
 

Engenharia Agrícola 
 

ISSN: 1809-4430 (on-line) 

www.engenhariaagricola.org.br 
 

 

1 Northeast Agricultural University/Harbin, China. 

Area Editor: Fabio Henrique Rojo Baio 
Received in: 3-4-2022 
Accepted in: 7-11-2022 

Engenharia Agrícola, Jaboticabal, v.42, n.4, e20220030, 2022 
Edited by SBEA 

Scientific Paper 
Doi: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v42n4e20220030/2022  

 
QUANTITATIVE ANALYSIS AND HYPERSPECTRAL REMOTE SENSING INVERSION OF 

RICE CANOPY SPAD IN A COLD REGION 
 

Yinjiang Jia1, Huaijing Zhang1, Xiaoyu Zhang1, Zhongbin Su1* 
 

1* Corresponding author. Northeast Agricultural University/Harbin, China. 
E-mail: suzb001@163.com | ORCID ID: https://orcid.org/0000-0002-8966-8933

 
 
KEYWORDS  

SPAD, rice in cold 
region, hyperspectral 
image, spectral 
analysis, GA-BPNN. 

 

ABSTRACT 

This study used a spectral index method and an artificial intelligence algorithm to 
quantitatively analyze rice canopy soil and plant analyzer development (SPAD) based on 
ground nonimaging spectral data and UAV hyperspectral images to build a high-precision 
SPAD prediction model for nondestructive monitoring of the chlorophyll relative content 
of rice in cold regions. First, this study First, this study selected characteristic bands 
sensitive to SPAD using uninformative variable elimination and the successive 
projections algorithm. Then, the correlation between commonly used vegetation indices 
and SPAD was analyzed. Finally, this study constructed a back propagation neural 
network (BPNN) model, BPNN with particle swarm optimization (PSO-BPNN) model, 
and BPNN with genetic algorithm optimization (GA-BPNN) model, and then verified the 
reliability of these models. According to the results, GA-BPNN had the best predictive 
effect. The coefficient of the determination reached 0.818, and the root mean square error 
was 0.847. GA-BPNN model combined with UAV hyperspectral images were used for 
inversion mapping; the predicted range of SPAD was 33.1–41.2, which is in good 
agreement with the measured value (32.7–40.6). The inversion of regional rice canopy 
SPAD by nonimaging spectral data and UAV hyperspectral images had high credibility, 
which provided technical support for the scientific management of rice in a cold region. 

 
 
INTRODUCTION 

Chlorophyll content can effectively reflect the 
nutritional status of crops, monitoring the chlorophyll 
content of the rice canopy has important guiding 
significance for the evaluation of rice growth and yield 
prediction. Soil and plant analyzer development (SPAD) 
measures the relative level of crop chlorophyll content, 
particularly canopy chlorophyll content, which can reflect 
crop population traits and is frequently used to assess crop 
growth conditions, vegetation nutrient stress, and leaf 
nitrogen content (Song et al., 2021). Heilongjiang Province 
has excellent natural conditions and is China's largest rice-
producing region. Accurately assessing rice SPAD is 
critical for guiding rice production and achieving higher 
quality and efficiency.  

Near-earth spectroscopy technology is an effective 
method for detecting and obtaining crop nutrition status and 

