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ABSTRACT 

Active optical sensors have been widely used for the spatial and temporal monitoring of 
peanut culture because they are accurate, non-destructive methods for rapidly obtaining 
data. The objective of this study was to determine the optimal stage of crop growth for 
collecting sensor readings based on correlations between quality indicators. In addition, 
we compared vegetation indices (Normalized Difference Vegetation Index [NDVI], 
Normalized Difference Red-Edge Index, [NDRE], and Inverse Ratio Vegetation Index, 
[IRVI]) by monitoring temporal variability in the peanut crop in order to determine which 
of them obtained the best reading quality throughout the process. The experiment was 
performed on the 2016/17 crop in the agricultural area of the municipality of Dumont in 
the state of São Paulo, Brazil. The experimental design was based on the basic 
assumptions of statistical quality control and contained 63 sample points in a 30 × 30 m 
grid. The parameters were evaluated at 30, 45, 60, 75, and 119 days after sowing (DAS) 
using proximal sensing with GreenSeeker and OptRX sensors. We found that 45 and 60 
DAS were the optimal times for monitoring peanut crop variability. For spatiotemporal 
monitoring of the culture with control charts, NDRE showed the best readings throughout 
the process when compared to NDVI and IRVI. 

 
 
INTRODUCTION 

The largest peanut-producing state in Brazil is São 
Paulo. Production is concentrated in the region of Ribeirão 
Preto, where cultivation is usually done in rented areas using 
rotation schemes and crop succession, often to facilitate the 
renewal of sugarcane plantations (Barbosa et al., 2014). 

Peanut is considered one of the most important 
legumes, not only for its economic value but also 
nutritionally. Additionally, it is widely used in crop rotation 
and succession, particularly in sugarcane and pasture 
reforestation areas, because it is a short-cycle crop and its 
operations are fully mechanized (Grotta et al., 2008). 

Considering the economic significance of this crop, it 
is important to increase its productivity. This can be achieved 
through the use of modern techniques and methods that allow 
greater knowledge of crop status by providing accurate 
temporal monitoring. According to Grohs et al. (2009), within 
a given crop there are areas with different productivity 
potentials that need different types of management. 

Owing to population growth, agricultural production 
is expected to double by 2050 in order to meet the food 
demand. Precision agriculture (PA) is the key to improve 
resource efficiency and productivity in order to help achieve 
this goal under the various constraints encountered in 
agriculture, such as soil degradation, rising costs, climate 
change, lack of labor, and limited availability of arable land. 
To overcome these challenges, PA develops and uses sensing 
methodologies to provide information on crop health 
indicators and stages of growth (Narvaez et al., 2017).  

Remote-sensing techniques appear to have a high 
potential for both data processing and collection in 
agricultural areas. These data can be obtained by field 
radiometry, aerial photographs, and satellite images, and can 
accurately provide information on field variability 
(Motomiya et al., 2012). According to Amaral et al. (2015a), 
many active optical sensors can be found, but there is little 
research comparing the efficiency of these devices for the 
determination of the parameters of cultures. Using terrestrial 
remote-sensing with the Normalized Difference Vegetation 
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Index (NDVI) associated with agronomic characteristics of 
the peanut crop, it was previously verified that results 
obtained with the GreenSeeker sensor can be used to 
determine the population characteristics of plant cover and 
yield estimates, and as an additional tool for farmers to detect 
crop potential (Zerbato et al., 2016). 

This study addresses a subject of current relevance in 
the academic area of peanut crops, as it uses different 
vegetation indices with active or canopy sensors to monitor 
plants during their development and provide increased 
accuracy in data collection. Statistical Quality Control (SQC) 
was also used to study the growth stages of peanut, a statistic 
that has shown good results but is "not usually applied" in 
precision agriculture. This statistic is being used in the area of 
agricultural mechanization and has yielded good results in 
monitoring operational quality, as observed by Carneiro et al. 
(2017b), Cassia et al. (2015), Menezes et al. (2018), Ormond 
et al. (2016), Tavares et al. (2015), Voltarelli et al. (2015), and 
others. 

