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ABSTRACT 

Fertilization at the large bell stage of maize is the key to increasing maize yield and 
improving fertilizer use efficiency. To achieve fast and accurate recognition of maize 
stems by intelligent agricultural equipment in complex field environments, an improved 
YOLO v4 maize stem recognition model with an increased CBAM, which can achieve 
real-time identification and positioning of maize stems, is proposed. In this paper, first, we 
collected images of maize stems under different conditions in the field, expanded the maize 
stem images and produced a maize stem image dataset by adding Gaussian noise, changing 
the brightness and performing other data enhancement methods, and manually annotated the 
maize stem via LabelImg software. Second, a convolutional block attention module 
(CBAM) and SIoU loss function were added to the original YOLO v4 target detection 
network to obtain the CB-YOLO v4 target detection network. Last, this network was 
compared with the original YOLO v4, Faster-RCNN, SSD and YOLO v3 target detection 
networks, and it achieved 93.1%, 92.4% and 92.6% precision, recall and mAP (mean 
average precision), respectively, for maize root recognition, which is significantly better 
than the other algorithms and is suitable for practical maize interrow operation systems. 

 
 
INTRODUCTION 

As an important commodity grain in China, maize 
plays an important role in food, feed and other products (Yu, 
2022). According to the data released by the National 
Bureau of Statistics, China's maize planting area increased 
from 41,284 thousand hectares in 2019 to 43,070 thousand 
hectares in 2022, and the proportion of maize in the total 
sown area of the country's grain increased from 35.57% to 
36.40% (NBSPRC, 2022); this proportion ranked first 
among the four major grain crops in China. Moreover, maize 
is a very significant raw material for feed, industry and 
energy production processes (Hu et al., 2016). 

With the development and application of machine 
vision technology, the recognition and positioning of targets 
through machine vision technology in the process of 
agricultural production has become the focus of research (de 
Lara et al., 2019; Maes & Steppe, 2019). Deep convolutional 
neural networks, which are more prevalent today, can be 
classified into one-stage target detection networks and 
two-stage target detection networks. The representative 

algorithms for two-stage target detection networks are the 
RCNN (region-based convolutional neural network) 
(Girshick et al., 2013) and Faster-RCNN (Ren et al., 2017). 
When a two-stage target detection network performs a target 
detection task, the first stage extracts candidate frames for 
the object to be detected and extracts target feature vectors 
from the candidate frames, and the second stage classifies 
and positions these target feature vectors. This class of 
algorithms has high recognition accuracy but slow real-time 
recognition. The representative algorithms of one-stage 
target detection networks are YOLO (Redmon et al., 2015), 
SSD (Single Shot MultiBox Detector) (Liu et al., 2016) and 
RetinaNet (Lin et al., 2020). The single-stage target detection 
network cancels the region candidate module and achieves 
target detection and positioning in a single stage. The number 
of parameters of this network model is greatly reduced, and 
the training and detection speed of the model is improved.  

The YOLO algorithm is commonly employed in the 
field of deep learning, and the algorithm's recognition speed 
is faster while guaranteeing a certain recognition accuracy. 
Yuan et al. (Yuan & Tao, 2023) used the GCBlock structure 
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for the backbone network of YOLO v8, the neck end used 
the novel GSConv convolutional approach to reduce the 
computational effort, and the improved YOLO v8 accurately 
completed the detection and identification of fish in the 
monitoring data of commercial fishing vessels with lower 
computational effort. Based on the YOLO ＿ X target 
detection network, Wang Binbin et al. (Wang et al., 2022) 
used transfer learning to identify maize male ears and 
concluded that the detection effect varied for different maize 
male ear types and planting densities. Jiajun Liu et al. (Liu et 
al., 2023) used the YOLO v5 target detection network to 
detect and identify pests and diseases on maize leaves in 
natural environments and achieved an mAP of 71.5%, which 
is a good experimental result. Zhang Fan et al. (Zhang et al., 
2023) improved the YOLO v3 target detection network to 
achieve 95% recognition accuracy on the maize leaf stomata 
dataset, which can automatically complete the recognition, 
counting and measurement of maize leaf stomata, resolving 
the inefficiency of the crosstalk stomata analysis method. 
Khan et al. (Khan et al., 2023) collected datasets of three 
maize crop diseases and applied YOLO v3-tiny, YOLO v4, 
YOLO v5s, YOLO v7s, and YOLO v8n target detection 
networks to detect these diseases; YOLO v4 achieved an 
accuracy of 97.5%, and the high-precision model was 
embedded into a mobile application, which can perform 
real-time maize disease detection in seconds.  