growth information (Guo et al., 2016) because of its high 
efficiency, low cost, lack of pollution, and ease of 
measurement (He et al., 2021). In recent years, domestic 
and foreign scholars have carried out a significant number 
of related research. Tang et al (2004) studied the 
hyperspectral and red-edge characteristics of rice canopy 
and leaves with different nitrogen supply levels, and then 
found that the biophysical parameters and pigment content 
of rice are comparable to R1200/R550, R990/R550, R800/R550, 
R750/R550, λred, Sred. With the rapid development of artificial 
intelligence, some researchers have begun to experiment 
with combining the spectral parameter method with an 
artificial intelligence algorithm to create crop nutrition 
models. Jiang et al (2015) used the PSR-3500 spectrometer 
to obtain spectrum data, selected three commonly used 
spectral indices for chlorophyll content inversion, and 
added the universal spectral index VI-UPD to establish a 
regression model, which achieved better accuracy and 
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stability. Li et al (2014) built a point model of rice canopy 
content inversion based on an improved random forest 
algorithm, with a coefficient of determination of 0.81. Due 
to the special soil background, climatic conditions, and 
growth cycle of cold regions, it is necessary to find adaptive 
models to evaluate the growth and nutrition of crops. Xu et 
al (2020) used the wavelet to establish the GA-ELM model, 
which provided a new idea for accurately detecting the 
nitrogen deficiency of japonica rice leaves. Tan et al (2017) 
calculated the eight vegetation indices based on spectral 
information and proposed a machine learning method of 
BPSO-SVR to predict nitrogen content, which can be used 
to detect nitrogen in rice at different growth stages in a cold 
region. Wen et al. (2019) considered the influence of the 
unsynchronized maize growth stage on the spectral model, 
verified the prediction ability of the published vegetation 
indices, the partial least squares regression, and the two-
band optimal combinations algorithms.  

Compared with the near-earth spectrometer, the 
image obtained by the airborne hyperspectral imager 
contains higher resolution, which can accurately reflect the 
spectral characteristics of the field crops themselves and the 
spectral differences between crops (Ma et al., 2020). 
Previous studies have shown that the spectrum and the 
combination of spectra show superiority. Even when only a 
limited amount of spectral reflectance data is available, 
high-precision prediction can be made through the spectral 

index (Inoue et al., 2012). With the development of UAV 
platforms and hyperspectral imagers, image features, 
algorithms, and statistics are more widely used in the 
hyperspectral field. Zhu et al (2020) used the S185 airborne 
imaging spectrometer to obtain hyperspectral information 
on different growth cycles, different scales, and different 
crops and modeled them based on different algorithms. Yue 
et al (2019) selected texture features from the ultra-high-
resolution images, combined with the vegetation index to 
estimate the biomass of winter wheat, and the correlation 
coefficient reached 0.89. Liu et al (2019) used a UHD185 
airborne imaging spectrometer to study the hyperspectral 
characteristics of different growth stages and different 
nitrogen nutrient indices (NNI) to establish a hyperspectral 
model and carry out remote sensing prediction.  

In the current study, most of the prediction of SPAD 
in rice comes from a single spectral data source, based on 
the “points” of the ground nonimaging spectral data or the 
“surfaces” of the low-latitude UAV spectral image data. 
However, few inversion studies combine the two scales. 
The primary research pathways followed in this study are 
shown in Fig 1. Based on spectral data of different scales, 
this study uses ground nonimaging spectral data for 
modeling, and UAV spectral image data for SPAD remote 
sensing inversion to verify the accuracy and robustness of 
the model, to provide technical support and reference for 
rice nutrition diagnosis, high-yield cultivation.

 

 

FIGURE 1. Proposed workflow for this study. 
 
MATERIAL AND METHODS 

Experimental design 

The study area was located in the experimental 
practice base of Northeast Agricultural University 
(45°51′N, 127°03′E), Acheng District, Harbin City, 
Heilongjiang Province, as shown in Fig 2. In                          
this experiment, the crop variety was “Songjing No. 2,”, and  

four nitrogen application levels were set in the experimental 
plot, namely N0 (normal nitrogen application), N1 (75% of 
normal nitrogen application), N2 (50% of normal nitrogen 
application rate), and N3 (25% of the normal nitrogen 
application rate). Isolation measures were taken between the 
experimental plots to prevent the mutual penetration of 
water and fertilizer between the plots.
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FIGURE 2. Location of the study area. 
 
