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ABSTRACT: The t-Student distribution has been used to the spatial dependence modelling of 

soybean yield as an alternative to the normal distribution, being used for data with heavier tails or 

discrepant values. However, a usual Student t-distribution does not allow direct comparisons of 

geostatistical methods with a normal distribution. The aim of this study was to assess the soybean 

yield spatial variability through a reparameterized t-Student linear model, comparing the results 

with those of a Gaussian linear model. For parameter estimation, a complete maximum likelihood 

(CML) method was used through an expectation-maximization (EM) algorithm. The maps 

constructed with both reparameterized t-Student and normal distributions are dissimilar and present 

a kappa index (K) equivalent to 0.64. The reparameterized t-Student distribution is an alternative in 

studying data with discrepant values, showing the ability to decrease the influence of these points. 
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INTRODUCTION 

Geostatistics can assist in precision agriculture since its techniques allow constructing maps 

that determine the spatial dependence structure of yield associated with soil and plant attributes. 

Thus, it helps the producer to decide on the use of agricultural inputs in appropriate quantities and 

locations in order to increase yield, reduce losses, and maintain environmental quality. This 

technique is based on the regionalized variable theory proposed by Matheron, influenced by the 

observations made by Kriger. According to Vieira (2000), Kriger analyzed gold concentration data 

in South Africa and observed the impossibility of finding meaning in the variances without taking 

into account the distance between samples. Therefore, the values of a variable distributed in the 

space are correlated within a radius of spatial dependence. 

In a spatial variability study, the results obtained by geostatistical methods can be influenced 

by discrepant data, leading to biased predictions (Cressie, 2015). A solution to the presence of 

discrepant data is the use of robust models, whose parameter estimation is less sensitive to these 

data. According to Manghi et al. (2016), class models of symmetric distributions allow reducing the 

influence of discrepant data, incorporating additional parameters that adjust the kurtosis of data 

distribution. The t-Student distribution belongs to the class of symmetric distributions and exhibits 

symmetry properties, greater flexibility regarding the degree of kurtosis, and has as additional shape 

parameter 0v  , which defines the degrees of freedom of distribution (Assumpção et al., 2011; 

2014). Lange et al. (1989) propose a reparametrization of the t-Student distribution from a 

transformation in the shape parameter v , allowing us to assume the existence of the second finite 

moment and thus a more direct comparison with the normal distribution. This reparametrization is 

justified by the importance that the spatial dependence modeling represents since the new shape 

parameter   is limited and this process allows estimating parameters by maximum likelihood (Nesi 

et al., 2013) and implementing the EM iterative algorithm (Dempster et al., 1977; Assumpção et al., 

2014). 
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This study aimed to assess the spatial variability of soybean yield by means of a 

reparameterized t-Student linear model, comparing the results with a Gaussian linear model. For 

estimating these model parameters, a complete maximum likelihood (CML) method was used 

through an expectation-maximization (EM) algorithm. 

 

THEORETICAL FOUNDATION 

Reparameterized t-Student distribution 

Much of the statistical inference involving continuous random variables is based on normal 

distribution. However, to obtain reasonable inferences, assuming normality, it is necessary to ensure 

conditions such as symmetry and a certain value of kurtosis. Among the symmetric models 

alternative to the normal distribution is the t-Student distribution, which presents as an additional 

parameter the degree of freedom  0v v   that allows kurtosis modeling. A priori, this parameter 

can be fixed. However, Lange et al. (1989) recommend fixing it at 4v   for a small data set and its 

estimation for a large data set. This distribution has been widely used in the study with real data 

because it has tails longer than the normal distribution and allows the discrepant points present in 

the data set to be encompassed (Lange et al., 1989; Osorio et al., 2007). Galea et al. (2002) suggest 

the t-Student distribution as an alternative to the normal distribution due to the statistical inference 

based on the t-Student distribution to combine conceptual and computational simplicity with 

generality, in addition to being applicable in a great variety of situations. An important feature of t-

Student distribution is that when the degree of freedom v  increases, the t-Student distribution 

approaches to the normal probability distribution. 

