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ABSTRACT 

Chlorophyll content is a widely used parameter for nutritional status diagnosis in 

sugarcane. This study aimed to develop a predictive model of chlorophyll content in 

sugarcane seedlings using spectral imagery analysis within the electromagnetic spectrum 

visible range. The experiment was carried out in a split-plot design, with two fertilization 

rates and three sugarcane cultivars. For chlorophyll analysis, 144 leaves were collected 

from seedlings. Chlorophyll contents were extracted and measured by SPAD-502 meter. 

Spectral images within the range of 480 to 710 nm were analyzed using reflectance, 

absorbance (white source), and fluorescence (source at 405 and 470 nm) responses. 

Predictive models were developed using multivariate regression methods such as 

Principal Component Regression and Partial Least Squares Regression. We chose the best 

model through absorbance response using variable selection and the PLSR method (R2P 

= 0.718 and RMSEP = 7.665). The wavelengths of 480, 490, 500, 600, 630, and 640 nm 

were identified as the best for total chlorophyll content determination. The spectral image 

processing-based method can provide a chlorophyll measurement equivalent to SPAD, 

with the advantage of having a higher spatial coverage over the entire leaf area. Besides, 

it can also support automation of the chlorophyll measurement in greenhouses. 

 

INTRODUCTION 

Brazil is the largest sugarcane grower worldwide 

(40%) and the second-largest ethanol producer (CONAB, 

2019). As the sugar-energy industry has grown sustainably, 

new seedling production techniques must be studied to 

boost production. An example of this is sugarcane planting 

using pre-sprouted seedlings (PSS). Such a technique 

improves plant physiological traits and speeds up the 

production process, associating phytosanitary quality, plant 

vigor, and planting uniformity (Almeida et al., 2020; 

Libardi et al., 2018; Aquino et al., 2018).   

Aiming to maintain quality standards and aid 

decision-making, producers have used several biometric 

measurements of sugarcane as indicators of plant vigor, 

nutritive status, and seedling quality (Garcia et al., 2020; 

Oliver & Silva, 2018). Seedling chlorophyll contents 

provide subsidies for fertilization, especially pre-sprouted 

seedlings. In this regard, the Soil Plant Analysis 

Development (SPAD) portable chlorophyll meter has been 

generally used (Yang et al., 2019; Radhamani et al., 2016; 

Silva et al., 2016). However, SPAD has some limitations 

since measurements are made on a small area of leaves, 

and factors such as leaf thickness, phenological stage, 

plant genotype, and shading may affect accuracy (Afonso 

et al., 2018).  

Chlorophyll content measurement using spectral 

image processing covers a larger spatial area and is more 

accurate compared to the SPAD method. These advantages 

improve plant nutritional status diagnosis due to an 

increased number of samples for decision-making. 

Chlorophyll content has been assessed using spectral 

responses in several crops such as cucumber and corn, and 
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have generated good results (Liu et al., 2017; Wu et al., 

2016; Xiaobo et al., 2011). 

Developing a predictive model of chlorophyll 

content based on visible region images will allow in vivo 

diagnosis of sugarcane PSS nutritional status in 

greenhouses and will serve as a basis for non-invasive 

monitoring of chlorophyll distribution. This will require a 

smaller dataset and hence less computational processing 

capacity, decreasing costs when compared to the 

commercially available systems. 

This study aimed to develop a predictive model of 

chlorophyll content in sugarcane seedlings by analyzing 

spectral images within the electromagnetic spectrum visible 

region. Therefore, we implemented an experimental design 

for the distribution of seedlings in sub-irrigation rows inside 

a greenhouse. A spectral image analysis algorithm was then 

developed and different chemometric methods tested to 

predict chlorophyll content. Finally, regression metrics 

were used to choose the best model. 

 

MATERIAL AND METHODS  

Sugarcane seedlings were grown in a greenhouse 

located at the School of Agricultural Engineering 

(FEAGRI) of the University of Campinas (UNICAMP) in 

the city of Campinas – São Paulo State, Brazil (22º 48’ 57” 

S, 47º 03’ 33” W), from August 16 to September 15 in 2017. 

In the greenhouse, four sub-irrigation rows were used in a 

pre-sprouted seedlings (PSS) system. In each sub-irrigation 

row, specific fertilizer doses were applied through 

fertigation. The fertigation system was equipped with an 

on/off fluid control that acts directly on the pump that 

applies nutrient solution.  

Experimental design 

In the experiment, we used sugarcane (Saccharum 

officinarum) seedlings of three commercial cultivars 

(IAC91-1099, IACSP95-5000, and IACSP95-5094), which 

are developed in the Agronomic Institute of Campinas 

(IAC). The experiment was carried out in a fully 

randomized split-plot design and a 2 x 3 factorial scheme, 

with two fertilization levels (full and half dose) with 2 

repetitions each, and three sugarcane cultivars (the above 

mentioned) with 6 repetitions each. After randomization, 

each sampled plot in the table was coded as Px (with x 

ranging from 1 to 18), assigning a cultivar to each plot. Full 

dose refers to 60% of the total dose recommended to fully-

grown sugarcane in the field, while half dose refers to 30% 

of the fertilization dose recommended for sugarcane in field 

conditions (Figure 1). 