With the continuous development of precision 
agriculture technology, precision fertilizer is gradually being 
widely utilized in agricultural production and has become an 
effective means of controlling the excessive use of chemical 
fertilizers (Quebrajo et al., 2015). In the case of maize, it is 
possible to locate and apply fertilizer by identifying and 
locating the stem of each maize plant in real time and then to 

carry out fertilizer application operations on the maize at the 
designated location, thereby reducing the amount of 
fertilizer applied and increasing fertilizer use efficiency. 
Therefore, the original YOLO v4 target detection network is 
improved, and the CBAM is added. Simultaneously, the loss 
function improves from the CIoU loss to the SIoU loss. Using 
the stem of maize as the research object, recognition and 
detection are carried out under natural conditions to provide 
target positioning for maize precision topdressing equipment. 
 
MATERIAL AND METHODS 

Image Acquisition 

The field maize stem images in this paper were 
collected from 16 August to 23 August 2023 in a maize 
experimental field at the experimental base of the Research 
Institute of Agricultural Sciences, Zibo City, Shandong 
Province, which is 200 m long and 100 m wide, with maize 
planted in rows spaced 50 cm apart and plants spaced 10 cm 
apart. The maize was in the large flare period (V12), and the 
maize variety “Zhengdan 958” has long been used as a 
benchmark for the evaluation of regional maize variety trials 
(Tong, 2020). Maize images were acquired using Android 
smartphones with an image resolution of 2250 * 4000. The 
images were saved in *.jpg format, and most of the images 
focused on the maize stem. Images of maize stems were 
acquired under different weather conditions, such as sunny 
and cloudy days, with different light angles (downlight, 
backlight and photometry), as shown in Figure 1. A total of 
450 images were collected, and 385 images were selected  
as training samples after filtering and removing the   
blurred images.  

 

     

FIGURE 1. Some of the collected images. 
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Data sample preprocessing and data enhancement 

In maize stem images under natural conditions, the 
color of the collected maize stem images was different under 
different weather conditions and different light angles. To 
obtain accurate data, the filtered maize stem image was 
manually labeled with the dataset through the labeling 
software LabelImg, as shown in Figure 2. 

 

FIGURE 2. Dataset labeling. 

 
Because the number of homemade dataset images 

was small, the training needs could not be met well. The 
maize stem dataset was expanded by data enhancement; 
0.1-0.2 random Gaussian noise was added to the image, 
which randomly changed the contrast of the image (-5% ~ 
+5%) and randomly changed the brightness (-15% ~ +15%). 
To reduce the workload entailed by manual data labeling, the 
same position transformation method was used to label the 
target object in the initial data through the software to directly 
generate extended data containing labeling information. The 
number of images in the final dataset was 1540, with 80% 
used as the training set and 20% used as the test set.  
 

Theoretical foundation 

YOLO v4 target detection network 

YOLO is a one-stage target detection algorithm that 
was pioneered by Redmon et al. in 2015 and is one of the 
most widely utilized target detection network models, and 
several versions have been developed. YOLO v4 is an 
upgraded version of YOLO v3, and YOLO v4 is an 
upgraded version of YOLO v3; YOLO v4 improves the 
detection accuracy and accelerates the detection speed. 

The backbone feature extraction network of YOLO 
v4 (Bochkovskiy et al., 2020) uses CSPDarknet53, which is 
obtained by improving Darknet53, the backbone feature 
extraction network used in YOLO v3. CSPDarknet53 
divides the feature mapping of the base layer into two parts, 
which are merged through the cross-stage hierarchy, 
reducing the amount of computation while ensuring the 
recognition accuracy. The network structure of the YOLO v4 
target detection network mainly consists of four parts: the 
input, backbone, neck and head parts. Input is the input of 
the maize rootstock image. The input maize rootstock image 
is preprocessed via mosaic data enhancement, the cmBN 
strategy, SAT self-adversarial training and adaptive image 
scaling. The original maize stem image is uniformly scaled 
to a standard size. The backbone structure consists of a 
CBM module and a CSP module, the CSP module can 
effectively increase the depth of the network, and the feature 
extraction ability is enhanced. The neck structure adopts the 
SPP module, and the FPN+PAN structure. The SPP module 
is able to directly pool feature maps of arbitrary sizes with 
fixed sizes and obtain a fixed number of features; the 
FPN+PAN structure can convey both strong semantic 
features from the top-down and strong position features from 
the bottom-up to achieve bidirectional feature fusion for 
maize stems. In the head structure, the same multiscale idea 
as YOLO v3 is used for prediction, generating three feature 
layers with different scales, predicting their features and 
outputting the detection results. The structure of each 
module and the whole network is shown in Figure 3. 