Lange et al. (1989) state that if a random vector  1, ,
T

nY YY  has as probability density 

function multivariate t-Student with a location parameter μ , scale matrix V , and 0v   degrees of 

freedom,  , ,nt μ vY 1 V  is denoted. The expectation of the random vector Y  is  E μY 1 , 

where 1 is a vector of 1’s of order n × 1, for 1v  , and the covariance matrix n × n of Y  is 

 
2

v

v
Cov  


VY Σ  for 2v  . For values of 2v  , the covariance matrix   Cov Y  is undefined. 

Lange et al. (1989) suggest the reparametrization of t-Student distribution for allowing the 

direct comparison between parameter estimation of the mean vector and the covariance matrix with 

the model assuming normality. The authors also mention that an improvement of inference is 

observed when the degree of freedom presents the transformation 1 .v   

  1, ,
T

nY YY is considered a random vector that has reparameterized t-Student distribution 

with shape parameter   fixed, in which 10 ,
2

   with covariance matrixΣ , mean vector 

 E μY 1  if its probability density function is given by [eq. (1)]: 

     
 

11 1
2 22 1 ,

n

nf y K c


  
 

   Y
Σ                                                                             (1) 

where,  

 
  2

1

2
,

1

2

n

n

n

c
K



 






 
    

  
    
 

  

Which    2 1T
μ μ   Y 1 Σ Y 1 is the Mahalanobis distance,  ( ) 1 2c      and 10 .

2
   
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It is denoted by  , ,n μ Y 1 Σ that the vector Y  has n-variate reparameterized t-Student 

distribution. 

 

Spatial linear model 

For the study of spatial dependence, ( ),i iY s s S  is considered a stochastic process of 

second-order stationary, where 
2S  and 

2  is a two-dimensional Euclidean space. Let  

 1( ), , ( )
T

nY s Y sY be a vector n × 1 of the response variable corresponding to spatial locations 

known in si with i = 1, …, n. The georeferenced variable  ( )iY s  can be written as: 

        ( ) ( ) ( ),i i iY s s e s                                                                                                                    (2) 

being the deterministic term  ( ) ,T

i is  βx  where   1, ,T

i i ipx xx  is a vector 1 × p of explanatory 

variables at position si ,   1, ,
T

p β is the vector p × 1 of unknown parameters to be estimated, 

and ( )ie s  is a spatially correlated random component. 

 

Equation (2) can be written in a matrix form as: 

  , Y Xβ ε                                                                                                                               (3) 

where X  is a matrix n×p of columns with complete rank, with lines 
T

ix and  1( ), , ( ) ,
T

ne s e sε  

with i = 1, …, n. It is assumed that the random errors ( )ie s  have zero mean, i.e.  ( ) 0iE e s   and 

the variation between points in space is determined by some covariance function 

     ( ), ( ) Y( ),Y( ) ,i u i u i u iuCov e s e s Cov s s C s s     for i, u = 1, …, n. The spatial modeling given 

in [eq. (3)] depends on the covariance matrix structure  iu   Σ , where  ,iu i u=C s s  for i, u = 

1, …, n, of the stochastic process Y . The covariance function  ,i uC s s is used in the study of 

spatial dependence of the stationary process and it is specified by a three-dimensional vector 

 1 2 3, ,
T

  φ of the form given in [eq. (4)] (Uribe-Opazo et al., 2012): 

       1 2  
n

Σ I R                                                                                                                           (4) 

where 1 is the parameter nugget effect  1 0 ,  2  is the parameter sill  2 0 ,  R  is a symmetric 

matrix n×n, whose elements are as a function of the parameter  3 0      3 iur    R R  with 

diagonal elements 1iir   and   1

2 ,iu i ur C s s for  2 0  and 0iur   for 2 0  , i ≠ u = 1, …, n, 

being iur dependent on the Euclidian distance iu i uh s s   between the points is and us , and  n
I is 

the identity matrix n × n. The parametric form of the covariance matrix Σ , represented in [eq. (4)], 

occurs for several stationary and isotropic processes, in which the covariance    ,i u iuC s s C h  is 

defined by the covariance function    2 .iu iuC h r  In the covariance functions  iuC h , the variance 

of the stochastic process reparameterized t-Student Y  is given by   1 20 .C     

On the assumption that  , ,n Y Xβ Σ , where   represents the shape parameter,  

considered fixed  and the unknown parameters of the model   , ,
T

T Tθ β φ  with  1, ,
T

p β   

and  1 2 3, ,
T

  φ  can be estimated by maximizing the logarithm of the complete likelihood 



Spatial variability of soybean yield through a reparameterized t-Student model 

Eng. Agríc., Jaboticabal, v.37, n.4, p.760-770, jul./ago. 2017 

763 

function defined by [eq. (5)]: 