Experimental data acquisition  

The rice seedling transplanting time was May 20, 
2021, and the experimental data collection time was July 1 
to August 10, 2021. The UAV hyperspectral image data and 
the corresponding synchronous measurement ground data 
were collected at the tillering stage, jointing stage, and 
filling stage of rice. A total of 150 training samples and 50 
test samples were obtained. 

Nonimaging spectral data  

PSR-1100f handheld ground feature spectrometer 
(hereinafter referred to as PSR-1100f) was used to obtain 
rice canopy spectrum data. PSR-1100f is a small, 
convenient, and portable nonimaging spectrometer 
produced by Spectral Evolution (Mass., USA), which is 
easy to measure and use in the field. The canopy 
nonimaging spectroscopy is selected to be carried out in 
weather with no clouds, clear weather, no wind, or low-
wind speed. During the measurement, the instrument was 
vertically downward, keeping the angle with the normal of 
the horizontal plane within ±10°, and the height of the probe 
from the canopy was about 50 cm. In the experiment, five 
sets of spectral samples were collected each time, and the 
latitude and longitude coordinates of the sample points were 
synchronously collected by differential GPS. Whiteboard 
calibration is performed before and after spectral data 
collection to reduce noise and randomness. 

UAV hyperspectral image 

The DJI Jingwei M300 UAV was synchronously 
equipped with the S185 imaging spectrometer (hereinafter 
referred to as S185) for data collection, as shown in Fig 3. 
S185 is a full-frame, nonscanning, and real-time imaging 
spectrometer produced by Cubert, Germany. The 
experiment was carried out under sunny, cloudless, and 
low-wind conditions. The flying height was 120 m, the 
heading overlap was set to 80%, and the sideward overlap 
was set to 70%. 

 

FIGURE 3. DJI M300 UAV and Cubert S185 hyperspectral 
camera. 
 
SPAD value of rice canopy 

A SPAD-502Plus chlorophyll meter was used to 
simultaneously determine the SPAD of the rice canopy. To 
reduce the error, 10 SPAD values were uniformly measured 
on the top three leaves of each sample, and the average 
value was taken as the SPAD value of the sample, a total of 
200 values.  

Research methods 

Spectral parameters selection 

A spectral parameter is a combination of reflectance 
in specific bands that are related to leaf pigments or 
photosynthesis, as well as plant water and nutritional status 
(Yang et al., 2021). This study attempts to construct three 
types of spectral parameters for remote sensing prediction 
of SPAD. The names and definitions of the spectral 
parameters are shown in Table 1.
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TABLE 1. Spectral parameter list. 

Spectral parameter type Name Definition 

Vegetation index 

Terrestrial chlorophyll index（MTCI） (R754-R709)/(R709-R681) 

Double-peak Canopy Nitrogen Index（DCNI） (R722−R702)/(R702−R670)/(R722-R670+0.03) 

Red-edge Normalized Difference Vegetation Index（RNDVI） (R750-R705)/(R750 + R706) 

Red-Edge Position by Linear Interpolation（REPLI） 700+40(R670-R782)/(R742-R702) 

Vogelmann red-edge index（VOG） R742/R722 

Spectral index of any two 
bands 

DSI Ri-Rj 

RSI Ri/Rj 

NDSI (Ri-Rj)/ (Ri+Rj) 
 
Characteristic bands selection  

The original hyperspectral data has the 
characteristics of multiple bands, large data volume, and 
strong redundancy. When full-band data is used for 
modeling, it results in poor modeling efficiency and model 
performance. Therefore, the hyperspectral data must be 
reduced in dimensionality (Yuan et al., 2021). This study 
selects the characteristic bands of the hyperspectral data 
using the successive projection algorithm (SPA) (MCU et 
al., 2001) and the uninformed variable elimination (UVE) 
(Centner et al., 1996) to improve model accuracy and 
reduce time and model complexity.T 

Artificial intelligence algorithm 

This study compares the three methods of back 
propagation neural network (BPNN), particle swarm 
optimization-back propagation neural network (PSO-
BPNN), and genetic algorithm-back propagation neural 
network (GA-BPNN), using the same training set as the 
spectral parameter method, the SPAD prediction models of 
rice canopy are constructed respectively, and the accuracy 
of the models is tested.  

