012; Mousazadeh, 
2013; Yin & Noguchi, 2013). However, the cost of 
navigation systems needs to be reduced to make robotic 
systems more feasible, especially in small farms (De 
Oliveira, 2016). Therefore, technologies that facilitate 
access to GNSS are fundamental to enable the navigation of 
small agricultural machines. Single-board computers, such 
as BeagleBoard Black (BBB; model Revision C, Michigan, 
USA) are low-cost computers that allow the rapid 
development of new tools for PA (Olesen et al., 2016). 

Another critical factor to consider when 
implementing a GNSS in agricultural machinery is 
positioning accuracy. Precision is determined primarily by 
the measurement noise (uncertainty) and the type of 
navigation algorithm (Laveti et al., 2016). In practice, the 
measurement uncertainty never reaches zero even if the 
parameters and noise in the system are effectively modeled 
(Xu & Xu, 2016). 

The navigation algorithm should make an optimal 
estimate of these uncertainties to remove them from the 
signal and consequently improve accuracy (Fourati, 2015; 
Li et al., 2017). The use of Kalman filtering (Kalman, 1960) 
is one strategy to remove signal errors in low-cost 
navigation systems (Huang et al., 2018; Xiong et al., 2018; 
Liu et al., 2018). The objective of this study is to evaluate 
the accuracy of an integrated system composed of a low-
cost GNSS module, a BBB single-board computer, and 
Kalman filtering to obtain navigation data. 

 
MATERIAL AND METHODS 

A Revision C.1 BBB platform with a Linux Debian 
operating system version 7.8 (Wheezy) (USD 63.00) was 
used. A Simply Tronics GNSS receiver module model 
VPN1513 was integrated into this platform. This integration 
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allowed implementing a filtering algorithm in the 
positioning data. 

The adopted GNSS module is low-cost (USD 20.00), 
uses the SiRF Star III chipset with 20 satellite reception 
channels, has a sensitivity of –159 dBm and precision of +/– 
10 m, and captures signals at a frequency of 1575.42 MHz 
(band L1). The module was powered by the BBB with a 
voltage of 5 V. The BBB was powered with 5 V via a USB 
cable using an external battery commonly used to recharge 
mobile phones (USD 10.00). 

The connection between the GNSS module and the 
BBB platform was performed via Universal Asynchronous 
Receiver/Transmitter (UART) serial ports. The chosen 
UART serial ports were UART1_TXD and UART1_RXD, 
located in the BBB expansion header P9 with 24 and 26 
pins, respectively. Serial communication was performed at 

a transmission rate of 9600 because this speed was 
sufficient to receive all data. The data were updated every 
second until the user terminated the communication. 

Implementation of the filtering algorithm 

An algorithm was developed using the C++ 
language to communicate with the GNSS module       
(Figure 1). The algorithm received data from the GNSS 
module in the format NMEA 0183, which is the GNSS 
communication protocol (Khan & Mishra, 2012). The 
algorithm converted the data to latitude and longitude in 
WGS 1984 using decimal degrees and later to the metric 
projection UTM WGS 1984. This last transformation was 
performed using a protocol developed by Dutch (2015) 
adapted to the C++ language. 

 

 

FIGURE 1. Stages of the filtering algorithm in C++. 
 
The accuracy of positioning data provided by the 

GNSS module was improved by implementing a 
navigation algorithm in C++ language based on Kalman 
filtering. The Kalman filter has predictive and corrective 
characteristics and operates using the least squares method 
(Cintra et al., 2010). Kalman filtering is a recursive 
approach involving ideal linear filtering to estimate the 
state variables of a system. For system modeling, the 
initial positioning values were used to predict and adjust 
parameters in each new measurement, obtaining the 

estimated error in each data update (Shen et al., 2015). 
Kalman filtering included two main steps, prediction 

and correction (data update), which were subdivided into 
five steps (Figure 2). The first two steps involved 
prediction. In this step, an apriori estimate of each sample 
point was made on the basis of the current status and the 
system model. After that, an improved a posteriori estimate 
was designed on the basis of the last three steps, therefore 
completing the update step as described by Li et al. (2016). 

 

 

FIGURE 2. Stages of Kalman filtering. 
 
