Acessibilidade / Reportar erro

Impact of different light sources on broiler rearing environment

Impacto da fonte de iluminação na ambiência de aviários para frango de corte

Abstracts

Broiler production is highly dependent on the use of artificial light. The light source may affect the effectiveness of housing conditions due to increasing ambient temperature and concentration of noxious gases. This research aimed to evaluate the effects of different bulb types on the thermal, aerial, and acoustic environment of broiler aviaries. The experiment was carried out at a commercial broiler farm in Dourados, Mato Grosso do Sul State, Brazil. Three aviaries were used, and two flocks of male broilers from Cobb® genetic strain were reared from the first day to slaughter. Each aviary was equipped with a different light source, comprising the adopted treatments (A1 - incandescent light bulb, control; A2 - sodium vapor light bulb; A3 - fluorescent light bulb). The aviaries were divided into nine quadrants, and the environmental data (ambient dry bulb temperature and relative humidity), litter surface temperature, CO2 and NH3 concentrations, and bird sound pressure behavior were recorded in each quadrant. The aviary with incandescent light presented higher air and litter temperatures, and concentration of gases than the other tested alternatives. It also presented higher level of sound pressure in the second week of the growing period; however, from this period up to slaughter, there was no effect of the light source on the results of broiler sound pressure level.

poultry industry; gas concentration; lighting; temperature


A produção de frangos de corte é altamente dependente do uso de luz artificial. A fonte de luz pode influenciar a eficiência do ambiente de alojamento, devido ao aumento da temperatura ambiente e da concentração de gases nocivos. A pesquisa teve como objetivo avaliar os efeitos do uso de diferentes tipos de lâmpadas em aviários de frangos de corte, sobre o ambiente térmico, aéreo e acústico. O experimento foi realizado em uma fazenda comercial no Município de Dourados, MS, Brasil. Três aviários foram utilizados e dois lotes de frangos machos da linhagem Cobb® foram criados a partir do primeiro dia até o abate. Os aviários foram equipados com uma fonte de luz diferente, sendo cada um deles um tratamento adotado (A1 - lâmpada incandescente, controle; A2 - lâmpada de vapor de sódio misturado; A3 - lâmpada fluorescente). Os aviários foram divididos em nove quadrantes e os dados ambientais (temperatura ambiente de bulbo seco e umidade relativa), a temperatura da superfície da cama, as concentrações de CO2 e NH3 e o comportamento da pressão sonora de aves foram registrados dentro dos quadrantes. O aviário usando lâmpada incandescente apresentou maior temperatura do ar e da cama, bem como o aumento da concentração de gases, do que as alternativas testadas. Este também apresentou maior nível de pressão sonora na segunda semana do período de crescimento dos frangos, no entanto, desta idade até o peso de abate, não foi encontrada nenhuma influência da fonte de luz sobre os resultados do nível de pressão sonora das aves.

avicultura; concentração de gases; iluminação; temperatura


SCIENTIFIC PAPERS

AGRICULTURAL BUILDING AND ENVIRONMENT

Karla A. O. LimaI; Irenilza de A. NääsII; Rodrigo G. GarciaIII; Rodrigo BorilleIV; Fabiana R. CaldaraV

IMédica Veterinária, Faculdade de Ciências Agrárias-UFGD, Rod. Dourados - Itahum, km 12, Dourados - MS, Brasil, Fone: (+5567) 3410-2500, Bolsista PRODOC-CAPES, karla.lima@ymail.com

IIEnga Civil, Pesquisador Visitante Sênior PVNS-CAPES, Faculdade de Ciências Agrárias-UFGD, Dourados - MS, Brasil, Fone: (+55 67) 3410-2500, irenilza@gmail.com

IIIZootecnista, Prof. Doutor, Faculdade de Ciências Agrárias-UFGD, Dourados, MS, Brasil, rodrigogarcia@ufgd.edu.br

IVZootecnista, M.Sc. em Zootecnia, Faculdade de Ciências Agrárias-UFGD, Dourados -, MS, Brasil, guigo_borille@hotmail.com

VZootecnista, Prof. Doutor, Faculdade de Ciências Agrárias-UFGD, Dourados - MS, Brasil, fabianacaldara@ufgd.edu.br