Model evaluation method 

The coefficient of determination (R2) and root mean 
square error (RMSE) are selected as indicators to evaluate 
the accuracy of training and test. R2 represents the degree of 
fitting between the simulated value and the measured value. 
The closer R2 is to 1, the higher the accuracy of the fitted 
curve; the RMSE reflects the degree of deviation between 
the simulated value and the measured value. The smaller the 
value, the higher the accuracy of the model. 
 
RESULTS AND DISCUSSION 

SPAD prediction analysis and modeling based on 
spectral parameters 

Correlation analysis between the spectral index 
of any two bands and the rice canopy SPAD  

In this experiment, the vegetation index was 
constructed by using the spectral data in a pairwise 
combination of arbitrary bands, and the correlation analysis 
with SPAD was performed respectively, to obtain the R2 
equipotential diagram, as shown in Fig 4, Fig 5. 

It can be seen from Fig 4 that the RSI of the 
combination of 500–526 nm and 450–500 nm and the 
combination of 450–500 nm and 500–525 nm perform best, 
and the R2 reaches 0.60 or more. Among them, RSI (R526, 

R469) has the best correlation with SPAD in rice canopy, and 
R2 reaches 0.691. 

Figure 5 is an equipotential diagram of NDSI (Ri, Rj) 
and the SPAD of the rice canopy formed by a combination 
of any two bands in the range of 450 to 950 nm. For NDSI 
(Ri, Rj), the region with R2 > 0.60 is a combination of the 
680–700 nm and 680–710nm bands. Among them, NDSI 
(R681, R695) has the best correlation with SPAD, and R2 
reaches 0.685. Compared with RSI (Ri, Rj), NDSI (Ri, Rj) 
has a narrower band with a better correlation with SPAD 
and is mostly concentrated in the red-light band. By 
calculating the R2 of DSI (Ri, Rj) with the rice canopy 
SPAD, it is found that DSI (Ri, Rj) is lower than RSI (Ri, Rj) 
and NDSI (Ri, Rj), and the R2 <0.60.  

 

 
FIGURE 4. Equipotential diagram of R2 of RSI (Ri, Rj) 
and SPAD formed by any two bands combination. 
 

 
FIGURE 5. Equipotential diagram of R2 of NDSI (Ri, Rj) 
and SPAD formed by any two bands combination. 
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Correlation analysis between typical vegetation 
index and rice canopy SPAD  

In the middle and late stages of rice growth, the time 
interval between the growth periods is short, and it is easily 
affected by factors such as the microclimate and moisture 
of the plot. Therefore, the growth process of rice in different 
plots will be different. To improve the correlation, this 
experiment selected five vegetation indices that are less 
affected by the growth period. Table 2 shows that MTCI 
with SPAD is significantly correlated and the R2 is better 
than the other four vegetation indices. The reason is that the  

proposal of MTCI is mainly based on when the 
concentration of chlorophyll increases, the reflectance 
difference between R709 and R681 gradually decreases, while 
the reflectivity difference between R754 and R709 is getting 
bigger and bigger (Dash & Curran, 2007). The vegetation 
index has the advantages of simple calculation and a strong 
correlation with chlorophyll content. The other four 
vegetation indices reflect the chlorophyll content indirectly 
through other vegetation characteristics, and their 
performance in correlation analysis with SPAD is not as 
good as MTCI.

 
TABLE 2. Correlation of vegetation index with rice canopy SPAD. 

