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ABSTRACT 

It is difficult for humans to recognize recessive diseases in navel oranges. Therefore, deep 

neural networks are applied to plant disease identification. To improve the feature 

extraction ability of convolutional neural networks, the Parameter Exponential Nonlinear 

Activation Unit (PENLU) is proposed to replace the activated function of the neural 

network. This function not only adds multiple parameters but also brings better 

generalization ability to the neural network. In addition, the proposed function parameters 

can be updated by the inverse Stochastic Gradient Descent (SGD) algorithm, which has 

unparalleled advantages over the existing activated functions. The Residual Network 

(ResNet), improved by PENLU, is applied to navel orange lesion recognition and 

achieves the most advanced accuracy compared with traditional lesion recognition 

methods. It is worth mentioning that the data set of navel orange leaf images proposed in 

this paper will provide samples for subsequent research. The code and model are available 

at the website https://github.com/xncaffe/caffe_penlu. 
 

INTRODUCTION 

It is well known that the navel orange originated in 

Brazil. Currently, they are planted in Brazil, Egypt 

(Abobatta, 2018), the United States and China (largest 

planting area) (Qiu et al., 2014). Its impact on the world 

agricultural economy is important. However, frequent 

citrus diseases have a great impact on the industry. For 

example, due to Huanglong disease in Xunwu County, 

China, from 2012 to 2015, the planted area of navel 

oranges was reduced from 400 km2 to 267 km2 (Luo et al., 

2017). In fact, in the early days, it was difficult to detect 

some hidden diseases with the naked eye. Professional 

testing equipment is difficult to popularize because of high 

prices and inconvenient use. These causes make it 

impossible to recover from losses after the discovery of 

disease. Therefore, a convenient and low-cost detection 

system to predict potential diseases in navel oranges is 

necessary that can be used to identify abnormalities when 

they cannot be distinguished by the naked eye. Currently, 

artificial experience observation and field pathology 

detection are still the main means of prevention. However, 

the progress of computer vision provides new methods for 

plant disease recognition and extends the computer vision 

application market in agriculture. Many means for 

identifying and classifying plant disease, such as 

Threshold Processing (Barbedo, 2013), image 

classification (Pu, 2015), and semantic segmentation 

(Long et al., 2017), exist in the market. Digital image 

processing technology has shown great potential in the 

field of disease identification. The combination of digital 

image processing technology and other techniques can 

benefit feature extraction. 
As an emerging technology, deep learning has 

rapidly developed into an important branch in the field of 
image processing. The main idea of deep learning is to use 
the principle of the human brain’s neural network (Alves et 
al., 2017). By constructing a virtual mathematical neural 
network for feature learning, deep learning can obtain 
high-level features (Yang et al., 2016) of the target samples 
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rather than hand-crafted features. Objects can be identified 
or detected through these features. LeNet (Lecun et al., 
1998), which appeared in 1998, was considered to be the 
beginning of modern deep learning. By 2012, the deep 
convolutional neural network AlexNet (Krizhevsky et al., 
2012) was proposed for the first time. The latest method of 
preventing overfitting "dropout" (Hinton et al., 2012) has 
been proposed and applied to neural network architecture 
to realize multi-GPU (Chen & Hang, 2008) parallel 
training. This is a significant innovation. The remarkable 
achievements in image processing have also spawned an 
increase in deep learning research. In addition, the 
continuous progress of modern computer hardware and 
large databases has provided great support for the 
development of deep learning. 

In addition, as an important part of the deep neural 
network, the role of the activation function cannot be 
ignored. To solve the problem of the inadequate expression 
of the linear model, the activation function is added as a 
nonlinear factor in the neural network. By this function, 
the feature is preserved, the redundancy (useless or 
redundant features) in some data is removed and finally 
mapped out. From the early linear function and the 
threshold function to the subsequent Sigmoid Function, 
THINC (tanh), and ReLU (Rectified Linear Units) (Glorot 
et al., 2011), which are commonly used, the activation 
function of the neural network applies certain 
mathematical principles to achieve its effect. Two types of 
activation functions—the rectifier unit and the exponential 
unit have been directly invoked in the latest deep learning 
framework and have achieved the recognized effect. 
However, there is a gap between the exponential unit and 
the rectifier unit, resulting in nonuniformity between them. 
The rectifier unit can only express the linear function 
clusters well, and the exponential unit can only express the 
nonlinear exponential function cluster, which may destroy 
the representative capabilities of those architectures that 
use a particular activation function to some extent. 
According to the advantages and disadvantages previously 
discussed and based on the Parametric Rectified Linear 
Units (PReLU) (He et al., 2015) and the Exponential 
Linear Unit (ELU) (Clevert et al., 2015), the Parametric 
Exponential Nonlinear Unit (PENLU) is proposed as a 
new activation unit. This new function has more 
parameters than other activation functions and can cover 
the rectifier unit and the exponential unit so that it can 
convert between them. In addition, to achieving the goal of 
increasing the convergence speed with almost no effect on 
accuracy, it changes the linear state of the positive part of 
the function to nonlinearity. It is important that PENLU 
does not suppress the other part of the function with Batch 
Normalization (BN) (Ioffe & Szegedy, 2015). 