The objective of this study was to investigate which 
stage of crop growth is optimal for collecting sensor readings, 
applying the best correlations between the evaluated quality 
indicators (vegetation indices, fresh biomass (in natura) and 
dry matter, canopy width, chlorophyll index, yield, and 
maturation). In addition, vegetation index readings (NDVI, 
NDRE, and IRVI) were compared by monitoring temporal 

variability in peanut crops and observing which of them 
obtained the best reading quality throughout the process. 
 
MATERIAL AND METHODS 

The study of the temporal variability of vegetation 
indices in the peanut crop was carried out on the 2016/17 
crop, in the agricultural area of the municipality of Dumont 
located near the coordinates 21°15′22.05″S and 
47°58′15.00″W in the state of São Paulo, Brazil. 

The soil in the experimental area has a claylike texture 
and is classified as Red Latosol. According to the Köppen 
climatic classification, the climate of this region is tropical 
with dry winter (Aw; Alvares et al., 2013). 

The experimental design was based on SQC. Sixty-
three sampling points in a 30 × 30 m mesh grid were used for 
greater representativity of data collected regarding the 
biophysical characteristics of peanuts associated with NDVI, 
NDRE, and IRVI (Fig. 1). The behavior of the quality 
indicators, which were fresh and dry biomass, canopy width, 
chlorophyll index, maturation, yield, and productivity, was 
evaluated at 30, 45, 60, 75, and 119 days after sowing (DAS) 
using NDVI, NDRE, and IRVI by means of control charts 
to monitor the quality of readings of the vegetation indices 
for the peanut crop; this correlation was obtained from the 
best correlations between the quality indicators or 
parameters evaluated. 

 

 

FIGURE 1. Location of the experimental area containing in total 63 sampling points in the municipality of Dumont, state of São 
Paulo, Brazil. Also, the sample points used in the experiment, spaced with a 30 × 30 m mesh. 

 
Each sampling point was composed of two rows of 5 

m in length with 0.90 m spacing between rows, comprising 9 
m² of useful area per point. All evaluations were carried out 
at all points or plots to monitor the temporal variability of the 
peanut crop. 

Remote-sensing evaluations were performed using 
GreenSeeker® (Trimble, Sunnyvale, CA) and OptRX® (Ag 
Leader, 2202 South Riverside Drive, Ames, IA 50010, USA) 

active optical sensors. Fig. 2 shows the evaluated periods in 
relation to the peanut growth stages. The vegetation index 
readings were taken in the canopy of the plant (Grohs et al., 
2011) between 8:00 a.m. and 12:00 p.m. For the productivity 
and maturation parameters, only one evaluation was 
performed after peanut ripening. At 119 DAS, only NDVI, 
IRVI, and NDRE were collected because this evaluation was 
performed one day before peanut ripening (120 DAS). 
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FIGURE 2. Growth stage of peanuts with evaluation dates. Source: Rural Liquid Fertilizers - RLF Global (2017), adapted 
from Carneiro (2018). 

The GreenSeeker is an active optical sensor (Trimble 
brand model 500) with a reading time between 1 and 2 s. This 
sensor emits electromagnetic radiation with a wavelength in 
the red (660 nm) and near-infrared (NIR; 770 nm) bands, and 
the light reflected by the plant is captured by the sensor. 
GreenSeeker automatically calculates the NDVI (Motomiya 
et al., 2014; Amaral et al., 2015a). The other obtained index 
along with the NDVI was the IRVI, which is still rarely used 
in research. 

For a more accurate reading, the manufacturer 
recommends the working height of this sensor to be between 
0.6 and 1.2 m from the target, in this case, the plant. The sensor 
readings were maintained at a working height of 0.6 to 0.7 m. 

The OptRX is an active optical sensor (Ag Leader, 
model ACS430) with a reading time of 5 Hz (five readings 
per second). The reading height above the canopy was 0.6 to 
0.7 m, with an image reading range (0.36 to 0.42 m) of 60% 
of the reading height. Two sensors were used to perform the 
average reading in real time. 