    ˆ, max , ,c c c cl lθ Y θ Y                                                                                                       (5) 

being 

 
 

 
 

 

21 1 1 1
, log(2 ) log log

2 2 2 2 2

1 1
log log log ,

2 2 2

c c

n
l

c

c

  
 


  

 

 
       

 

  
         

  

θ Y Σ

                                                (6) 

where    2 1T
   Y Xβ Σ Y Xβ ,  ( ) 1 2 ,c     0   and 10 .

2
   

Maximization of [eq. (6)] is obtained by using an iterative process. In this case, the EM 

(expectation and maximization) algorithm was applied, being the stopping criterion the relative 

error (RE), where RE ,

r ( r - 1)

r

r

- 
= 
θ θ

θ
 with 

510 . To determine the shape parameter   

considered fixed, the criteria of cross-validation   VC  , presented by De Bastiani et al. (2015), 

and the trace criterion   rT  , proposed by Kano et al. (1993), were applied. For the 

reparameterized t-Student model, cross-validation is given by [eq. (7)]: 

2

1

ˆ( ) ( )1
( ) ,

1

n
i i i

i ii

y s y s
VC

n h




  
   

   
                                                                                            (7) 

where ˆˆ ( ) ,T

i i i iy s  βx  with  1, ,T

i i ipx x x  being the i-th line of the matrix X, is the prediction at 

the location is  without considering the observation   ˆ, ,T

i i iy βx  is the maximum likelihood 

estimator for i  without considering the i-th observation and iih  is the i-th diagonal element of the 

matrix Hat (  
1

1 1ˆ ˆT T


 H X X Σ X X Σ ), also called a projection matrix. Trace criterion consists of 

calculating the trace of the asymptotic covariance matrix of the estimated mean  ˆˆ ,μ Xβ  as a 

criterion in choosing considering that the shape parameter is obtained by: 

    
  

1
1

1 2 1 2
ˆ( ) ,

1

T T

r

n
T tr

n

 







       
     

X X X Σ X                                                       (8) 

Where 1 2
ˆ ˆˆ ˆ .  nΣ I R  For the two criteria, the best shape parameter   is determined by the lowest 

values of cross-validation   VC   and trace   .rT   After choosing the estimation of  , the best 

Mátern family model was defined with different shape parameters   (Matérn, 1986) by using the 

lowest standard error. The map was constructed by means of the regression-kriging method (Michel 

& Kobiyama, 2015) since it allows the use of covariates. Finally, the maps constructed with the 

reparameterized t-Student distribution and normal distribution were compared using the Kappa 

index (K) (De Bastiani et al., 2012), used to measure the exactness of thematic classifications, i.e. it 

provides a measure of agreement between the reference map values and the model map values. This 

index is recommended as an adequate precision measure because it uses all elements of the error 

matrix, being defined by [eq. (9)]: 
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                                                                                                   (9) 

where N
*
 is the total area, nii is the area belonging to class i of the model and reference maps, ni+ is 

the area belonging to class i of the model map, n+i is the area belonging to class i of the reference 

map, and r is the number of classes. According to Krippendorff (2004) classification, K is classified 

with low similarity if K < 0.67, medium similarity if 0.67 < K < 0.80, and high similarity if K > 

0.80. 