The iterative process of Kalman filtering between 

the time and measurement updates started after initializing 
the GNSS position generation, as detailed by Xiong et al. 
(2014) with modifications. The system was propagated to 
the next time interval to obtain an estimate for the next 
position. In the i+1 position, the current state vector was 
updated to Xii+1. The first collected data were used as the  

 

first initial estimate (Xi) whereas the other data were 

calculated from [eq. (1)], as established in the first step. The 

variance of the initial estimate PP was calculated in the 

second step (equation 2). The GNSS maximum error, 

defined as 10 m by the manufacturer, was used as the 

perturbation and sensor variance parameter. 
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𝑋𝑖 = 𝑎 𝑋𝑒௜  (1)

Where, 

Xi is the initial estimate; 

a is a constant of the linear system, 

Xei is the estimate at position i. 
 
𝑃𝑃 = 𝑃 𝑎ଶ 𝑊 (2)

Where, 

PP is the variance of the initial estimate; 

P is the system variance, 

W is the variance of the disturbance of the system. 
 
For the last three stages, the noise in the measurement 

of the sensors that compose the system was evaluated, 
allowing obtaining a corrected measure of the system. In the 
third of the five steps, the Kalman gain (equation 3) was 
calculated and was used to find the new estimate (Xei+1) in 
the fourth step (equation 4). This new estimate was the filter 
output, i.e., the estimate of the new point. 

𝐾 =  
𝑀 𝑃𝑃

(𝑃𝑃 𝑀ଶ) + 𝑈
 (3)

Where, 

K is the Kalman gain; 

M is the constant of the correction system, 

U is the variance of the sensor measurement. 
 
𝑋𝑒௜ାଵ = 𝑋𝑖 + 𝑦௜ାଵ– (𝑀 𝑋𝑖) (4)

Where, 

Xei+1 is the estimate at position i+1, 

yi+1 is the noisy measurement at position i+1 (filter 
input and, in the present study, position measurements). 
 
In the fifth step, a new variance was calculated for 

the error of the new point (equation 5). The gain matrix was 
optimized to produce minimum error variance. The 
variance of the new point was used to calculate the next 
initial estimate, restarting the filter sequence. 

𝑃௜ାଵ = 𝑃𝑃 (1– 𝐾 𝑀)ଶ + 𝑈 𝐾ଶ (5)

Where, 

Pi+1 is the estimate variance at position i+1. 
 
Every second, the sampled data were stored in a text 

file and displayed to the user using a graphical interface. 
The graphical interface was developed using the Qt Creator 
version 4.0.2 integrated development environment. An 
LCD touchscreen display (USD 75.00) was coupled to the 
BBB for data visualization and user interaction. The total 
cost of the GNSS-BBB system was USD 168.00. 

Data collection 

The experiments were conducted on October 15 and 
16, 2016, on the campus of the Federal University of Viçosa 
(Universidade Federal de Viçosa [UFV], near the 
coordinates UTM 721399.29 m E, 7701645.99 m N, zone 

23 S), Viçosa, Minas Gerais, Brazil, from 2:00 p.m. to 4:00 
p.m. The position dilution of precision (PDOP) value of the 
collected points was set to less than 2.0 as a parameter of 
reliability. The PDOP value can be used to evaluate the 
performance of satellite geometry (Han et al., 2014), and 
minimum PDOP values suggest better satellite geometry 
and, therefore, more reliable data. 

Three experiments were performed to analyze the 
GNSS-BBB integrated system: one collection of static 
data and two collections of kinematic data. The objective 
of this approach was to determine the accuracy error of the 
static and kinematic positioning points and system 
characteristics at different speeds. The data obtained with 
the proposed GNSS-BBB integrated system were 
transformed into UTM by the algorithm and stored in the 
platform for later analysis. 

The static experiment consisted of demarcating a 
regular square grid containing the reference points. A 
regular square grid (5 × 5 m) was defined in an area of 100.0 
m2 with points every 2.5 m. For this purpose, a topographic 
GNSS with a simple L1 frequency (model ProXT; Trimble 
Navigation Limited, Trimble, USA) that allows post-
processed differential correction was used. Data correction 
was performed using the GPS Pathfinder Office® software 
version 5.00 using data from the Brazilian Continuous 
Monitoring Network (Rede Brasileira de Monitoramento 
Continuo) of the Brazilian Institute of Geography and 
Statistics (Instituto Brasileiro de Geografia e Estatística). 
After correcting the reference data, the topographic GNSS 
indicated a mean error of 0.15 m. In this same grid, 25 
experimental points were randomly collected three times 
using the GNSS-BBB system proposed in this study. 