ABSTRACT

Broiler production is highly dependent on the use of artificial light. The light source may affect the effectiveness of housing conditions due to increasing ambient temperature and concentration of noxious gases. This research aimed to evaluate the effects of different bulb types on the thermal, aerial, and acoustic environment of broiler aviaries. The experiment was carried out at a commercial broiler farm in Dourados, Mato Grosso do Sul State, Brazil. Three aviaries were used, and two flocks of male broilers from Cobb® genetic strain were reared from the first day to slaughter. Each aviary was equipped with a different light source, comprising the adopted treatments (A1 - incandescent light bulb, control; A2 - sodium vapor light bulb; A3 - fluorescent light bulb). The aviaries were divided into nine quadrants, and the environmental data (ambient dry bulb temperature and relative humidity), litter surface temperature, CO2 and NH3 concentrations, and bird sound pressure behavior were recorded in each quadrant. The aviary with incandescent light presented higher air and litter temperatures, and concentration of gases than the other tested alternatives. It also presented higher level of sound pressure in the second week of the growing period; however, from this period up to slaughter, there was no effect of the light source on the results of broiler sound pressure level.

Keywords: poultry industry, gas concentration, lighting, temperature.

RESUMO

A produção de frangos de corte é altamente dependente do uso de luz artificial. A fonte de luz pode influenciar a eficiência do ambiente de alojamento, devido ao aumento da temperatura ambiente e da concentração de gases nocivos. A pesquisa teve como objetivo avaliar os efeitos do uso de diferentes tipos de lâmpadas em aviários de frangos de corte, sobre o ambiente térmico, aéreo e acústico. O experimento foi realizado em uma fazenda comercial no Município de Dourados, MS, Brasil. Três aviários foram utilizados e dois lotes de frangos machos da linhagem Cobb® foram criados a partir do primeiro dia até o abate. Os aviários foram equipados com uma fonte de luz diferente, sendo cada um deles um tratamento adotado (A1 - lâmpada incandescente, controle; A2 - lâmpada de vapor de sódio misturado; A3 - lâmpada fluorescente). Os aviários foram divididos em nove quadrantes e os dados ambientais (temperatura ambiente de bulbo seco e umidade relativa), a temperatura da superfície da cama, as concentrações de CO2 e NH3 e o comportamento da pressão sonora de aves foram registrados dentro dos quadrantes. O aviário usando lâmpada incandescente apresentou maior temperatura do ar e da cama, bem como o aumento da concentração de gases, do que as alternativas testadas. Este também apresentou maior nível de pressão sonora na segunda semana do período de crescimento dos frangos, no entanto, desta idade até o peso de abate, não foi encontrada nenhuma influência da fonte de luz sobre os resultados do nível de pressão sonora das aves.

Palavras-chave: avicultura, concentração de gases, iluminação, temperatura.

INTRODUCTION

Several schemes using different light intensities have been proposed for broiler rearing with the aim to provide adequate environmental conditions, thus improvement in weight gain, feed conversion, superior carcass quality, and lack of metabolic alterations (OWADA et al., 2007). In broiler housing, the photoperiod is related to the number of lighting hours (natural and/or artificial), while the luminous intensity is associated with the sensitivity of light perception by birds, usually measured in lux (MENDES et al., 2010).

The poor rearing environment is one of the factors that may lead to the development of respiratory disease in birds (CURTIS, 1983). Variations in temperature and humidity during broiler rearing, associated with excessive dust and ammonia, inadequate ventilation, high stocking density, and, generally, negligent cleaning and disinfection of sheds, are mentioned in the literature as factors that affect the pathogenesis of these diseases (CASTRO, 1999).

Although there is available information in the literature related to the use of lighting programs for broiler chickens (MORAES et al., 2008; LEWIS, 2010), little is known about the effect of the light source on the thermal conditions and air quality in broiler housing. As the thermal environment influences the ammonia concentration inside poultry houses, it is necessary to know more about the light source effect on this aspect of the air environment and broiler performance. The ammonia gas irritates mucous membranes of the eyes and respiratory tract, and later, when it falls into the bloodstream, has a harmful effect on the physiological metabolism, negatively impacting bird welfare (CURTIS, 1983; COUFAL et al., 2006).

This research aimed to evaluate the impact of different light sources on the thermal, aerial, and acoustic environment of broiler aviaries.