One of the focuses of this paper is the new 
activation function—Parametric Exponential Nonlinear 
Function—which is used to improve the deep neural 
network, modify and alleviate the defects of the neural 
network activation layer, and improve the optimization 

function of the activation function. Another focus is to 
classify and identify navel orange foliage by using a new 
method for improving deep neural networks to improve 
the defects of traditional plant disease identification 
methods. The structure of this paper is as follows: In the 
second chapter, a detailed introduction is given to works 
related to plant disease identification and activation 
function development. The method will be described in 
detail in the third chapter, including the improvement of 
the activation layer of the deep neural network and the 
principle of the deep convolution neural network for the 
recognition of navel orange leaves. In addition, it describes 
the specific experimental steps and the analysis of the 
experimental results in the fourth chapter. These 
experiments include the validation of the proposed 
activation function using the public database Cifar-10/100 
and the use of improved deep convolution neural networks 
to identify navel orange diseases. Finally, the conclusions 
will be presented in the fifth chapter. 

RELATED WORKS 

As described in the previous chapter, the 
identification of navel orange lesions and the activation of 
the deep neural network used to identify the lesion are the 
focal points. 

Identification of plant lesions in navel oranges 

In the field of plant disease identification, scholars 
around the world have conducted considerable research. 
Pu (2015) used image segmentation to extract the tobacco 
leaf disease area, combined with the Double Coding 
Genetic Algorithm and Support Vector Machine (SVM), to 
identify the disease, which achieved a better result. Li et al. 
(2014) used red-edge near-infrared spectroscopy to 
establish a fruit leaf disease classification model. The 
classification accuracy was 90%. Similarly, Ma et al. 
(2014) used near-infrared spectroscopy to establish 
Fisherman's linear discriminant model, and the model 
classification accuracy was above 90%. Recently, a 
website on plant disease records and for communication 
was established by Barbedo (2016). The pathogen image 
library that led to the disease was set up on the website. 
Sladojevic et al. (2016) used a deep learning approach, 
which is similar to the approach in this paper, for plant 
classification and disease detection, with an accuracy of 
96.3%. In a traditional identification method, Sindhuja et 
al. (2013) used near-infrared spectroscopy combined with 
thermal imaging to identify citrus disease, and the final 
classification accuracy was 87%. Mei et al. (2014) used 
five different citrus leaf hyper spectral images to establish 
a partial least squares discriminant model with a precision 
of 96.4%. Although the achievements of the identification 
of diseased plants such as navel oranges have been fruitful, 
the application of depth image processing is not widely 
used in practice. Sladojevic et al. (2016) research used a 
new approach, but the sample images were derived from 
15 categories of different species and lacked specificity. 



Identification of navel orange lesions by nonlinear deep learning algorithm  
 

 
Engenharia Agrícola, Jaboticabal, v.38, n.5, p.783-796, sep./oct. 2018 

785 

All samples were derived from web searches, and these 
categories were visually distinguishable and lacked 
credibility. Its architecture was very confusing and cannot 
be compared with the new architecture of PENLU in this 
paper. 

Activation functions 

The history of the activation function used by the 

artificial neural network is more than deep learning, but it 

has not been formally defined until recently (Gulcehre et 

al., 2016). The biggest influence of the activation function 

on the neural network is the ReLU (Glorot et al., 2011). 

The deep neural network has reached a higher level due to 

the extensive application of ReLU. ReLU is a piecewise 

linear function that keeps the negative input positive, and 

the output is zero. Because of this form, ReLU can reduce 

the problem of gradient disappearance and is suitable for 

deep neural network training. However, it has a potential 

drawback that once the gradient reaches zero, the neurons 

will never be activated. Maas et al. (2013) proposed the 

Leaky Rectified Linear Function (LReLU) for this defect, 

replacing the negative region of ReLU with a nonzero 

linear function. Subsequently, He et al. (2015) continued to 

extend LReLU (Maas et al., 2013) to PReLU, further 

changing the slope of the negative part to α and updating 

the value of α by the back-propagation of the neural 

network. This idea was a breakthrough that changed the 

nature of the previous activation function being unable to 

update parameters. The practice also shows that PReLU 

can lead to higher classification accuracy and rarely causes 

the risk of overfitting due to the introduction of parameters. 