Vegetation index R2 RMSE 

Terrestrial chlorophyll index (MTCI) 0.640 1.765 

Double-peak Canopy Nitrogen Index (DCNI) 0.532 2.652 

Red-edge Normalized Difference Vegetation Index (RNDVI) 0.506 2.873 

Red-Edge Position by Linear Interpolation (REPLI) 0.521 2.760 

Vogelmann red-edge index (VOG) 0.332 3.762 
 
Construction and analysis of SPAD model in rice 
canopy based on spectral parameters 

In the correlation analysis between the three types of 
spectral indices and SPAD, the spectral parameters with R2 
greater than 0.60 are selected to construct the unary 
regression model of each spectral parameter and the rice 
canopy SPAD. The training set accuracy and test set 
accuracy of each estimated model are shown in Table 3. The  

training set model R2 of the three models is between 0.609–
0.707, and the RMSE is between 0.848–2.894; the test set 
model R2 is between 0.640–0.691, and the RMSE is 
between 0.956–1.965. Among them, the prediction model 
with RSI (R526, R469) as the input variable has the largest R2, 
the R2 of the training set reaches 0.70 or more, and the 
RMSE of the training set and the test set are smaller than 
other models, and the prediction accuracy is the highest.

 
TABLE 3. Prediction models of rice canopy SPAD based on spectral parameters. 

Spectral parameter 
Regression 
equation 

Training set Test set 

R2 RMSE R2 RMSE 

RSI (R526, R469) y = 17.34x+7.329 0.707 0.848 0.691 0.956 

NDSI (R681, R695) y = 57.036x+117.263 0.687 1.008 0.685 1.269 

MTCI y = 5.475x+26.65 0.609 2.894 0.640 1.965 
 
SPAD prediction analysis and modeling based on 
artificial intelligence algorithm 

Selection of characteristic bands 

Based on the stability analysis of regression 
coefficients, the UVE algorithm (Wang et al., 2019) is a new 
variable selection method. The core of UVE is to add a 
certain number of random variables into the spectral matrix 
and establish the PLS model through cross-validation, 
calculate the ratio (Ci) of the mean value of the regression 
coefficient to the standard deviation, and remove the invalid 
spectral information by the size of the ratio. The results of 
the UVE variable stability analysis are shown in Fig 6. The 
vertical solid line is the dividing line between the 
wavelength variable and the random noise variable, the left 
side is the wavelength variable, and the right side is the 
random noise variable. The two horizontal dotted lines, 
respectively, indicate the upper and lower thresholds of the 
stability of the wavelength variable. The variable stability 

threshold is determined by the random noise variable. The 
variable between the two thresholds can be considered a 
useless information variable and needs to be eliminated. 
The other wavelength variables are useful information 
wavelength variables and will be retained. After the UVE 
algorithm, a total of 163 wavelength variables are selected. 

SPA algorithm is a forward selection algorithm that 
utilizes a simple projection operation in a vector space to 
select the subset of variables with the least collinearity and 
evaluate using RMSE. As an important characteristic 
wavelength variable extraction algorithm, the SPA 
algorithm can effectively reduce the collinearity between 
variables, avoid the repetitiveness of variable information to 
the greatest extent, and reduce the redundancy between 
variables. After the UVE algorithm eliminates useless 
information variables, the SPA algorithm is used to select the 
remaining wavelength variables. Twelve characteristic bands 
are selected from the 450–950 nm band, which were 454n, 
493, 499, 548, 553, 557, 566, 569, 572, 575, 582, 592 nm. 
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FIGURE 6. Selection of rice canopy characteristic variables based on the UVE algorithm. 
 
BPNN model construction and analysis  

BPNN is a multi-layer feedforward neural network 
trained according to the error back propagation algorithm. 
The weights and thresholds of the network are continuously 
adjusted through back propagation to minimize the error 
square sum of the network (Shao et al., 2021). The twelve 
characteristic bands selected by the UVE-SPA algorithm 
are used as the model input, and the rice canopy SPAD is 
used as the model output to construct the BPNN model. 
Among them, the transfer function of the hidden layer of the 
neural network is the tangent sigmoid function (Tansig), the 
transfer function of the output layer of the neural network is  

the linear function Purelin, the training function is Trainlm, 
the maximum number of training iterations is 10,000, and 
the learning rate (Ir) is 0.0001. In addition, the model 
predicts the best outcome when there are 15 neurons in the 
hidden layer after numerous experiments. 