In the first kinematic experiment, two parallel lines 
of 100.0 m were used. The objective of this experiment was 
to evaluate the behavior of the GNSS-BBB system before 
and after Kalman filtering as a function of velocity. For this 
purpose, four mean speeds were used: 1.39, 2.22, 2.78, and 
4.17 m s-1. The experiment was performed in triplicate 
considering the velocities in ascending order, and the mean 
values were considered for analysis. 

In the second kinematic experiment, two tests were 
performed, with three repetitions each, at a mean velocity 
of 1.39 m s-1 in a random order. Four parallel lines of 100.0 
m were used. The objective of this experiment was to 
determine system accuracy and the radius of the curvature 
required for the Kalman filter not to consider changes in 
direction as system errors. This is because Kalman filtering 
smoothes abrupt changes in direction, and some cycles of 
data collection are required for stabilization. To assess the 
distance required to change the direction of the Kalman 
filter, the four lines were followed by changing direction in 
the normal position, stretching the head to extend the curve, 
and evaluating the behavior of the filter. 

Measurements 

The static positioning errors (PEs) were calculated as 
the difference between the coordinates of the experimental 
points obtained with the GNSS-BBB system and the 
reference points obtained with the topographic GNSS. The 
errors in the data collected in the static experiment were 
determined using [eq. (6)]. 
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𝑃𝐸௦ =  ඥ𝐸𝑁 ଶ + 𝐸𝐿ଶమ
 (6)

Where, 

PEs is the static position error; 

EN is the error in the north direction in meters, 

EL is the error in the east direction in meters. 
 
The kinematic position errors (PEk) were calculated 

according to [eq. (7)]. This determines the distance 
between the coordinates of the experimental points (xi, yi)       
obtained with the GNSS-BBB system and the straight line 
(ax + by + c = 0) formed by the reference points obtained 
with the topographic GNSS. The means of the errors 
between the GNSS-BBB system before and after filtering 
were compared using Student’s t-test at a level of 
significance of 5%. 

𝐸𝑃௞ =
|𝑎𝑥௜ + 𝑏𝑦௜ + 𝑐|

√𝑎 ଶ + 𝑏ଶమ  (7)

Where, 

Epk is the kinematic positioning error; 

a is the angular coefficient of the line on the x-axis; 

xi is the east UTM coordinate; 

b is the angular coefficient on the y-axis; 

yi is the north UTM coordinate; 

c is the distance from the origin (0,0); 

i is the number of points collected 
 
The root-mean square error (RMSE) (equation 8), 

which indicates data accuracy, does not use the mean values 
and produces an absolute error relative to the reference 
value, representing 68% of the distribution (Machado & 
Molin, 2011). 

𝑅𝑀𝑆𝐸 =  ඨ
∑ 𝐸𝑃ଶ௡

௜ୀଵ

𝑛
 (8)

Where, 

RMSE is the root-mean square error; 

PE is the static or kinematic position error, 

n is the number of points collected. 
 

RESULTS AND DISCUSSION 

Analysis of the GNSS-BBB system in the static 
experiment 

The position errors varied from 0.79 to 6.26 m 
(Figure 3) with a mean error of 3.35 m and RMSE of 3.73 
m relative to the position obtained using the topographic 
GNSS. The results of the static experiment corroborate 
those found by Machado & Molin (2011), who analyzed 
eight GNSS receivers and found that uncorrected RMSE 
values varied from 1.02 to 3.11 m. 

 

 

FIGURE 3. Frequency error between the topographic 
GNSS and the GNSS module integrated to the BeagleBoard 
Black for the static experiment 

 
There was no tendency of decrease in the errors as a 

function of the increase in data collection time because the 
GNSS position data remained constant and were modified 
only if the system was in motion. 

Analysis of the GNSS-BBB system in the first kinematic 
experiment 

The data collected at different speeds are shown in 
Figure 4. The UTM coordinates were deduced from 721200 
m in the east to west direction and 7701500 m in the north 
to south direction to obtain lower coordinates. The 
coordinates can be returned to the original values by adding 
these values to the coordinates shown in the graph. Among 
the four mean velocities evaluated, the velocity of 1.39 m s-1 
presented lower lateral oscillation and lower mean error and 
RMSE (Table 1). In addition, the mean velocity increased 
as the data presented greater lateral oscillations and, 
consequently, higher mean errors and RMSE. 
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A. 

 

B. 

 
C. 

 

D. 