In addition, Jin et al. (2015) proposed the S-shaped Leaky 

Rectified Linear Unit (SReLU) to study convex and 

nonconvex functions, which are inspired by the 

Weber-Fechner law (Weber, 1851) and Steven's law 

(Stevens, 1961). Subsequently, Clevert et al. (2015) 

proposed the Exponential Linear Unit (ELU), which uses 

an exponential function to modify the linear negative to 

nonlinear and then gives the negative part a soft saturation 

characteristic that results in more in-depth learning and 

better generalization performance. However, many studies 

(Clevert et al., 2015; Li et al., 2018) have shown that the 

use of ELU and BN (Ioffe & Szegedy, 2015) may impair 

classification accuracy. However, the very deep use of BN 

in the network is one of the main means for eliminating the 

risk of fitting, and the parameters of ELU cannot be 

updated in the reverse direction. In addition to the above 

deterministic activation function, there is a random version. 

Recently, Xu et al. (2015) proposed the Random-leakage 

Rectifier Linear Unit (RReLU). Although RReLU also has 

negative values and helps to avoid zero gradients, the 

difference is that the slopes of RReLU are not fixed or 

learned but random. Through this strategy, RReLU can 

reduce the overfitting risk to a certain extent. 

MATERIAL AND METHODS 

Deep learning methods are lacking in plant pathology 
identification. This chapter focuses on the principles of 
convolutional neural networks and the proposed activation 
functions. In addition, experimental planning and required 
materials are described. 

Convolution neural network (CNN) implementation 

The advanced nature of CNNs refers to their ability 
to learn the advanced features of the image rather than the 
artificially extracted low-level features used in other image 
classification methods (Hinton et al., 2012). In a CNN, the 
convolution kernel in the hidden layer divides the image 
into feature maps. Through continuous segmentation and 
calculation of shared weights and offsets, we can learn 
useful information about the image. The feature maps are 
searched for the same characteristics of neurons, which are 
independently connected to different neurons in the lower 
layer. Basically, these feature maps are the result of 
applying convolution to the image, and the feature 
information is used to update the weights. Equation (1) 
and Equation (2) describe the construction formulas of the 
most important convolution and pooling layers in the 
CNN. 
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where, 

ijo - the thj  feature map of the thi  layer; 

( , )ijo x y - the element in ijo ; 

tan ()h - the hyperbolic tangent function, 

ijb - the offset of the feature map ijo . 

In addition, 

i jK - the feature set of the upper layer that 

connects ijo ; 

ijkw - represents the convolution kernel of ijo  

and ( 1)i jo  ; 

i
R - represents the row number of the convolution 

kernel, 

i
C - the number of the convolution kernel of this 

layer. 
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Here, 

1 2l l - the sampling area size; 

ijg - represents the gain coefficient of ijo . 
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The training process of the CNN can be divided into 
forward propagation and backward propagation. While the 
forward propagation is responsible for information 
transmission, the backward propagation is responsible for 
parameter updating. Equation (3), Equation (4) and 
Equation (5) indicate the basic principles of forward and 
backward propagation. 

(1) (1) (2) (2) ( ) ( )
1 2 1( ( ( ( ) ) ) )n n

i n n iO F F F F Xw b w b w b   L L   (3) 

In which, 

( )nw - the weight of the thn  layer; 

( )nb - represents the bias of the layer, 

()nF - the activation function of the thn  layer. 
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where, 

iE - the error of the thi  sample; 

iko - the actual output of the thk  neuron of the thi  

sample output, 

ikT - the expected output of the thk  neuron of the 

thi  sample output. 

Parametric exponential nonlinear unit 
The PENLU is essentially the generalization of the 

ELU, which comes from the ELU and has all the 
advantages of the ELU but is different from the ELU. For 
the negative part, to bridge the differences between ELU 
and PReLU, additional parameter β can be added on the 
basis of ELU to control the shape change of ELU. 
However, the parameters of ELU can only be adjusted 
manually without the ability to update automatically, but 
PENLU can solve the deficiency of this part. For the 
positive part, the parameter η is added so that the linear 
part of the function is transformed into an exponential 
form. Unlike the Sigmoid and tanh functions, in which the 
gradient may disappear, PENLU does not exhibit this 
phenomenon because it does not have a right saturation 
property, and its derivative does not approach 0. By using 
the backward transfer SGD (Kaleem et al., 2015) 
algorithm, the parameters such as β and α are optimized so 
that they can be switched between the exponential unit and 
the rectifier unit at random, and the linear and nonlinear 
adjustment between them is possible. This design of 
PENLU is more flexible than ReLU, PReLU and ELU, 
and the latter can be regarded as a special case of PENLU. 
Thus, by constantly updating α, β and η, the space of the 

negative part, including both linear and nonlinear, can be 
covered in a single active function module. Similarly, the 
positive part of the function can also adjust the coverage, 
while the other activation functions do not have this 
attribute. 

Equation (6), Equation (7) and Equation (8) are the 
formula expressions for ReLU, PReLU and ELU, 
respectively. 