MATERIAL AND METHODS

The experiment was carried out from May 2011 to September 2012 at a commercial broiler farm, located in Dourados, Mato Grosso do Sul State, Brazil (21°34' S, 54°55' W, and 532 m altitude). Three aviaries with the same dimensions were adapted for broiler growing under three treatments (A1, A2 and A3) (Table 1); two consecutive flocks were studied. The aviaries were 12 m wide, 100 m long, and 2.7 m high. The open sides had a 0.35 m wall, with a polypropylene curtain, which could close the sides, allowing the management of natural ventilation. The aviaries had nipple drinkers and automated feeders. There were 18 fans (0.5 HP, 60 Hz engine, three blades, 1.00 m diameter) in each aviary, distributed every 15 m along the house in three parallel lines, which were manually turned on and off, with mean flow of 1.2072 m3/h. Fogging was performed by two pipelines along the houses, with 28 nozzles per line. The roof was made of fiber cement tiles on a metallic structure, with polypropylene ceiling.

The flocks consisted of Cobb 500® male broilers reared on reused litter of 5 cm thickness and rice hulls as bedding material. Litter was reused from the sixth (first flock) to seventh (second flock) production cycles. The birds were housed from one day of age up to market weight at 42 days of growth. They had access to isonutritive fodder, according to the growing period, and water ad libitum.

The treatments comprised the use of different light sources. Number of bulbs for each aviary was calculated using the lumen number for aviary control, which was the incandescent light one. This allowed the use of the same light regime recommended by the genetic strain guidelines (COBB-VANTRESS, 2008).

The illuminance applied in the aviaries was lower than 25 lx, measured at broiler height, with the aim to stimulate the early weight gain; then it was gradually reduced to 5-10 lx up to the end of the production cycle (COBB-VANTRESS, 2008). After installation of the light bulbs, aviaries were divided into equidistant quadrants and, at each geometric center, the following environmental data were recorded: ambient dry bulb temperature (DBT, °C), litter surface temperature (LST, °C), ambient relative humidity (RH, %), illuminance (lx), sound pressure (dB), and NH3 and CO2 concentrations.

Data of DBT and RH were recorded for each quadrant of all tested aviaries using thermo-hygrometers. The LST was assessed using a Testo® infrared thermal camera. Images were taken daily at 7 am, and then processed by IRSoft® software. Concentration of gases (NH3 and CO2) was recorded at 25 cm height from the floor using a Dragger® manual pump and color meter detection tubes.

The sound pressure level was assessed in each aviary for determination of the light source influence on the sound produced by the broilers, using a decibel meter.

Data analysis was performed using ANOVA, and results were compared by the Tukey test at 5% probability. The software SIGMAPLOT (2011) was used for data processing.

RESULTS AND DISCUSSION

Dry bulb temperatures (DBT) and litter surface temperatures (LST) were higher in treatment A1 (Table 2), indicating that the use of incandescent light increased the ambient temperature, probably because it generates an excess of sensible heat. This result differs from those described by JÁCOME (2009), who did not find any effect of different light bulbs (23 W PL, 70 W sodium, 125 W mercury, and incandescent) on the ambient temperature.

The ambient DBT varied according to the production phase, what was expected and recommended in the production manual (COBB-VANTRESS, 2008); however, DBT values were lower than the recommended temperature during the brooding phase, and higher than thermal comfort at slaughter age (CURTIS, 1983). The difference among temperature values was only found in the third and sixth weeks of growth (p <0.05). Aviary A3, with fluorescent light, presented a high variation in the ambient temperature, probably due to failure in the heating equipment or, yet, lack of perfect sealing of the heated area, what allowed heat loss to the outside environment (VIGODERIS et al., 2010).

Heat loss during heating may affect broiler performance (ALMEIDA, 2010). Although rearing temperatures did not differ in the first five weeks (p<0.05), in the sixth week, values were higher than the recommended (Table 2), indicating a possible failure in the management of fans.

Values of relative humidity (RH) did not differ at 14 days of growth (p = 0.18). At the 21st day, there was no difference between A1 and A2 results; however, both treatments differed from A3 (p<0.010). At 28, 35, and 42 days of growth, RH values did not differ among the aviaries (p = 0.13; p = 0.30; and p = 0.16, respectively). This RH behavior was expected in the aviaries, that is, low during the brooding phase, and increasing towards the end of the rearing period, at 42 days (Table 3). During the first weeks of growth, associated with low RH values, we found great values of suspended dust, what affects the air quality inside the houses (CORDEIRO et al., 2010). High temperatures, associated with low relative humidity, are reported to affect the physiological mechanisms of broilers (BAÊTA & SOUZA, 2010).