According to the manufacturer (Ag Leader), in the 
United States, where OptRx was created, readings of 

vegetation indices are usually performed in real time in 
conjunction with product applications, using a sensor 
installed in a sprayer to allow the simultaneous realization of 
these operations. With this sensor, it is possible to obtain 
NDRE and NDVI. However, for this experiment, NDRE 
chosen as NDVI was collected with GreenSeeker. 

The Laboratory of Machines and Agricultural 
Mechanization (LAMMA) built the support for transportation 
of the OptRx sensor during the field experiments, enabling 
the monitoring of the entire phenological cycle of the crop, 
from sowing to harvest. This support took into account the 
model developed by Professor Brenda V. Ortiz, University of 
Auburn (Alabama, USA). The study used a bicycle as a 
support, providing transport of two active optical sensors 
(GreenSeeker and Crop Circle) for field evaluations (Carneiro 
et al., 2017a). 

Table 1 shows the calculations related to each index. 
The evaluated vegetation indices in this study were the NDVI 
and IRVI, obtained by GreenSeeker, and the NDRE, obtained 
by OptRX.  

 

TABLE 1. Vegetation indices. 

Vegetation indices Calculation index  Source 

NDVI NDVI =
FNIR - FRed

FNIR + FRed
 Rouse et al. (1973) 

NDRE NDRE =
NIR - RE

NIR + RE
 Buschmann & Nagel (1993) 

IRVI IRVI=
R650

R770
 Kapp Júnior et al. (2016) 

NDVI - Normalized Differential Vegetation Index, NIR - fractions of near-infrared emission, Red - fractions of red emission, NDRE - Normalized 
Difference Red Edge, RE - ratio of red edge indices, IRVI - Inverse Ratio Vegetation Index. NIR - 774 nm, Red - 656 nm, RE - 720 nm 
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The evaluated parameters were as follows: 

 Vegetation indices were acquired using 
GreenSeeker and OptRX sensors, which obtained NDVI, 
IRVI, and NDRE. 

 Fresh and dry biomass were collected only from 
the aerial part of the plant. The samples were obtained 
utilizing a 0.25 m² (0.5 × 0.5 m) frame. Sampling was 
performed per row (5 m in length), 1 m per point, in the two 
adjacent rows at the same time. After placing the frames in 

each of the two rows on both sides of the sample point, the 
plants were cut to the ground with the aid of a knife. The aerial 
part of the peanut plant was taken and the roots were 
discarded. The collected plants were placed in paper bags and 
then weighed to obtain the wet mass (fresh biomass, Fig. 3a). 
After that, the samples were placed in a greenhouse with air 
circulation at 65 °C for 72 h (Gobbi et al., 2009; Grohs et al., 
2009) to dry them (dry biomass, Fig. 3b). Finally, the dried 
samples were weighed with a semi-analytical balance (model 
BL 3200H) to obtain the dry mass. 

 

Fresh Biomass (a) 

 

Dry Biomass (b) 

 

FIGURE 3. Fresh (a) and dry (b) biomass per sample. 

 Chlorophyll content was obtained using a 
Marcone chlorophyll Meter, model CCM-200 Plus. The 
readings were performed by randomly collecting three 
leaves per plot, and three readings were taken from each leaf 
to achieve greater accuracy. 

 Canopy width and the height of the plants were 
measured using a scale graded in centimeters. The height of 
the plants was measured from the ground level to the highest 
point of the plant, and the width of the canopy was measured 
from one end of the plant to the other. 

 The productivity of the plants was measured with a 
frame of 2 m2. The plants were collected in raffia bags and later 
taken to be trodden off manually to obtain the pods, which were 
then weighed. The data were transformed into kg ha- 1. 

 The maturation of the pods was determined by the 
hull-scrape method, in which the exocarp of the pods was 
scrubbed, exposing the staining of the mesocarp. The 
classification of the pods was performed by color according 
to the Peanut Maturation Classification Table, which was 
developed by the University of Georgia, USA (Williams & 
Drexler, 1981). In this experiment, 100 random pods were 
collected per sampling point to determine their maturation, 
and the area of maturation percentage was determined using 
black, brown, and orange classes (Santos et al., 2013). 