The modeling results are shown in Fig 7. The BPNN 
model has better modeling effects than all prediction models 
based on vegetation index. The R2 and RMSE of the model 
training set are 0.750 and 0.986, respectively. Therefore, the 
prediction model established by using a combination of 12 
characteristic bands as the input of the BPNN has better 
prediction accuracy.

 

 

FIGURE 7. Modeling results of BP neural network. 
 
PSO-BPNN model construction and analysis  

The idea of PSO (Kennedy & Eberhart, 1995) 
originated from precursor studies on the way fish and birds 
flock, which seek the optimal solution through collaboration 
and information sharing between individuals in the group. 
The PSO algorithm is used to optimize the weights and 

thresholds of the BPNN, thereby reducing the function loss 
value. The optimization structure is shown in Fig 8.  

The 12 characteristic bands selected by the UVE-
SPA algorithm are used as the model input, and the rice 
canopy SPAD is used as the model output to construct the 
PSO-BPNN prediction model. In the PSO algorithm, the 
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value of inertia factor β affects the global search ability and 
convergence ability of particles. This model uses a linearly 
decreasing inertia weight strategy to determine the inertia 
factor β, and β = 0.65. The population size is generally 20–
40, and this model takes 30. The learning factors c1 and c2 
determine the influence of the particle’s own experience and 
other particles on the optimal trajectory, which can reflect 
the information exchange between particles, promoting the 
exploration and use of search space (Yadav & Anubhav, 
2020). A large number of studies point out that the sum of 
c1 and c2 is the best at around 4.0, and this model sets 
c1=c2=2.15. The function of the maximum speed limit 
(Vmax) is to set the maximum value of the particle speed, 
thereby limiting the movement distance of the particle. If 
Vmax is too large, the particle may jump over the better 
solution. On the contrary, the particle may not be able to 
fully explore the space outside the local better solution area, 
which weakens the global search ability and makes the 
algorithm fall into the local better solution. In this model,  

Vmax is set to 1. Tansig and Purelin are set as the transfer 
function of the hidden layer and the output layer, 
respectively, Trainlm is set as the training function, the 
maximum number of training iterations is 10,000 times, the 
learning rate (Ir) and the training accuracy are both 0.0001 
and 0.01, respectively. At the same time, the model has the 
best prediction effect when the number of neural nodes in 
the hidden layer is 15 through step-by-step experiments. 
The modeling result is shown in Fig 9. The R2 and RMSE 
of the PSO-BPNN model are 0.791 and 0.866, respectively. 
Compared with the BPNN model, the PSO-BPNN model 
has improved model accuracy and predictive ability, 
indicating that the use of the PSO algorithm to optimize the 
BPNN model has higher prediction accuracy for the rice 
canopy SPAD. The reason is that the particle swarm 
algorithm has the characteristics of fast search speed, and 
its information-sharing mechanism enables the population 
to converge to the maximum value faster.

 

 

FIGURE 8. PSO-BP neural network flow chart. 
 

 

FIGURE 9. Modeling results of PSO-BP neural network. 
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GA-BPNN model construction and analysis 

GA (Abdullah et al., 2020) is an algorithm designed 
based on the evolutionary laws of the biological world and 
searches for the optimal solution by simulating the natural 
evolution process. The main feature of GA is that it can 
directly operate on structural objects. There is no limitation 
on function continuity and derivation, and the algorithm 
uses a probabilistic optimization method, which can 
automatically obtain and guide the optimized search space. 
The structure of the BPNN optimized by the GA algorithm 
is shown in Fig 10. 