Another factor possibly responsible for the increased rate of air humidity in the last weeks is the use of fogging to reduce ambient temperatures. LIMA et al. (2009), when comparing ammonia concentration and emission from sheds with different ventilation systems, associated the difference of humidity in sheds to the poor condition of foggers; in most cases, these devices are not properly calibrated or maintained. It is recommended in the literature, for adult broilers, that threshold of ambient temperature and relative humidity should remain 22 oC and 50%, respectively; also, that the entire air exchange process should last 1.3 min, approximately (CARVALHO et al., 2011). The values found in this study were higher than the suggested threshold.

Ammonia concentration in the studied first days presented low mean values, regardless the treatment (Table 4). However, the mean values were lower than the thresholds recommended by COBB -VANTRESS (2008). Treatment with fluorescent light (A3), presented the lowest ammonia concentration mean (p<0.05). We found a relationship between light source and ammonia concentration, despite the fact that current literature reports both as independent variables (OWADA et al., 2007; CARVALHO et al., 2011).

Ammonia concentration varied throughout the days, but it did not present the noticeable increase mentioned in the current literature (HERNANDÉZ, 2012; GATES et al., 2008). This gas profile was expected since ammonia is formed by microbial decomposition of the uric acid excreted by the broilers, tending to increase as they grow. High flock densities also lead to increasing ammonia concentration (MANNO et al., 2011). Decomposition of uric acid is also easier in an alkaline medium (pH > 7), as the urease enzyme, which is responsible for the acid transformation, has its maximum activity at pH 9 (BLAKE & HESS, 2001). The ammonia threshold for broiler rearing environments was determined by WATHES et al. (1998) and ranges from 5 to 30 ppm.

Carbon dioxide concentration increased throughout the growing period, and is consistent with bird metabolic heat and weight (PEDERSEN & THOMSEN, 2000). We observed a steady increase of the gas concentration mean values in A1 throughout the broiler growing period (Table 3), what was probably related to the increasing ambient and litter temperatures, as the gas concentration is directly proportional to the fermentation of litter biomass (COUFAL et al., 2006). GAO et al. (2010) mention that, although CO2 is a byproduct of the cell metabolism of living creatures, the basal CO2 level in the environment is relatively low (0.038%); on the other hand, it may substantially vary in the atmosphere due to human industrial activities.

Acoustic pressure is the local pressure deviation from the ambient pressure, caused by a sound wave. Sound pressure is a logarithmic measure of the actual sound pressure of a sound in relation to a reference value. It is measured in decibels (dB) above a standard reference level. The analysis of the noise generated in the tested houses indicated a lower value inside A3, at 14 days (p=0.02), when compared with A1 or A2 (Table 5). At 21 days of growth, no differences were found among treatments regarding the noise level in the aviaries (p>0.05). At the 35th day, the sound level in A1 was different from that found in A2 (p=0.026); however, A1 and A2 were similar to A3 (p>0.05). At 42 days, no differences were found among treatments (p=0.12). According to CHLOUPEK et al. (2009), broilers exposed to noise stimuli of both 80 and 100 dB intensities for 10 min presented a significant elevation in plasma corticosterone levels. In this study, all values were lower than 80 dB, what may indicate that, even during brooding, birds were not stressed and emitted low vocalization, as also reported by MOURA et al. (2008).

CONCLUSIONS

The aviary with incandescent light presented higher ambient and litter temperatures than the others with different light sources. Concentration of gases was also higher in the house with incandescent light, as well as the sound pressure level at the second week of the growing period. However, from that week up to slaughter weight, there was no impact of the light source on the results of broiler sound pressure level.

ACKNOWLEDGEMENTS

The authors thank CAPES for supporting this research via PRODOC and PVNS programs.