The quality indicators were analyzed through SQC 
using individual value control charts, which are one of the 
most commonly used statistical process control tools among 
researchers because they allow the monitoring of data 
behavior over time. 

The control charts for individual values are composed 
of the arithmetic mean of the sample and the Upper (UCL) 
and Lower Control (LCL) Limits, obtained from the mean and 
standard deviation of the values analyzed per parameter. The 
LCL equals the mean minus three times the standard 
deviation, while the UCL equals the mean plus three times the 
standard deviation (Toledo et al., 2008).  

Correlation analysis of quality indicators (vegetation 
indices, fresh and dry biomass, chlorophyll index, canopy 

width, maturation, and yield) was also performed in this 
study. These analyses were used to verify the relationship 
between the variables and the indicators, as well as whether 
there were any differences between them. 

Galarça et al. (2010) and Figueiredo Filho & Silva Júnior 
(2009) stated that the Pearson correlation coefficient (r) has 
values ranging from -1 to 1 and that its value suggests the 
strength of the relationship between the variables. A perfectly 
positive correlation between two variables is represented by 
values close to 1 (r = 1), whereas a perfectly negative correlation 
is represented by values close to -1 (r = -1), indicating that when 
one variable increases, the other decreases. 

Dancey & Reidy (2006) proposed a classification for 
the Pearson correlation coefficient as r = 0.10 to 0.30 (weak), 
r = 0.40 to 0.6 (moderate), and r = 0.70 to 1 (strong). 
According to Figueiredo Filho & Silva Júnior (2009), the 
degree of linear statistical dependence between the variables 
is greater when the value is closer to 1 (independent of the 
signal), but the strength of this relationship is lower when the 
value is closer to zero. 

All the analyses presented in this study were 
performed using the Minitab 16 statistical software. 
 
RESULTS AND DISCUSSION 

The correlation graphs were obtained using the 
Pearson coefficient in order to determine the behavior and 
relationships of indicators and the evaluated qualities 
(vegetation indices, fresh and dry biomass, chlorophyll index, 
canopy width, maturation, and productivity). In Table 2, the 
highest values of the correlation coefficient for the majority 
of the evaluated parameters are shown at 45 and 60 DAS, 
which correspond to development stages R1 and R2 of the 
peanut, respectively (Fig. 2). This correlation is especially 
strong at 45 DAS (R1 stage). As observed in Table 2, 
according to the Dancey & Reidy (2006) classification, the 
highest correlation values were moderate (r = 0.40 to 0.60) at 
45 and 60 DAS (stages R1 and R2). 
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TABLE 2. Pearson correlation coefficients (r) for NDVI, NDRE, and IRVI in relation to fresh and dry biomass, canopy width, 
yield, chlorophyll index, and maturity at 30, 45, 60, 75, and 119 DAS (n = 63). 

 Fresh Biomass (kg ha-1) Dry Biomass (kg ha-1) 

IV 
30 45 60 75 119 30 45 60 75 119 

--- DAS --- --- DAS --- 

NDVI 0.39** 0.59** 0.27* 0.05ns - 0.30* 0.45** 0.26* 0.05ns - 

NDRE 0.25* 0.68** 0.40** -0.15ns - 0.29* 0.63** 0.38** -0.06ns - 

IRVI -0.35** -0.49** -0.23ns -0.07ns - -0.28* -0.39** -0.21ns -0.05ns - 

 Canopy Width (cm) Chlorophyll Index (CCI) 

NDVI -0.08ns 0.47** 0.34** -0.03ns - 0,07ns 0.23ns 0.11ns -0.03ns - 

NDRE 0.06ns 0.48** 0.48** 0.15ns - 0,18ns 0.57** -0.11ns 0.05ns - 

IRVI 0.11ns -0.42** -0.25* 0.03ns - -0,06ns -0.18ns -0.11ns 0.00ns - 

 Maturation (%) Yield (kg ha-1) 

NDVI -0.14ns 0.36** 0.18ns -0.20ns 0.17ns 0.11ns 0.29* 0.35** 0.07ns 0.35** 

NDRE 0.22ns 0.26* 0.19ns 0.18ns 0.15ns 0.30* 0.26* 0.26* 0.36** 0.26* 

IRVI -0.13ns -0.37** -0.14ns 0.22ns -0.16ns -0.13ns -0.26* -0.29* -0.04ns -0.34** 

IV: Vegetation index; ** Significant at p < 0.01; * Significant at p < 0.05; ns, Not significant at p > 0.05. 
 