( ) m ax(0, )f x x                    (6) 

0
( )

0

x x
f x

x x


  
                (7) 

0
( )

( 1) 0x

x x
f x

e x


   
             (8) 

From [eq. (6)], we can see that ReLU remains hard 
saturated at x < 0, so the negative part of the function has 
sparse properties. When x > 0, the derivative of the 
function is always 1 to ensure that ReLU prevents the 
gradient from decaying when the image information is 
positive, thereby alleviating the problem of gradient 
disappearance. While PReLU introduces the slope of the 
negative part of the learning parameter α adjustment 
function, α is updated by the reverse momentum method 
(He et al., 2015), and the channel sharing strategy is used 
to solve the overfitting risk caused by the increase of the 
parameter. The ELU summarizes the advantages and 
disadvantages of the rectifier unit and proposes that the 
negative part is modified to an exponential function with 
the left soft saturation characteristic; its total output mean 
is close to zero, so the convergence rate is faster. 

The above three activation methods have a large 
impact on the development of neural networks. However, 
as mentioned above, after careful analysis, it is found that 
there is a commonality between the exponential unit and 
the rectifier unit, while there is a lack of unity in the 
theoretical unity. Therefore, we proposed that the 
Parametric Exponential Nonlinear Unit is used to achieve 
their unity goal, and the function belongs to the 
exponential unit of the full coverage of the rectifier unit in 
the form. The shape of the negative part of the ELU is 
adjusted on the basis of the ELU by introducing β, and 
then the values of α and β are adjusted to achieve the 
purpose of being freely convertible at the PReLU, ReLU 
and ELU. Equation (9) shows the result. 

0
( )

( 1) 0x

x x
f x

e x


   
                  (9) 

Furthermore, the introduction of η corrects the 
positive part of [eq. (9)] as an exponential function to 
achieve the goal of reducing the positive partial mean and 
the better overall mean. This adjustment makes the 
gradient no longer constant to 1 but gradually decreases 
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with the continuous deepening of training. In the case of 
need, the coverage of the PENLU can be expanded by 
adjusting the nonlinearity of the positive part to linear by 
adjusting η. Finally, the basic formula of the Parametric 
Exponential Nonlinear Unit is obtained, as shown in   
[eq. (10)]. Significantly, η should theoretically increase the 
convergence speed properly when the initial value is 
adjusted within the range of 0 to 1 but is closer to 1, which 
would not affect the training accuracy. If it exceeds 1, the 
gradient rises and thus may lead to training divergence. In 
contrast, if it is far from 1 and closing to 0, it will lead to a 
large part of the feature information being filtered and lost, 
causing the rapid decline of the training accuracy and 
ultimately leading to the phenomenon of overfitting in the 
case of a larger learning rate. Similarly, because the 
negative part of PENLU does not have the same sparse 
property as ReLU, changing the initial value of α and β 
will result in a change in the range of the function, which 
may cause the data to diverge to a certain extent. 
Theoretically, the negative result of the above possible 
situation is not caused by the increasing parameters 
because the results can be solved by adjusting the 
parameters. The correctness of the above theory will be 
demonstrated in subsequent experiments. 

0, 0 1
( )

0( 1)x

xx
f x

xe








  
  

     (10) 

It can be seen from [eq. (10)] that when η = 1, the 
positive part of PENLU degrades to linear and denoted by 
x. When β = 1, the negative part of PENLU degrades to 
ELU. In addition, the negative part of the function is 
approximately PReLU when β is very small. If the 
negative part of the function must be equivalent to ReLU, 
then α must equal 0. 

 
FIGURE 1. Graphics of activation functions. 

Figure 1 shows the partial curves of the above four 
activation functions. For PENLU, the parameters α, β and 
η are updated similarly to the convolution weight. As 
PENLU can be differentiated everywhere, the deep 
network using PENLU can engage end-to-end training. As 
shown in Eq. (11), the PENLU parameter updating rule is 
explained, in which the derivative is the gradient of the 
corresponding parameter. 
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g

（ ）      (11) 

 
For parameter updating, the initial value of the 

parameter is not very important, but the effect of parameter 
initialization on the training results cannot be ignored. 
According to the theoretical basis of the former (He et al., 
2015; Clevert et al., 2015), α generally uses the initial 
value of 0.25, 1 or 2 to set the experiment; β is set to 1 to 
initialize; η starts at 1 and gradually decreases by 0.05 
each time. In the experiment, the effect of different initial 
values of each parameter on the result will be analyzed. In 
addition, this article emphasizes the importance of weight 
decay when the parameters of the active layer are updated. 
Unlike the rectifier unit, the effect of weight decay on the 
exponential unit cannot be ignored. In the case of 
nonlinearity, the exponential unit can alleviate the change 
range of the function by each reverse update by adding a 
weight attenuation theory and achieve the optimal fitting 
effect through gradual updating. However, this is not a 
necessary result because there are many factors that affect 
the results. We only emphasize that the weight decay of the 
parameters of the active layer has an effect on the outcome 
and that the effect may be negative or positive. The 
experiment will prove that PENLU is sensitive to weight 
decay. 