 

MATERIAL AND METHODS 

Location and characteristics of the study area 

Data on soybean yield, plant height, and pods per plant were collected from an experimental 

area of 47.95 ha located in Cascavel, the western region of Paraná, Brazil, with an approximate 

location of 24.83° S and 53.60° W, and an average altitude of 650 meters. The soil of this area is 

classified as a clayey Oxisol (Haplorthox) (EMBRAPA, 2011) and regional climate is a temperate 

super-humid climate type Cfa (Köeppen) with average annual temperature of 21 °C. All samples 

were georeferenced in the spatial coordinate system (UTM) by using a Trimble GPS25 (Global 

Positioning System) GEOEXPLORER 3 data receiver. Figure 1 shows the experimental area in a 

regular grid of 75 × 75 meters, totaling 83 observations for the 2006/2007 agricultural season. 

 

 

FIGURE 1. Area location in the 2006/2007 agricultural season. 

 

In 2006, soybean was cultivated in this area by means of the no-tillage system. In 2007, data 

on soybean yield were collected, being estimated by considering the amount of soybean harvested 

from all plants distributed in two rows over a meter long, representing a plot. Grains were weighed 

for each plot and the water content was verified for subsequent correction to 13%. Yield value was 

converted into t ha
−1

. The estimation of average plant height (Hgt), in cm, was performed at 

soybean vegetative peak by calculating the average of four plants over a linear meter. For the 

average number of pods per plant (N), four plants were chosen at each point and the number of pods 

was counted per plant at harvest time. 
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Statistical analyses were performed using the free software R, version 3.2.0 (R Core Team, 

2016). The following packages were used: geoR (Ribeiro Junior & Diggle, 2016) for studying the 

spatial data, map construction by regression kriging interpolation, and comparison of thematic 

maps; matrixcalc (Novomestky, 2012) for trace calculation; e1071 (Meyer et al., 2015) for 

calculating the asymmetry and kurtosis; and classInt (Bivand, 2015) for choosing the class intervals 

for continuous numerical variables. 

 

RESULTS AND DISCUSSION 

Table 1 shows the exploratory analysis of values found for the variables soybean yield (Prod) 

(t ha
−1

), average plant height (Hgt) (cm), and an average number of pods (N). The average soybean 

yield is 2.99 t ha
−1

, with a minimum value of 1.50 t ha
−1

 and a maximum value of 5.53 t ha
−1

. 

Moreover, 75% of the area presents a yield lower than or equal to 3.35 t ha
−1

. Soybean yield is 

classified as heterogeneous since the coefficient of variation (CV) is 21.27%. 

 

TABLE 1. Descriptive statistics for the variable soybean yield (Prod), the covariates average plant 

height (Hgt) and an average number of pods (N). 

Statistics Prod N Hgt 

Number of data 83 83 83 

Minimum 1.50 34.00 23.00 

Maximum 5.53 60.20 61.40 

Mean 2.99 42.62 38.20 

Median 2.94 41.40 37.00 

Standard deviation  0.64 5.11 8.26 

Q1 2.60 38.90 32.00 

Q3 3.35 46.00 44.00 

CV (%) 21.27 11.99 21.58 

Asymmetry 0.54 0.79 0.56 

Kurtosis 2.04 0.36 −0.32 
Q1: 1st quartile; Q3: 3rd quartile; CV: coefficient of variation. 

 

The boxplot graph presented in Figure 2a detected a single discrepant point, which 

corresponds to the sample element 6, with coordinates (236325, 7250475), referring to the 

maximum yield value in the data set, being equivalent to 5.53 t ha
−1

. According to the Postplot 

graph shown in Figure 2b, observation 6 is in a region where the nearest neighbors have a soybean 

yield between 2.60 and 2.94 t ha
−1

. 

 
FIGURE 2. Box plot (a) and Postplot (b) graphs for soybean yield data. 
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In order to identify the spatial dependence structure of soybean yield as a function of the 

average plant height (Hgt) and an average number of pods per plant (N), the average soybean yield 

 is  in the position 
2

is S    was considered as a spatial linear regression model given by: 

1 2 3( ) ( ) ( ), 1, , ,i i is Hgt s N s i n                                                                             (10) 

where 1 2,  , and 3  are the unknown parameters to be estimated. 