 

FIGURE 4. Trajectories demarcated by the GNSS-BBB system at mean speeds of 1.39 m s-1 (A), 2.22 m s-1 (B), 2.78 m s-1 (C) 
and 4,17 m s-1 (D). 

 
TABLE 1. Descriptive statistics of the errors obtained in the kinematic experiment at four different mean speeds with and without 
Kalman filtering. 

Speed (m/s) Kalman filtering 
Errors (m) 

SD 
Minimum Maximum Mean RMSE 

1.39 
P 0.01 2.62 1.27 1.34 0.40 
A 0.07 2.67 1.50 1.52 0.20 

2.22 
P 0.01 5.03 2.37 2.57 0.91 
A 0.09 7.04 2.73 2.92 1.00 

2.78 
P 0.72 5.99 2.96 3.22 1.24 
A 1.12 9.56 3.59 4.00 1.51 

4.17 
P 0.09 5.92 3.32 3.56 1.19 
A 0.15 6.64 4.25 4.39 1.00 

PData obtained by the GNSS-BBB integrated system with Kalman filtering; AData obtained by the integrated GNSS-BBB system without 
Kalman filtering; RMSE, root-mean square error; SD, standard deviation. 
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Kalman filtering reduced the mean errors, RMSE, 
and lateral oscillations in all cases. The decrease in lateral 
oscillations is fundamental for implementing automatic 
navigation in agricultural machinery so that the system does 
not undergo sudden changes in direction. Data linearity 
enables this GNSS-BBB system to be used in the automatic 
navigation of agricultural operations where submetric 
accuracy is not required, including soil sampling and crop 
yield monitoring. 

The mean error, RMSE, and standard deviation 
tended to increase as velocity increased (Table 1). The data 
tended to present smaller minimum, maximum, mean, and 
RMSE errors using Kalman filtering. The standard 
deviations were higher with Kalman filtering at speeds of 
1.39 and 4.17 m s-1. This result was probably due to             
the absence of gross and abrupt errors at these speeds 
(Figure 4). 

Analysis of the GNSS-BBB system in the second 
kinematic experiment 

The distance required to change the direction of the 
Kalman filter was simulated in two tests by changing the 
direction of the normal position (Figure 5a) and lengthening 
the head to extend the curve (Figure 5b). The UTM 
coordinates were deduced from 721200 m in the east to west 
direction and 7701500 m in the north to south direction to 
obtain lower coordinates. The coordinates can be returned 
to the original values by adding these values to the 
coordinates shown in the graph. The reference data 
collected with the topographic GNSS were compared with 
data collected with the proposed system before and after 
Kalman filtering. The data before filtering presented 
oscillations, although the trajectory was linear. The data 
after filtering presented smaller deviations and were closer 
to the topographic GNSS data. 

 
A. 

 

B. 

 

FIGURE 5. Kinematic experiment with a change in the direction of the normal position (A) and lengthening the head to extend 
the curve (B). 

 
The mean position errors were 1.26 and 1.13 m, and 

RMSE was 1.45 and 1.27 m for the data obtained before and 
after Kalman filtering, respectively, relative to the 
topographic GNSS. The results of Student’s t-test indicated 
that after Kalman filtering, the mean error of the data was 
significantly lower than the error obtained without filtering 
(p<0.05). The improvement is because Kalman filtering 
maintains the system characteristics, smoothing abrupt 
changes and consequently decreasing positioning errors 
(Gil et al., 2013). Kalman filtering removes from the signal 
a large part of random errors, decreasing the maximum error 
of the data from 3.58 to 2.82 m after filtering, corroborating 
the results of Gil et al. (2013) and Han et al. (1998). 

However, considering that the Kalman filter is not 
indicated for curved trajectories (Han et al., 1998) because 
it maintains the tendency of the data and rejects the data 
obtained from a change in direction. At the speed of 1.39 m 
s-1, it took approximately 5 m for the Kalman filter to 
follow the data obtained from a correct change in direction. 

 
 

 

CONCLUSIONS 

Kalman filtering increased the accuracy of kinematic 
data compared to static data by eliminating sudden lateral 
oscillations due to random errors of the GNSS signal, 
maintaining a linear pattern, and decreasing the errors in all 
cases. 

The GNSS module integrated into the BBB can be 
used in specific agricultural applications where submetric 
accuracy is not required, including soil sampling and 
productivity monitoring. These operations should be 
performed at a speed of 1.39 m s-1 and a minimum radius of 
curvature greater than 5 m because Kalman filtering did not 
produce good results in the sections that changed direction. 
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