 

FIGURE 3. YOLO v4 network for maize stem recognition. 
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Attention mechanisms module 

The attention mechanism in artificial neural networks 
is a resource allocation scheme to solve the problem of 
information overload; that is, in the case of limited hardware 
computing power, more computing resources are allocated to 
more important tasks. In the process of neural network 
learning, the greater the number of parameters of the model is, 
the greater the amount of information stored in the model, and 
the stronger the expression ability of the model; however, this 
leads to information overload. By adding the attention 
mechanism module to the network, we can pay attention to 
the more important information of the current task in the 
complex information and reduce the attention to other 
information to improve the accuracy and efficiency of the 
processing task. Therefore, attention mechanisms are widely 
employed in various fields of deep learning (Prinzmetal et al., 
2010). Common attention mechanisms are divided into 
channel attention mechanisms and spatial attention 
mechanisms. Typical attention mechanism modules include 
squeeze-and-excitation networks (SENet) (Hu et al., 2020), 
efficient attention (ECA) (Wang et al., 2020) and spatial 

attention mechanism (SAM) (Zhu et al., 2019). The above 
attention mechanism modules are single attention mechanisms, 
and in practical tasks, channel attention mechanisms and 
spatial attention mechanisms are often combined. 

In this paper, research on maize stem recognition 
showed that the similarity between the weed background in 
maize fields and the green maize stems is high, and 
information on channel characteristics and spatial 
characteristics is needed. The CBAM (Woo et al., 2018) 
combines the channel attention mechanism with the spatial 
attention mechanism. Given a spatial coordinate map as 
input, the CBAM infers the attention map along two 
channels and two dimensions of space and then multiplies 
the attention map and the input feature map for adaptive 
feature optimization. The CBAM is added before the SPP 
module of the neck structure of the YOLO v4 target 
detection network, which can be well integrated with the 
YOLO v4 target recognition network. The extracted features 
are more abundant and comprehensive and are more suitable 
for natural conditions in maize fields. The CBAM structure 
is shown in Figure 4.

 

 

FIGURE 4. CBAM structure diagram. 

 
The channel attention mechanism module of the 

CBAM can effectively detect the features of the target 
contour and obtain more target detection, which is calculated 
as follows (Woo et al., 2018): 

1 0 avg 1 0 max( ) ( ( ( )) ( ( )))C C
CM F W W F W W F       (1) 

Where:  

( )CM F
 is the channel attention output weight; 

  is the activation function; 

avg
CF

 is the spatial feature mapping after average pooling; 

max
CF

 is the spatial feature mapping after maximum pooling; 

0W
 is the weight matrix of the first fully connected layer; 

1W
 is the weight matrix of the second fully connected layer. 

The spatial attention mechanism module of CBAM 
can effectively locate and detect the position of the target 
and improve the accuracy of target detection. The calculation 
method is described as follows (Woo et al., 2018): 

7 7
max( ) ( ( ; ))S S

S avgM F f F F                     (2) 

Where:  

( )SM F
 is the spatial attention output weight; 

7 7f 

 is a 7 7  convolution operation filter; 

S
avgF

 is feature mapping after average pooling on the 

channel; 

max
SF

 is maximum pooling postfeature mapping on the 

channel. 
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In general, the input feature map F is multiplied by 
the channel attention mechanism module, the obtained 
feature result is multiplied by the spatial attention 
mechanism module, and the feature map is obtained after 
CBAM processing. The calculation method is presented as 
follows (Woo et al., 2018): 

' ( )CF M F F                (3) 

'' '( )SF M F F                (4) 

Where:  

F  is the input feature map; 

'F  is the feature map obtained by channel attention 

weighting; 

''F  is the feature map obtained by spatial attention 

weighting. 