The 12 characteristic bands selected by the UVE-
SPA algorithm are used as the model input, and the rice 
canopy SPAD is used as the model output to construct the 
GA-BPNN prediction model. After trial and error, the 
parameters of the GA-BPNN model are determined: the 
training function is Trainlm, the transfer function of the 
output layer is Purelin, the activation function is Sigmoid, 
the crossover probability is 0.5, the mutation probability is 
0.3, and the number of evolutions is 100. At the same time, 
through step-by-step experiments, it is concluded that when 

the number of hidden layer neural nodes is 15, the 
maximum number of training iterations is 10,000, and the 
learning rate (Ir) is 0.0001, the prediction effect of the 
model reaches the best. 

The modeling result is shown in Fig 11. The R2 and 
RMSE of the GA-BPNN model are 0.818 and 0.847, 
respectively. Compared with the BPNN model and the 
PSO-BPNN model, the GA-BPNN model prediction results 
are closer to the expected value, and the prediction accuracy 
is higher. The reason is that the GA-BPNN model separately 
optimizes the weights and thresholds in the process of 
training, and finds the optimal solution in the global scope, 
which greatly reduces the prediction error and avoids the 
neural network from falling to a minimum. At the same 
time, compared with the weaker stability of the PSO-BPNN, 
the GA-BPNN is more adaptable. As the number of 
iterations increases, individual adaptability is also 
enhanced. Although the accuracy of the GA-BPNN model 
is improved compared with the PSO-BPNN model, the GA 
is too computationally expensive in the iterative process, 
which leads to unsatisfactory real-time prediction results. 
The model still needs to be optimized and improved.

 

 
FIGURE 10. GA-BP neural network flow chart. 

 

 
FIGURE 11. Modeling results of GA-BP neural network. 
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Spatial distribution map of rice canopy SPAD based on 
imaging spectrum 

Comparing the SPAD prediction models of rice 
canopy constructed by three kinds of neural networks, the 
GA-BPNN model combined with UAV hyperspectral 
images is selected to map the cold rice jointing stage SPAD 
remote sensing inversion mapping. The characteristic bands 
extracted from each pixel point of the hyperspectral image 
are used as the input of the GA-BPNN model to obtain the 
spatial distribution map of rice SPAD in the study area, as 
shown in Fig 12. 

 Thirty ground sample points are randomly selected 
to verify the accuracy. According to the latitude and 
longitude coordinates of the 30 sample points collected on 
the ground, the sample points with the same name are found 
on the map. The ground SPAD measured values of these 

sample points are fitted and analyzed with the predicted 
values of the points with the same name on the spatial 
distribution map. The results are shown in Fig 13. The R2 of 
the fitting equation is 0.789, and the RMSE is 0.986. 
Compared with the use of ground spectral information to 
build the GA-BPNN model (Fig 9), the accuracy is lower. 
The main reason is that the establishment of the model is 
based on ground nonimaging spectral data, while the UAV 
verification data uses imaging spectral data. The two 
sensors are different, resulting in differences in spectral 
information. In addition, during the verification, there is a 
certain error in the corresponding relationship between the 
measured value on the ground and the point of the same 
name in the image, which causes the accuracy of the model 
verification to be reduced. In summary, combining ground 
spectral information and UAV images can achieve high-
precision regional rice SPAD inversion.

 

 

FIGURE 12. Retrieved rice canopy SPAD at jointing stage in the study area. 
 

 

FIGURE 13. Relationship between measured and predicted SPAD value of test samples on predicted SPAD map. 
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In recent years, excessive chemical fertilizer 
application or nitrogen deficiency in rice production in 
Heilongjiang Province have resulted in a decline in rice 
quality and low nitrogen utilization efficiency. Peng et al 
(2019) studied the fertilization situation of rice fields in 
Heilongjiang Province, and the results showed that only 
20% of the farmland can achieve high yield and high 
efficiency. Although many previous studies on the effects 
of nitrogen utilization and SPAD on crop yield, 
photosynthetic characteristics, and root growth have been 
conducted, the majority of these studies have been 
conducted in southern regions. There are relatively few 
studies in the northeast cold region. Therefore, we studied 
four types of rice with different ammonia fertilizers under 
the local traditional cultivation mode and developed a 
SPAD prediction model to provide a theoretical foundation 
for rational nitrogen application and rice yield improvement 
in cold regions. 