 

Parameter estimation studies were performed by complete maximum likelihood (CML) using 

the EM algorithm of the spatial linear model defined in [eq. (10)] and parameters of the spatial 

dependence structure Σ given in [eq. (4)], considering the Matérn family with 

parameters 0.5, 1.0, 2.0, 5.0, 10   and 20 associated to shape parameters of the reparameterized 

t-Student    0.05, 0.067, 0.1, 0.143, and 0.2. 

Table 2 shows the determination of the best shape parameter   of the reparameterized t-

Student distribution associated to each shape parameter   of the Matérn family using the cross-

validation criterion and trace defined by Equations (7) and (8). In bold is presented the choice of 

each parameter   for each   with the lowest values of cross-validation   VC   and trace 

  rT  . 

 

TABLE 2. Cross-validation and trace for the choice of the best shape parameter .  

     VC    rT        VC    rT   

 0.050 0.412220 2.115664  0.050 0.4129935 2.1301236 

 0.067 0.412234 2.1760428  0.067 0.4130204 2.1530738 

0.5 0.100 0.412260 2.2758176 1.0 0.100 0.4130351 2.1797482 

 0.143 0.412285 2.3646624  0.143 0.4130009 2.6215253 

 0.200 0.412308 2.4774702  0.200 0.4130525 2.2530225 

 0.050 0.413862 2.2563595  0.050 0.4144359 2.2792236 

 0.067 0.413766 2.330967  0.067 0.4144402 2.3613108 

2.0 0.100 0.413772 2.4853913 5.0 0.100 0.4145646 2.3221812 

 0.143 0.413857 2.1550879  0.143 0.4144596 2.7789105 

 0.200 0.413763 2.1447926  0.200 0.4144739 3.1683194 

 0.050 0.414694 2.2676439  0.050 0.4148278 2.2558034 

 0.067 0.414715 2.3462043  0.067 0.4148312 2.3450125 

10 0.100 0.414790 2.484116 20 0.100 0.4148545 2.5380225 

 0.143 0.414886 2.5932054  0.143 0.4149831 2.7765308 

 0.200 0.414731 3.2988219  0.200 0.4151899 3.0632745 

 : shape parameter;  VC  : cross-validation;  Tr  : trace;  : shape parameter of the Matérn family. In bold is the best shape 

parameter  ; underlined is the lowest value of cross-validation and trace. 

 

Figure 3 shows the cross-validation  VC   and trace  rT   graphs for each   value of the 

Matérn family model related to those chosen in Table 3. For 0.5   and 20,  VC   and  rT   

values increase as   value increases. For the other cases, when   values increase,  VC   and 

 rT   values oscillate. 
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FIGURE 3. Graphs of cross-validation  VC   and trace  .rT 
 

 

Table 3 shows the results of parameter estimation and the respective standard deviations 

considering the   values for each   selected in Table 2. The lowest standard deviations of 

estimators correspond to the estimated values of 0.050   and 0.5  , whose estimates are 
1̂  = 

0.993, 
2̂  = 0.021, 

3̂  = 0.030, 1̂  = 0.248, 2̂  = 0.121, and 3̂  = 112.8, with a practical range of 

approximately 338.0 m. 

 

TABLE 3. Estimation of the parameters   and   via EM algorithm for different  and  . 

 
  

1̂  
2̂  

3̂  1̂  2̂  3̂  

0.5 0.050 0.993 0.021 0.030 0.248 0.121 112.8 

  (0.7216)      (0.0144) (0.0077) (0.1189) (0.8792) (0.0003) 

1.0 0.050 0.978 0.022 0.030 0.270 0.087 96.88 

  (0.7319) (0.0146) (0.0080) (0.1141) (0.8905) (0.0003) 

2.0 0.200 0.965 0.022 0.030 0.273 0.072 76.69 

  (0.7433) (0.0148) (0.0080) (0.3028) (1.6411) (0.0005) 

5.0 0.050 0.959 0.022 0.031 0.300 0.072 49.09 

  (0.7478) (0.0149) (0.0080) (0.1214) (0.9141) (0.0002) 

10 0.050 0.956 0.022 0.031 0.302 0.070 34.68 

  (0.7483) (0.0149) (0.0080) (0.1219) (0.9190) (0.0003) 

20 0.050 0.956 0.022 0.031 0.303 0.069 24.39 

  (0.7489) (0.0148) (0.0080) (0.1223) (0.9216) (0.0005) 

.
̂ : estimated parameters of the spatial linear regression model; .̂ : estimated spatial parameters. 