 

Loss function improvement 

The loss function is a key indicator for measuring the 
quality of the network model. Most of the current target 
detection loss functions rely on the aggregation of bounding 
box regression indicators, such as the distance between the 
prediction box and the real box, the overlap area and the 
aspect ratio. The commonly employed loss functions are the 
GIoU (Rezatofighi et al., 2019), CIoU (Zheng et al., 2020) 
and EIoU (Zhang et al., 2021). The original YOLO v4 model 
uses CIou loss, which takes into account the distance, 
overlap rate and scale between the prediction box and the 
real box, making the target box regression more stable and 
increasing the consistency between the prediction box and 
the real box. 

However, this approach does not consider the 
matching problem between the real box and the prediction 
box direction. Therefore, this paper introduces the SIoU loss 
(Zhora, 2022), which considers the angle of the vector 
between expectations and redefines the angle penalty metric, 
which is beneficial for improving the convergence speed and 
accuracy of target detection network training. Its calculation 
formula is (Zhora, 2022): 
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               (14) 

Where:  

  is the angle loss; 

  is the distance loss; 

  is the shape loss; 

IoU  is the intersection and union ratio of the real 

box and the prediction box; 

SIoUL  is the SIoU loss value; 

hc  is the height difference between the center point 

of the real box and the prediction box; 

  is the distance between the center point of the 

real box and the prediction box; 

( , )
x

gt gt
c cyb b

 are the center coordinates of the real box; 

( , )
x yc cb b

 are the center coordinates of the prediction box; 

,w hc c  are the width and height, respectively, of the 

minimum circumscribed rectangle of the real box and 

the prediction box; 

,w h  are the width and height, respectively, of the 

prediction box; 

,gt gtw h  is the width and height, respectively, of the 

real box. 
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Target detection network results and analysis 

Test platform 

The test software environment is a deep learning 
framework that uses Windows 10, Python 3.11.4, PyTorch 
2.0.1 and Cuda 11.7. The test hardware environment (CPU) 
is an Intel I7-11700K, and the graphics card is an NVIDIA 
RTX A4000 24G. The maximum number of iterations is set 
to 1500, the batch size is set to 8, the Adam optimizer is 
selected, and the maximum learning rate is set to 0.001. 
Using the cosine annealing learning rate adjustment 
algorithm, the learning rate can be dynamically adjusted to 
achieve local convergence as soon as possible. The relevant 
model parameters are shown in Table 1. 

 
TABLE 1. Test-related model parameters. 

Parameter Value/Type 

Image size/(pixels×pixels) 320×640 

Epoch 1500 

Batch_size 8 

Optimizer Adam 

Maximum learning rate 0.001 

Modalities for adjusting learning rates Cosine annealing 

 
Model evaluation indicators 

The effectiveness of the model is evaluated from a 
quantitative perspective. The selected indicators are the 
precision rate P, recall rate R and mean average precision 
(mAP). Its calculation formula is: 

100%
TP

P
TP FP

 


             (15) 

 

Where:  

TP is the number of true positives, and  

FP is the number of false positives. 

100%
TP

R
TP FN

 


              (16) 

 

In this case, FN is the number of false negatives; 

1

0

( )AP P R dR                (17) 

AP
mAP

N
               (18) 

The AP is the average accuracy of a kind. 
 
The size of the model is also an important evaluation 

index. A smaller model is conducive to the deployment of a 
later model. This paper evaluates the size of computer 
memory occupied by the model. 

Ablation test 

To verify the superiority of the YOLO v4 target 
detection network (CB-YOLO v4) with the CBAM module 
and improved loss function, an ablation experiment is 
carried out. By adding the CBAM and the SIoU loss 
function to the original YOLO v4 model, the effectiveness of 
each improvement point is verified. The ablation test results 
are shown in Table 2, where ' √  ' indicates that the 
improved method is used and ' - ' indicates that the improved 
method is not used.

TABLE 2. YOLO v4 ablation test results. 

CBAM SIoU 
Precision ratio 

P/% 
Recall ratio 

R/% 
Average precision mean 

Map % 

— — 89.6 88.4 88.9 

√ — 92.4 91.8 92.1 

— √ 90.3 89.3 89.8 

√ √ 93.1 92.4 92.6 

 

Table 2 shows that when the CBAM is added 
separately, the maize stem recognition accuracy increases by 
2.8%, the recall rate increases by 3.4%, and the average 
accuracy increases by 3.2%. By separately improving the 
SIoU loss function, the accuracy of the model is increased 
by 0.7%, the recall rate is increased by 0.9%, and the 
average accuracy is increased by 0.9%. When the CBAM 
and the improved SIoU loss function are added to the YOLO 
v4 target detection network, the accuracy of the model 
increases by 3.5%, the recall increases by 4%, and the 
average accuracy increases by 3.7%. A comprehensive 
evaluation revealed that increasing the CBAM and 

improving the SIoU loss function are effective at improving 
the recognition accuracy of the model and that increasing the 
CBAM is more effective at optimizing the model. 