The fresh and dry biomass provided the highest 

correlation values with vegetation indices when compared 
with the other parameters, especially the correlation between 
NDRE and biomass (Table 2). The biomass was the parameter 
that most influenced the readings of the active optical sensors, 
corroborating the results obtained by Amaral et al. (2015b). 

Regarding the vegetation indices, NDRE presented the 
highest correlations when compared to the other indices for 
the parameters under analysis. On sugarcane, Amaral et al. 
(2015a) and Taubinger et al. (2012) found that NDRE had less 
influence on the plant canopy and was more efficient at 
predicting biomass when compared to NDVI.  

One limitation of NDVI that could explain these 
results is the saturation of the red electromagnetic wave band. 
This is due to the high absorption of chlorophyll pigments, 
which causes saturation in this band by the canopy of the 
culture. Furthermore, NDVI also presents a nonlinear 
relationship between the biophysical parameters (Baret & 
Guyot, 1991). In most of the evaluated parameters at 60 and 
75 DAS (R2 and R4 stages, respectively), the NDVI values 
were probably lower due to saturation. 

Regarding the width of the canopy and the chlorophyll 
index, the highest correlations between the indices were at 45 
DAS (stage R1), mainly in the NDRE readings. Steven et al. 
(1990) explained that the red-edge spectrum is one of the best 
descriptors for the remote sensing of chlorophyll 
concentration because this wavelength represents the 
maximum slope of the vegetation reflectance spectra. The 
same authors mentioned that this occurs in the 680 to 750 nm 
bands, where the reflectance changes from very high to very 
low (in the region of red absorption by chlorophyll) NIR 
because of canopy and leaf growth.  

Regarding the productivity and maturation 
parameters, the highest correlations were at 45 and 60 DAS 
(stage R1 and R2, respectively). As NDRE at 60 DAS 
presented a higher correlation between productivity values, it 
should be preferred for predicting productivity compared to 
other indices such as NDVI (Amaral et al., 2015b). 

Thus, given these results, the most feasible period to 
begin monitoring of productivity and maturation using NDRE 
would be 45 DAS (stage R1), because of the physiological 
potential of the plant. This stage is at the beginning of 
flowering, with high translocation of peanut fluids and 
nutrients to flower formation. At 30 DAS (emergence stage 
until the beginning of flowering), most of the parameters 
showed low correlations, particularly the canopy width as the 
plant was still small and had not yet covered the area between 
the rows of the crop, leaving the soil exposed. Feng et al. 
(2016) noted that the spectral reflectance of the plant canopy 
is affected by the crop canopy, soil, biophysical properties of 
the vegetation, and factors that affect the accuracy of 
agronomic index readings. 

The data in Table 2 show that at 45 and 60 DAS, higher 
correlations were obtained between the parameters. The 
values presented lower variabilities during these periods, 
which can be explained by the developmental stage of the 
plants. In the R1 and R2 reproductive stages, the plant 
demands greater physiological potential and greater 
translocation of fluids and nutrients in its interior. Moreover, 
the control charts verified that lower dispersion values were 
found in the NDRE, with lower variability indicating higher 
process quality, as seen in Fig. 4. 
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UCL: Upper Control Limit. LCL: Lower Control Limit. X : Average 

FIGURE 4. Control chart of individual values for vegetation indices (NDVI, NDRE, and IRVI) at 30, 45, 60, 75, and 119 DAS.
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The analysis regarding the temporal variability of the 
peanut crop was monitored using the control charts of 
individual values of the vegetation indices (NDVI, NDRE, 
and IRVI) at 30, 45, 60, 75, and 119 DAS, as shown in Fig. 
4. For all the evaluated periods, NDRE presented higher 
process quality because of its lower variability. 