Recebido pelo Conselho Editorial em: 11-7-2013

Aprovado pelo Conselho Editorial em: 5-1-2014

  • ALMEIDA, E.U. Níveis de lisina digestível e planos de nutrição para frangos de corte machos de 1 a 42 dias de idade. 89 f. Dissertação (Mestrado em Zootecnia) - Centro Universitário de Vila Velha - Espírito Santo, 2010.
  • ALVINO, G.M.; BLATCHFORD, R.A.; ARCHER, G.S.; MENCH, J.A. Light intensity during rearing affects the behavioral synchrony and resting patterns of broiler chickens. British Poultry Science, London, v.50, n.3, p. 275-283. May, 2009.
  • BAÊTA, F.C.; SOUZA, C.F. Ambiência em edificações rurais - conforto animal Viçosa - MG: UFV, 2010. 269 p.
  • BLAKE, J. P.; HESS, J. B. Litter treatments for poultry Alabama Cooperative Extesion System, Alabama, 2001. n. ANR-1199, 4p. Available at: <http://www.aces.edu/pubs/docs/A/ANR-1199/ANR-1199.pdf> Accessed on 18 Sept. 2011.
  • CARVALHO, T. M. R.; MOURA, D. J.; SOUZA, M. Z.; SOUZA, G. S.; BUENO, L. G. F. Qualidade da cama e do ar em diferentes condições de alojamento de frangos de corte. Pesquisa Agropecuária Brasileira, Brasília, v.46, n.4, p. 351-361, 2011.
  • CASTRO, A.G.M. Sanidade das aves na fase final: importância do aparelho respiratório. In: SIMPÓSIO INTERNACIONAL SOBRE PRODUÇÃO DE FRANGOS DE CORTE NA FASE FINAL, 1999, Campinas. Anais... Conferência APINCO '99 de Ciência e Tecnologia Avícolas. Campinas: FACTA, 1999. p. 55-60.
  • CHLOUPEK, P.; VOSLÁŘOVÁ, E.; CHLOUPEK, J.; BEDÁŇOVÁ, I.; PIŠTĚKOVÁ, V.; VEČEREK, V. Stress in broiler chickens due to acute noise exposure. Acta Veterinaria, Brno, v.78, n.2, p. 93-98, 2009.
  • COBB-VANTRESS. Manual de manejo de frangos de corte COBB Guapiaçu: Cobb-Vantress Brasil, April 2008.65 p.
  • CORDEIRO, M. B.; TINÔCO, I. de F. F; SILVA, J. N.; VIGODERIS, R. B. Conforto térmico e desempenho de pintos de corte submetidos a diferentes sistemas de aquecimento no período de inverno. Revista Brasileira de Zootecnia, Viçosa - MG, v.39, n. 2, p.217-224, 2010.
  • COUFAL, C.D.; CHAVEZ, C.; NIEMEYER, P.R.; CAREY, J.B. Nitrogen emissions from broilers measured by mass balance over eighteen consecutive flocks. Poultry Science, Champaign, v. 85, p.384-391, 2006.
  • CURTIS, S.E. Environmental management in animal agriculture Iowa: Iowa State University Press, 1983.
  • GAO, L.; HU, J.; ZHONG, C.; LUO, M. Integration of CO2 and odorant signals in the mouse olfactory bulb. Neuroscience, Amsterdam, v.170, n.3, p. 881-892, 2010.
  • GATES, R.S.; CASEY, K.D.; WHEELER, E.F.; XIN, H.; PESCATORE, A.J. U.S. broiler housing ammonia emissions inventory. Atmospheric Environment, Amsterdam, v.42, n.14, p.3342-3350, 2008.
  • HERNANDÉZ, R.O. Mapeamento, avaliação e modelagem das condições ambientais de aviários de diferentes tipologias durante a fase inicial de crescimento de frangos de corte. 118 f. Dissertação (Mestrado em Engenharia Agrícola) - Universidade Federal de Viçosa, 2012.
  • JACOME, I. Diferentes sistemas de iluminação artificial usados no alojamento de poedeiras leves 2009. 144 f. Tese (Doutorado em Construções Rurais e Ambiência) - Faculdade de Engenharia Agrícola, UNICAMP, Campinas, 2009.
  • LEWIS, P.D. Lighting, ventilation and temperature. British Poultry Science, London, v. 51, p. 35-43, 2010.