In addition, inspired by the phenomenon that ELU 
cannot use BN, PENLU is theoretically able to use BN, 
which also greatly improves the optimization capabilities 
of the PENLU in a deeper network. The PENLU can be 
inherently divided into a structure as shown in Eq. (12) 
without regard to the positive partial nonlinearity. The data 
information flows out of the BN after flowing into the 
PReLU form, and the PReLU is effective for the BN, 
which can significantly improve the activation 
performance. This reflects the good fusion performance of 
PENLU. On the basis of Eq. (12), the nonlinear control of 
the positive part is introduced to represent the function 
completely. 

           (12) 

The addition of parameters also creates an 
overfitting risk because its parameter update is similar to 
the convolution weight updating method. For this reason, 
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we adopt a method that is similar to PReLU and a 
multi-parameter shared channel strategy for training. In 
each PENLU layer, the initialization increment of the 
parameter is up to twice the weight increment. For the 
number of weights of the many networks, the added 
parameters have little effect on the overall weight after 
sharing with the weight channel. If PENLU is used in 
training hundreds of thousands of big data, the likelihood 
of overfitting will be lower. 

Datasets and implementation 

Datasets 

Two public datasets and collected datasets on navel 
orange leaf images were used in this study. They are 
Cifar-10 and Cifar-100. The Cifar-10 database consists of 
50,000 image training samples with 32×32 pixels and 
10,000 image validating samples of the same size, which 
can be divided into 10 categories. These categories include 
airplanes, cars, birds, cats, deer, dogs, frogs, horses, boats 
and trucks. The number of pictures in Cifar-100 and the 
pixel size of each picture is the same as Cifar-10, but 
Cifar-100 contains a total of 100 categories. 

Then, the collected navel orange leaf images were 
used to estimate the ability of the proposed method to 
identify navel orange lesions. The data were collected 
from middle-aged navel orange trees in Ganzhou, China. 
After an in-depth investigation of the navel orange garden, 
the navel orange leaves were photographed with a 

13-megapixel mobile phone camera, and the model 
number of the mobile phone was the Xiaomi Redmi 3S. 
Then, these images were used as an experimental sample. 
To avoid the impact of the surrounding environment and 
improve the classification effect, the shooting process kept 
the shooting background uniform and made the focal 
length as even as possible. This ensured that the leaves 
occupied the central location of the picture and occupied 
more than 50% of the area of the entire image. The 
shooting process was all on the backside of the leaf, and 
the angle was vertical to verify the classification 
performance of the system in the case of insufficient 
illumination. Then, after removing the unqualified picture 
samples, leaves with yellowing disease, leaves lacking 
prime yellowing and normal fresh, 960 pieces were 
selected. Finally, all valid pictures of the training set and 
the validation set were scaled to a uniform pixel size of 
256 × 256. 

Images of navel orange leaves were collected in 

three categories (Figure 2(a)), and each category was 

divided into three parts: training (800 pieces), verification 

(150 pieces) and testing (10 pieces). In addition, 400 

images of leaves of other plants (such as apples, pears, etc.) 

similar to navel orange leaves were collected. Similarly, 

these images were also divided into three parts: training 

(330 pieces), verification (60 pieces) and testing (10 

pieces). 

 

  

(a)                               (b) 

FIGURE 2. Leaves: (a) normal new leaves (left), lack of prime (middle), sick (right). (b): missing (left), sick (right). 
 
Implementation 

The experiment was divided into three parts. The 

first two sections verified the superiority of the proposed 

activation function on the Cifar-10/100. The last section 

shows the performance of the proposed method in the 

identification task of navel orange lesions. All experiments 

were conducted on the Caffe framework (Jia et al., 2014). 

In addition, all calculations were conducted on the 

NVIDIA GeForce GTX 1080. The specific experiments 

were conducted on the Cifar-10 and Cifar-100 datasets for 

different depths and types of architectures and different 

parameters of the same architecture. This paper 

demonstrates the effectiveness of PENLU by repeating 

experiments on different advanced architectures and 

improving them accordingly to achieve more advanced 

results. In all of the following experiments, α in the 

PENLU are selected with initial values of 0.25, 1 or 2 for 

the experiment. For β, the initial value 1 is used to 

initialize, and η was set according to the actual need to 

adjust the initial value of each experiment. In this 

statement, all experimental results were taken to register 

the optimal results of the five experiments in this paper. 

Each part of the experiment’s specific steps will be 

detailed in the next chapter. 
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RESULTS AND DISCUSSION 

Before the experiment of navel orange lesion 
identification, the actual effect of PENLU under different 
architectures and different databases should be verified 
first. 