Comparison Test with Other Algorithms 

To further demonstrate the advantages of the 
proposed target detection network compared with other 
target recognition algorithms, SSD, Faster-RCNN and 
YOLO v3 are selected for performance comparison 
experiments. In the test, the four algorithms use the same 
dataset and training platform. Table 3 shows the detection 
indicators of the four detection models.
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TABLE 3. Detection indices of the four models. 

Detection model 
Precision ratio 

P/% 
Recall ratio 

R/% 
Average precision mean 

Map % 
Memory size 

/MB 

CB-YOLO v4 93.1 92.4 92.6 250.26 

SSD 80.3 81.8 80.7 42.82 

Faster-RCNN 87.6 86.1 86.8 252.36 

YOLO v3 84.3 82.6 83.1 240.69 

 
The experimental results show that the accuracy, 

recall and average accuracy of the CB-YOLO v4 target 
detection network are 93.1%, 92.4% and 92.6%, respectively, 
which are significantly greater than those of other target 
detection networks. Compared with the SSD, which is also a 
single-stage object detection network, the accuracy, recall 
and average accuracy of CB-YOLO v4 are increased by 
12.8%, 9.6% and 11.9%, respectively, but the memory 
consumption of the model is increased. Compared with 
Faster-RCNN, the accuracy, recall and average accuracy of 
CB-YOLO v4 are increased by 5.5%, 6.3% and 5.8%, 
respectively, and the memory consumption of the model is 
reduced by 2.1 MB. Compared with YOLO v3, the accuracy, 
recall and average accuracy of CB-YOLO v4 are increased by 

8.8%, 9.8% and 9.5%, respectively, and the memory footprint 
of the model is increased by 9.57%. Although Faster-RCNN 
also has better detection accuracy, Faster-RCNN does not 
meet the task requirements of field maize stem recognition 
because the detection speed of the two-stage target detection 
network is significantly slower than that of the single-stage 
target detection network. Although SSD and YOLO v3 
consume less memory than CB-YOLO v4, the other 
performance indicators are far lower than those of CB-YOLO 
v4. In summary, the CB-YOLO v4 target detection network 
has more advantages in practical applications. 

To better evaluate the performance of the target 
detection network, the results of the four target detection 
networks are visualized; the results are shown in Figure 5.

 

CB-YOLO v4 

    

SSD 

    

Faster-RCNN 
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YOLO v3 

    

 a b c d 

FIGURE 5. Comparison of the results of each target detection network. 
 
Figure 5a and Figure 5b show the test results under 

normal light without weed interference. The four models can 
correctly identify maize stems, and CB-YOLO v4 has the 
highest credibility. Figure 5c and Figure 5d show that the 
CB-YOLO v4 and Faster-RCNN target detection networks 
can correctly identify maize stems under strong light 
conditions and weed interference. The SSD and YOLO v3 
target detection networks can identify some maize stem 
targets, but some targets will be missed. CB-YOLO v4 has 
the highest credibility. 
 
CONCLUSIONS 

In this paper, an improved YOLO v4 target 
detection network (CB-YOLO v4) is proposed for maize 
stem recognition. 

(1) Image acquisition was carried out in the maize 
planting area under natural conditions. The collected images 
included different weather conditions and different light 
conditions. The original image was transformed by adding 
Gaussian noise and changing the brightness and contrast of 
the image. The enhanced dataset included 1540 images. 
Through data enhancement, the application scenarios of 
maize stem recognition were effectively expanded, and the 
generalization ability of the model was improved. 

(2) The CBAM is added to make the extracted 
features more comprehensive, and the CIoU loss function is 
replaced by the SIoU loss function, which improves the 
speed and accuracy of the target detection network training. 
The accuracy of the CB-YOLO v4 target detection network 
for maize stem recognition was 93.1%, the recall rate was 
92.4%, and the average accuracy was 92.6%. Compared 
with those of the original YOLO v4, SSD, Faster-RCNN and 
YOLO v3 target detection networks, the performance 
indicators are better, and the proposed model is more 
suitable for identifying maize stems in maize fields. 
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