Among the vegetation index readings, NDVI had the 
highest mean values because of the saturation problem related 
to biomass increase. Grohs et al. (2009) also observed that 
NDVI increased with increasing biomass up to the saturation 
value. In the present study, the mean saturation of NDVI was 
0.89 between stages R2 and R4 (at 60 and 75 DAS), as shown 
in Fig. 4c and 4d.  

Analyzing each vegetation index separately, NDVI 
readings at 60 and 75 DAS (stage R2 and R4) demonstrated 
saturation because data were constant and showed the same 
behavior, as shown in Fig. 4c and 4d. The control charts 
represented excellent tools for the temporal monitoring of the 
spectral behavior of the indices because they facilitated the 
visualization of the moment when the saturation of the NDVI 
reading occurred. 

Similarly, Zanzarini et al. (2013) observed that this 
vegetation index has a limiting factor due to its rapid 
saturation at a certain stage of development due to the 
increase in biomass, and the consequent stability in the 
readings. However, at 119 DAS, one day before harvest, 
NDVI accurately collected the indices, probably owing to the 
decrease in biomass at this stage. 

Regarding IRVI, Table 2 shows that its values were 
inversely proportional to those of NDVI. Kapp Júnior et al. 
(2016) verified that the concentration of chlorophyll in the 
leaf tissue affects the reflection of the wavelength in the 
visible range. This pattern is expected because the lower the 
chlorophyll level and application of nitrogen in the crop, the 
lower the absorption of solar radiation in the region, resulting 
in a decrease in NDVI and an increase in the IRVI. 

There was temporal variability among the indices 
because of the stage of peanut development, bands of readings 
used in the indices, and size of the plant canopy. In the initial 
stages, the crop had an incomplete canopy and this influenced 
the sensor readings due to soil reflectance. The outlying points 
can be explained by factors influencing the vegetation indices, 
such as canopy width, leaf geometry, stage of development or 
age of the plant, leaf color, and sensor imaging range. 

Our results show that the optimum time for the use of 
active optical sensing from a terrestrial platform was 
identified. Besides, the employed method allows the 
monitoring of the growing stages of the culture because of its 
non-destructive nature and provides knowledge regarding the 
spatial variability of the crop through vegetation indexes, 
specifically showing if plants are vigorous. This will facilitate 
the faster detection of the causes that could affect the 
development of crops and consequently the yield, such as 
pests, diseases, and nematodes, among others. This work is 
very relevant because it shows the optimal time for the use of 
these sensors, which could give farmers greater time-saving. 

 
CONCLUSIONS 

Considering that the best correlations among the 
evaluated quality indicators were obtained at, 45 and 60 DAS 
(stage R1 and R2), particularly 45 DAS, these times should 
be considered the optimal time for the monitoring of peanut 
crop variability. 

For the spatiotemporal monitoring of the culture 
through control charts, NDRE showed the best reading 
qualities throughout the process when compared with NDVI 
and IRVI. 

The use of active optical sensors shows great potential 
for the detection of temporal variability in peanut crops. 
Furthermore, it was also possible to associate the biophysical 
characteristics of the crop with the vegetation indices. 
Through the use of Pearson correlation, it was possible to 
identify the parameters that best correlated with the 
vegetation indices. 

The control charts applied in this study show promise 
for the temporal monitoring of vegetation index readings 
during the different stages of peanut growth. 

This study will serve as a reference for future research 
regarding the use of remote sensing techniques at the terrestrial 
level. These approaches will also help both researchers and 
rural producers by identifying the optimal time for the use of 
active optical sensors in order to monitor peanut crop 
variability and verify plant vigor using a vegetation index. 
Finally, it also provides new knowledge in the area of 
physiology, irrigation with varied rate, and soil fertility 
application of fertilizers before and after the optimal time.  
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