Verification of PENLU 

Experiments in Cifar-10 

This experiment preliminarily verifies the effect of 
PENLU. Network in Network (NIN) (Lin et al., 2013) 
architecture and Dense convolutional Networks (DenseNet) 
(Huang et al., 2017) are used to classify training 
experiments in Cifar-10. The NIN architecture has nine 
convolution layers, including six convolutions with 1 × 1 
kernel size and three Full Connection (FC) layers, which 
are easy to train and sufficient to comprehensively 
evaluate the effectiveness of the learning parameters. 
DenseNet is the latest CNN classification architecture, 
which can verify the effect of PENLU in advanced 
architecture. 

The first step is the experiment on the NIN 
architecture. To ensure the effectiveness of the experiment, 
the rectifier unit ReLU, PReLU and exponential unit ELU 
are taken as the specific comparison object, and a 
comparative trial is carried out as the other parts of the 
network under the same conditions except for the 
activation layer. The weight of the architecture is 
initialized using the Gaussian (Yam et al., 2000) method, 
the corresponding standard deviation is 0.05, and the 
weighting of the parameters of the active layer does not 
use the decay strategy. Finally, 120,000 iterations were 
performed. The main variables of the experiment were the 
different initial values of the different parameters of 
PENLU. The learning rate’s attenuation methods needed to 
be adjusted according to the concrete conditions of the 
experiment, which can be set to step or multistep. The tests 
reproduced the NIN experiment in Cifar-10 without 
augmentation, and the accuracy of the result was 89.72% 
(ReLU results in Table 1), which is similar to the 89.59% 
of the original. Table 1 shows the specific experimental 
results. 

 
TABLE 1. Experimental results on the Cifar-10 database 

Method Function 
Parameters 

Test accuracy（%） Test loss 
α β η 

Step 

ReLU - - - 89.72 0.3664 

PReLU 
0.25 - - 91.06 0.3462 

1 - - Divergent Divergent 

ELU 
0.25 - - 90.2 0.3178 

1 - - 90 0.3357 

PENLU 2 1 

1 92.15 0.2899 

0.95 91.29 0.3399 

0.9 91.01 0.3616 

0.85 91.06 0.3487 

0.8 90.71 0.3648 

Multistep 

ReLU - - - 83.62 0.4871 

PReLU 0.25 - - 86.51 0.4122 

ELU 1 - - 85.37 0.4511 

PENLU 

0.25 1 

1 87.19 0.4277 

0.95 87.14 0.4232 

0.9 87.21 0.4239 

0.85 85.82 0.8582 

0.8 76.20 0.6886 

1 1 

1 91.11 0.3666 

0.95 89.87 0.3854 

0.9 90.15 0.3897 

0.85 89.72 0.4093 

0.8 88.89 0.4108 
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It is worth mentioning that in the training of the 
PENLU architecture experiment, there were divergent 
situations that made it unable to train the results. This 
result appeared in the single step experiment; that is, we 
set the basic learning rate of 0.01 and decay once after 
100,000 iterations. This phenomenon makes the PENLU 
architecture unable to continue training without iterating 
100,000 times. The results of several experiments show 
that this phenomenon occurs at α = 0.25 or 1. Due to this 
situation, a set of comparative experiments was introduced, 
which was a multistep learning rate attenuation experiment. 
The focus of this additional experiment was to reduce the 
learning rate prior to the emergence of a phenomenon that 
could not be trained and then to decay once again after the 
100,000 iterations. Through the analysis of the 
experimental observation, it was interesting that when η 
decreases, the divergence phenomenon became more 
serious, which shortened the iteration number of 
divergence. If the initial value of α increased gradually, 
then the negative situation gradually decreased. When α 
increased to 2, the situation was eliminated. The possible 
reasons for the emergence of this phenomenon are that 
reducing the area of the positive part will lead to the loss 
of positive information, thus accelerating the emergence of 
divergence. In contrast, if the area of the negative part 
increases, as much negative information as possible will be 
included to reduce the loss of information. These two 
aspects are considered from the overall output of the 
average close to zero, thus easing the emergence of 
divergence. However, when the negative region is larger, 
the result is better. When the α initial value is increased to 
3, there is no significant difference from the result of α = 2. 
It shows that when the α initial value is increased to a 
certain condition, or when the negative part information is 

contained as much as possible, the behavior of increasing 
the initial value of the parameters is invalid. The above 
analysis shows that the reason for the divergence is not due 
to the increased disadvantages of the parameters because 
such poor results can be solved by adjusting the 
parameters. 