  • LIMA, K.A.O.; CARVALHO, T.M.R.; BUENO, L.G.F.; MOURA, D.J.; NÄÄS, I.A. Concentração e emissão dos gases CO2 e NH3 na produção de frangos de corte. In: CONGRESSO IBÉRICO 2., CONGRESSO ESPANHOL AGROENGENHARIA, 5., 2009, Lugo. Anales.. Lugo: Politecnica de Valencia, 2009. CD-Rom.
  • MANNO, M.C.; LIMA, K.R.S.; AGUILAR, C.A.L.; SOUZA, N.S.S.; BARATA, Z.R.P.; VIANA, M.A.O. Produção de amônia no interior de galpões avícolas com modificações ambientais. Revista de Ciências Agrárias, Belém, v.54, n.2, p.159-164, 2011.
  • MENDES, A.S.; REFFATI, R.; RESTELATTO, R. PAIXÃO, S. J. Visão e iluminação na avicultura moderna. Revista Brasileira de Agrociência, Pelotas, v.16, n.1-4, p.05-13, 2010.
  • MORAES, D.T.; LARA, L.J.C.; BAIÃO, N.C.; CANÇADO, S.V.; GONZALEZ, M.L.; AGUILAR, C.A.L.; LANA, A.M.Q. Efeitos dos programas de luz sobre desempenho, rendimento de carcaça e resposta imunológica em frangos de corte. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, Belo Horizonte, v.60, n.1, p.201-208, 2008.
  • MOURA, D. J.; NÄÄS, I. A.; ALVES, E. C. S; CARVALHO, T. M. R.; VALE, M. M.; LIMA, K. A. O. Noise analysis to evaluate chick thermal comfort. Scientia Agricola, Piracicaba, v.65, n.4, p.438-443, 2008.
  • OWADA A.N.; NÄÄS, I.A.; MOURA, D.J.; BARACHO, M.S. Estimativa de bem-estar de frango de corte em função da concentração de amônia e grau de luminosidade no galpão de produção. Engenharia Agrícola, Jaboticabal, v.27, n.3, p.611-618, set./dez. 2007.
  • PEDERSEN, S.; THOMSEN, M.G. Heat and moisture production of broilers kept on straw bedding. Journal of Agricultural Engineering Research, Silsoe, v.75, p.177-187, 2000.
  • RESTELATTO, R.; MENDES, A.S.; POSSENT, M.A.; PAIXÃO, S.J. Aplicação dos conceitos de calorimetria na produção de frangos de corte. Brazilian Journal of Biosystems Engineering, Campinas, v.2, n.2, p. 099-108, 2008.
  • SIGMAPLOT. Systat Software Inc Version 12.0 for Windows. Chicago, 2011.
  • VIGODERIS, R. B.; CORDEIRO, M.B.; TINOCO, I.F.F.; MENEGALI, I.; SOUZA JUNIOR, J.P.; HOLANDA, M.C.R. Avaliação do uso de ventilação mínima em galpões avícolas e de sua influência no desempenho de aves de corte no período de inverno. Revista Brasileira de Zootecnia, Viçosa-MG, v.39, n.6, p.1381-1386, 2010.
  • WATHES, C. M.; PHILLIPS, V.R.; HOLDEN, M.R.; SNEATH, R.W.; SHORT, J.L.; WHITE, R.P.P.; HARTUNG, J.; SEEDORF, J.; SCHRODER, M.; LINKERT, K.H.; PEDERSEN, S.; TAKAI, H.; JOHNSEN, J.O.; GROOT KOERKAMP, P.W.G.; UENK, G.H.; MELTZ, J.H.M.; HINZ, T.; CASPARY, V.; LINKE, S. Emission of aerial pollutants in livestock buildings in Nothern Europe: Overview of a multinational project. Journal of Agricultural Engineering Research, Silsoe, v.70, n.1. p. 3-9, 1998.
  • Impact of different light sources on broiler rearing environment

    Impacto da fonte de iluminação na ambiência de aviários para frango de corte
  • Publication Dates

    • Publication in this collection
      30 July 2014
    • Date of issue
      June 2014

    History

    • Received
      11 July 2013
    • Accepted
      05 Jan 2014
    Associação Brasileira de Engenharia Agrícola SBEA - Associação Brasileira de Engenharia Agrícola, Departamento de Engenharia e Ciências Exatas FCAV/UNESP, Prof. Paulo Donato Castellane, km 5, 14884.900 | Jaboticabal - SP, Tel./Fax: +55 16 3209 7619 - Jaboticabal - SP - Brazil
    E-mail: revistasbea@sbea.org.br