 

Figure 4a shows the soybean yield map constructed by means of regression kriging 

interpolation considering that the data have a reparameterized t-Student distribution with 0.05   

and shape parameter of the Matérn model 0.5   with the following parameters estimated by CML 
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of the spatial linear regression model: 
1̂  = 0.993, 

2̂  = 0.021, 
3̂  = 0.030, 1̂  = 0.248, 2̂  = 0.121, 

and 3̂  = 112.8, with a practical range of 328.0 m. Figure 4b shows the soybean yield map 

considering that the data have a normal distribution and shape parameter of the Matérn model 

0.5   with the following parameters estimated by the maximum likelihood of the spatial linear 

regression model: 
1̂ = 0.957, 

2̂ = 0.023, 
3̂ = 0.030, 1̂  = 0.298, 2̂  = 0.132, and 3

ˆ 133.4,   with 

a practical range of 400.20 m. 

An increase in area percentage was observed in the 1st, 2nd, and 5th classes of the map 

constructed with a normal distribution (Map 2) when compared to the map constructed with the 

reparameterized t-Student distribution (Map 1) (Figure 4 and Table 4). Consequently, the 3rd and 

4th classes presented a reduction, with the 3rd class obtaining a greater reduction, equivalent to 

6.08%, decreasing from 37.33 to 31.25% of the area. 

 

 

FIGURE 4. (a) Map 1: soybean yield with reparameterized t-Student distribution with 0.050   

and Matérn family model with shape parameter 0.5  ; (b) Map 2: soybean yield with 

normal distribution and Matérn family model with shape parameter 0.5  . 

 

TABLE 4. Area percentage at each map class of soybean yield constructed with the reparameterized 

t-Student distribution and normal distribution. 

Class 

(t ha
-1

) 

Map 1 

% area 

Map 2 

% area 
Difference between maps (%) 

2.42–2.66 8.07 10.33 2.26 

2.67–2.91 30.68 30.80 0.12 

2.92–3.16 37.33 31.25 6.08  

3.17–3.41 23.25 23.20 0.05 

3.42–3.67 0.67 4.31 3.64 

Map 1 related to Figure 4a with the reparameterized t-Student distribution; Map 2 related to Figure 4b with the normal distribution. 

 

For comparison between maps, the kappa accuracy index (K) was calculated. This index is 

considered an appropriate measure by Anderson et al. (2001) since it uses all elements of the error 

matrix constructed from omission errors and designation between maps (De Bastiani et al., 2012). 

The obtained value of K = 0.64 allows classifying it as a low similarity. Consequently, the maps 

constructed with reparameterized t-Student and normal distributions are dissimilar due to the 

influence of the discrepant point. 

As a complementary analysis, a new geostatistical study was carried out by removing the 

point 6, which was considered as discrepant and assuming that the data presented reparameterized t-

Student distribution and normal distribution. The maps constructed without the discrepant point are 

shown in Figure 5. The kappa accuracy index for comparison between the new maps was K = 0.89, 

indicating a high similarity between maps (Krippendorff, 2004). Therefore, the interference of this 
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discrepant point in mapping is relevant. 

 

 

FIGURE 5. (a) Map 1: soybean yield with reparameterized t-Student distribution with 0.050   

and Matérn family model with shape parameter 0.5  without point 6; (b) Map 2: 

soybean yield with normal distribution and Matérn family model with shape 

parameter 1.0   without point 6. 

 

CONCLUSIONS 

When applying the methodology proposed in this study for soybean yield data with the 

covariates average height and an average number of pods per plant, the parameters estimated by 

complete maximum likelihood using the reparameterized t-Student distribution presented 

differences in the estimates of parameters that define the spatial dependence structure when 

compared to those obtained from a normal distribution. Consequently, differences were observed in 

soybean yield maps obtained from the different methods. Thus, the use of reparameterized t-Student 

distribution is an alternative in studying data with discrepant values, showing the ability to decrease 

the influence of these points. 
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