Analysis of the experimental results in Table 1 
shows that PENLU presents an absolute advantage when 
the learning rate is decayed in advance, which proves that 
PENLU has the performance of high training accuracy in 
the case of a small learning rate. When α = 2 is used, 
PENLU has obvious advantages over ELU, ReLU and 
PReLU, and the final accuracy is significantly higher than 
the original architecture in Huang et al. (2017) and other 
activation architectures we built. All the analysis shows the 
benefits of increasing the parameters. In addition, a small 
decrease in η does not have a significant effect on accuracy 
and loss. In the case where the accuracy range is 
appropriate, the convergence rate can be increased by 
reducing η. The training log, which observes the different 
initial values of η, finds that when η = 1, the test accuracy 
increases to 0.9 after 102,000 iterations and η = 0.95 at 
96,000iterations. When is further reduced to 0.85 at 76,000 
iterations, at η = 0.8, 62,000 iterations are needed to 
improve the test accuracy to 0.9. This adjustment was not 
necessary for this experiment, but it cannot be ignored 
when training millions or even among hundreds of 
millions of data. It can also be found from Table 1 that the 
effect of changing the initial values of the ELU parameters 
on the results was almost negligible, whereas PENLU was 
the opposite. Figure 3 shows the test accuracy and training 
loss curves for the best results of ReLU, PReLU, ELU and 
PENLU. 

 

 
(a)                                 (b) 

FIGURE 3. The best results of NIN in Cifar-10 with different activation functions: test accuracy (a); training loss (b). 
 
It can be seen in Figure 3 that the proper adjustment of the parameters of PENLU can achieve a double advantage for 

other activation modes in terms of convergence speed and training accuracy. This proves the advantages of PENLU. 
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(a)                                (b) 

FIGURE 4. The change curve of the DenseNet architecture: test accuracy (a); training loss (b). 
 

Then, the 40-layer DenseNet architecture was used 

for experimental verification. After using PENLU to 

improve the network, the accuracy of the test increased to 

92.64%, which is higher than 92.26% of the reappearing 

experiment. This proves that PENLU can improve the 

network to a certain extent and achieve more advanced 

results. This also shows the excellent universality of 

PENLU, which still has the advantage of an advanced 

architecture. At the same time, it is worth noting that these 

experiments also indirectly prove that PENLU is effective 

for BN. Figure 4 shows the variation of training loss and test 

accuracy for DenseNet. This includes the original DenseNet 

and the structure after using PENLU to improve it. 
As seen in Figure 4, when the parameters of the 

activation layer have weight decay, PENLU is slightly 

better than the original DenseNet. However, when the 

activation layer does not add the weight decay, the results 

obtained are much worse than the previous two, and this 

result is exactly the opposite of the phenomenon obtained 

in the later experiments (this can be seen in Table 2). The 

reason for this phenomenon may be related to the 

organization of the structure. Despite this result, PENLU 

remains competitive. 

 
Experiments in Cifar-100 

To observe the experimental results better, the NIN 

architecture was improved to achieve higher accuracy. 

First, a NIN unit was added to the original architecture, 

and then the Full Connection layer that the original 

architecture does not have was increased to obtain a better 

classification accuracy. The first pooling layer of the 

architecture was changed to the average pool. In addition, 

the Dropout unit was added to solve the problem of 

increasing the loss caused by increasing the number of 

layers. Finally, we changed the weight initialization 

method to Xavier (Glorot & Bengio, 2010) to better match 

the activation function and optimize the convolution 

parameters through the experimental results. These 

improvements eventually brought the new architecture to 

13 layers and were named MNIN. At the same time, we 

declared that all improvements were based on 

experimental results to verify PENLU from better results. 

The MNIN architecture was used to train Cifar-100. 

Our experiment verified the actual effect of PENLU on 

multi-classification tasks in different situations, depending 

on whether the architecture was in different activation 

modes, if the weight was decayed, and the variation of the 

results under different parameters. The learning rate was 

decreased to 1/10 after 60,000 iterations and then repeated 

after 90,000 iterations. The basic learning rate was 0.01, 

and the other settings were basically the same as in the 

previous experiment. It is worth noting that, to give 

priority to the accuracy, in the experiment, η was set to 1 

and not updated. Compared with the original NIN 

architecture, the accuracy was significantly improved. 

Table 2 shows the specific experimental results. 
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TABLE 2. Result of MNIN architecture on Cifar-100. 

Function 
Parameters Weight decay 

（Yes 1 or No 0） 

MNIN 

α β Test accuracy Test loss 

ReLU - - - 67.04 1.3169 

PReLU 

0.25 - 
0 68.27 1.4044 

1 67.91 1.3846 

1 - 
0 Divergent Divergent 

1 Divergent Divergent 

ELU 
0.25 - - 67.29 1.3684 

1 - - 68 1.36 

PENLU 

0.25 1 
0 67.99 1.386 

1 67.29 1.3473 

1 1 
0 68.97 1.36 

1 67.29 1.3392 

2 1 
0 69.48 1.3307 

1 67.98 1.3052 

* The parameter η in PENLU was fixed to 1 and was not learned, so it is not listed in the table. 

 

 
(a)                                 (b) 

FIGURE 5. The change curve of MNIN architecture on Cifar-100 with different activation methods: test accuracy (a); training 

loss (b). 