In monitoring rice biophysical and chemical 
parameters, the spectral parameter method has some 
advantages. Therefore, many researchers have proposed a 
variety of wavelength-based selection methods for 
predicting rice SPAD, nitrogen content, and LAI (Liu et al., 
2010; Ryu et al., 2009; Gao et al., 2016). 

This study uses arbitrary band combinations to 
construct the vegetation index RSI and NDSI, calculates the 
correlation between the vegetation index and SPAD, selects 
the optimal band combination, and calculates the correlation 
between five typical vegetation indices and SPAD. The 
SPAD prediction models of rice canopy in the cold region 
are constructed with better spectral parameters. Among 
them, RSI (R526, R469), NDSI (R681, R695), and MTCI 
perform well, and the R2 is all greater than 0.60. 

The three neural network models have simpler 
structures, stronger correlations with SPAD, and higher 
accuracy when compared to spectral parameter models. The 
R2 of the five spectral parameter models are all lower than 
the three neural network models, and the optimal RSI (R526, 
R469) model has an R2 of 0.707, which is 0.111 lower than 
that of the GA-BPNN model. The reason for this is that 
predicting biophysical and chemical parameters using 
spectral parameters will be influenced by factors such as 
soil background and atmosphere, giving the model 
territoriality and temporality. In this study, the BPNN can 
improve the accuracy of estimation, and the prediction 
effect is better than the traditional vegetation index model, 
which is consistent with the results of previous studies (Xia 
et al., 2013). The three neural network models do not 
require a specific mathematical model in data processing, 
and the simulation is strong, resulting in better 
interpretability for nonlinear problems. 

When comparing the three neural network models, 
the GA-BPNN model outperforms the BPNN and PSO-
BPNN models in terms of prediction. The reason for this is 
that the GA can optimize the weights and thresholds 
separately, find the optimal solution in the global scope, and 
improve the prediction accuracy and robustness of the 
BPNN model. The R2 of the GA-BPNN model is 0.818, 
which is 0.027 higher than that of the PSO-BPNN. 
However, because the GA has issues such as slow speed and 
a long iterative process, the model still has a lot of room for 
improvement. The focus of the next step is to combine 

artificial intelligence algorithms with traditional spectral 
parameter methods to monitor crop biophysical and 
chemical parameters and to obtain models with the higher 
predictive ability and better robustness. 
 
CONCLUSIONS 

In this study, the canopy hyperspectral and SPAD 
data of rice in a cold region are obtained through field 
experiments, which are modeled based on spectral 
parameters and artificial intelligence algorithms, 
respectively. The conclusions obtained are as follows. 

(1) The correlation between the spectral index RSI 
(R526, R469) selected by any two bands and the SPAD of the 
cold rice canopy is better than that of the five typical 
vegetation indices, with R2 reaching 0.691 and RMSE being 
0.956. However, the prediction accuracy of this model is 
worse than that of the GA-BPNN model, and it can only 
roughly estimate the SPAD of the rice canopy. 

(2) The GA-BPNN model is the optimal prediction 
model for SPAD of rice canopy in a cold region. The R2 of 
the prediction model reaches 0.818, which can predict 
SPAD well. The prediction range (33.1–41.2) of rice 
canopy SPAD at the jointing stage based on UAV 
hyperspectral images is in good agreement with the 
measured value on the ground (32.7–40.6), which can 
realize the SPAD remote sensing mapping within the region, 
and provide scientific guidance and technical support for the 
management of rice production in a cold region. 
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