 
Table 2 shows that PENLU has the same superiority 

and that the decay of the parameter weight of the active 
layer will affect the final classification effect. Linking the 
results to Table 1 reveals that the effect of weight decay on 
the activation parameters can be positive for the accuracy 
of the classification. Although this effect performs very 
poorly in some cases, it can still be expressed. Figure 5 

shows the optimal accuracy of the different activation 
methods in the MNIN architecture and the corresponding 
training loss curve. It can be seen in the figure that the 
training situation of PENLU is slightly better than ELU, 
which is obviously better than PReLU and ReLU. 

 
Identification of navel orange lesions 
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FIGURE 6. A neural network architecture that identifies navel orange lesions. 

 

To achieve better recognition, we used the 20-layer 

ResNet (He et al., 2016) non-bottleneck structure training 

model while adding the original architecture and the 

corresponding PENLU architecture comparison 

experiment. In the solver file, the batch size was set to 10, 

and the maximum number of iterations was set to 30,000. 

At the same time, the file specified that every traversal 

iteration operation was verified by a validation set once. In  

the case of the output results, it was still specified in the 

file, including a training result after every 100 iterations, a 

test result after every 200 iterations, and an attenuation of 

the learning rate after every 10,000 iterations. The initial 

learning rate is 0.01, and the "multistep" approach was 

used in the strategy of learning rate decay. Table 3 shows 

the final training results. 

 
TABLE 3. The training result of using ResNet on the navel orange foliage image. 

Method 
Parameters Weight decay 

Yes 1 or No 0 
Test accuracy Test loss 

α β η 

ReLU - - - - 97.26 0.0687 

PENLU 
0.25 1 1 

0 96.86 0.0866 

1 98.44 0.0459 

1 1 1 1 97.07 0.0734 

 

 
(a)                                (b) 

FIGURE 7. The recognition curves for navel orange leaf images on ResNet20: test accuracy (a); training loss (b). 
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Table 3 shows that PENLU still has advantages. 
This advanced image recognition method has unparalleled 
superiority compared to traditional identification methods. 
Figure 7 shows the comparison results between the 
PENLU optimal and the original ResNet architecture for 
the test accuracy and training loss of navel orange foliage 
images. 

To test the specific level of the practical application 
of the model, 40 test images were used to test the most 

accurate model of the final improved ResNet training. The 
criteria for the evaluation were as follows. The picture was 
classified as the same category if the probability of testing 
was 80% or more. Therefore, it could perform a single or 
batch test after modifying and creating the relevant tools 
and code. After the model test, the final recognition rate 
reached 100%. No picture was discriminated incorrectly. 
To observe the update status of the model convergence, the 
weight diagrams are shown in Figure 8. 

 

     

FIGURE 8. Visualization of weight in convolution layers. 
 
The lower right corner of each graph in Figure 8 is marked by the weight view from which convolution layer is derived. It 

can be seen that the weight image aspect is very smooth and positively proves that the network convergence effect is very good. 

 

FIGURE 9. Output feature maps of a leaf image after convolution layers. 
 
Each of the small squares in Figure 9 shows the 

feature map of the corresponding filter. By observing each 
of these grayscale response feature maps, we can 
determine whether the structural design of the model (such 
as the number of channels per layer) is reasonable. If a 
large number of response feature maps are repeated or all 
close to 0, then the network efficiency can be increased by 
reducing the number of channels. From response feature 
maps, we can see that the model is very balanced, 
indicating that the number of filter channels is very 
reasonable. 

 
CONCLUSIONS 

Deep learning has great potential for agricultural 
computer identification and detection. 

Our paper proposed improving the neural network 
architecture by the Parametric Exponential Nonlinear Unit. 
Using the deep learning framework as an experimental 
tool, we took local industrial navel orange lesion images as 

a sample and improved the ResNet training to obtain the 
model. Finally, the model recognition rate was 100%, and 
the output model accuracy rate was 98.86%. The achieved 
results have obvious advantages compared to other related 
technologies. First, the significance of this study proves 
that the proposed Parametric Exponential Nonlinear Unit 
can improve the accuracy of the deep neural network 
under certain conditions. Second, it can achieve higher 
accuracy at very low cost. Furthermore, the research 
methods implemented in this paper provide a new idea for 
future plant disease detection techniques. In particular, 
these methods provide a new detection method for the 
identification of navel orange lesions in southern Jiangxi 
Province, which plays a promoting role in future research 
on the navel orange industry. Finally, a preliminary plant 
disease image library was established, including the navel 
orange foliage images applied in this paper, other plant 
foliage images similar to navel orange foliage, and 
thousands of related leaf pictures were not applied in this 
paper. Although the database is not yet open to use, it is 
the direction of future efforts. 
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As a continuation of this study, our team will 
continue to optimize the field of PENLU and plant disease 
identification. We strive to adjust the PENLU in the neural 
network to achieve the best results and focus the results of 
this study on practical applications. 
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