 

 

FIGURE 1. Experimental design composed of two fertilization levels (full dose and half dose) and two repetitions (two irrigation 

rows, or table, for each level). 

 

Sampling was carried out weekly throughout the 

four weeks seedlings remained in the greenhouse. Irrigation 

was interrupted in the last week to induce water stress and 

obtain spectral variations in the chemometric modeling of 

chlorophyll contents.  

Three leaf samples were randomly taken from each 

row or table plot (only one cultivar) for analysis by the “leaf 

+1” diagnostic method, as recommended by Garcia et al., 

2020. The analysis was performed for each cultivar in each 

fertigation dose, resulting in 36 samples per day and 144 

samples throughout the experiment. 

In the laboratory, 30-mg samples were taken from 

the middle third of leaves to obtain the following 

measurements: (1) SPAD chlorophyll content (in triplicate), 

(2) spectral images, and (3) reference chlorophyll content.  

 

Chlorophyll measurements 

Images were acquired to obtain minimally altered 

leaf samples, before reference measurement. Two 

chlorophyll measuring methods were used: a laboratory 

analytical method by chlorophyll extraction (Hiscox & 

Israelstam, 1979) and the SPAD-502 meter [at two bands: 

400 to 500 nm (blue) and 600 to 700 nm (red), with an 

accuracy of ±1.0 SPAD units, supplied by Konica Minolta 

Sensing Americas, USA). First, SPAD measurements were 

taken, followed by image acquisition, and finally the 

analytical method as it is a destructive technique.  

Spectral image acquisition 

Spectral images were acquired using a reflectance 

and fluorescence imaging system. The system is composed 

of the components (Figure 2) described below:  
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(a) A scientific CCD camera (mvBlueFox-223 G, 

Matrix Vision, with 1360 × 1024 pixels) with activated 

sensor area and 25-mm bandpass optical filters with 10 nm 

resolution (Edmund Optics, Norway), mounted in a 

motorized filter wheel (FW102C, Thorlabs, USA) with six 

filter positions each. The set consisted of 24 optical filters 

covering the electromagnetic spectrum between 480 and 

710 nm (from the end of the blue band to the beginning of 

the red band within the visible electromagnetic spectrum);  

(b) A lightning system support structure composed 

of an in-lab built “black box” for external light insulation 

and black anodized support to place samples;  

(c) A high-power LED lighting system with three 

different colors (white, 405 nm, and 470 nm) as an 

excitation source function for the acquisition of reflectance, 

absorbance, and fluorescence spectral images; 

(d) A computer with supervision and control 

software to adjust CCD camera gain and exposure time, and 

then inspect and save images.  

 

 

FIGURE 2. Reflectance and fluorescence imaging system setup.  

 

To acquire spectral images, leaf samples were placed 

in the dark chamber 30 cm apart from each other and the 

CCD. The process was based on the method described by 

Wetterich et. al (2016), which consisted of setting up the 

CCD with a maximum gain (30dB), changing exposure 

time, and capturing images at each wavelength, repeating 

the procedure for each excitation source. 

Leaf samples (30 mg of middle third of leaves each) 

already measured by SPAD and the reference method were 

placed in a dark chamber. Reflectance images were firstly 

acquired using white light excitation and acquiring images 

at all wavelengths. Afterwards, the same procedure was 

employed for fluorescence images, changing excitation 

sources for 405 and 470 nm. Yet for absorbance images, 

reflectance images were transformed using [eq. (1)], wherein 

A is the absorbance value and R the reflectance value. 

𝐴 = −𝑙𝑜𝑔 (
1

𝑅
) (1) 

 

Reference measurements of chlorophyll 

Reference measurements of chlorophyll contents 

were carried out after image acquisition. For pigment 

extraction and chlorophyll quantification, the protocol of 

Hiscox & Israelstam (1979) was followed and modified for 

30 mg leaf tissue. Leaf samples were disposed individually 

in 3-mL DMSO (dimethyl sulfoxide) and allocated to a 

stirring table for 24 h in the dark. Then, the supernatant of 

each sample was removed and absorbance measured in a 

spectrophotometer. The pigment contents were calculated 

as indicated in eqs (2)-(4), wherein AWL represents the 

absorbance at WL wavelength. After pigment 

quantification, the content of each chlorophyll (Chl a, Chl 

b, Chl a+b) was converted to mg cm-2 by using digital image 

analysis to estimate the area of each leaf sample. 

𝐶ℎ𝑙𝑎(𝑔𝑙−1) = 0.0127𝐴663 − 0.00269𝐴645 (2) 

𝐶ℎ𝑙𝑏(𝑔𝑙−1) = 0.0229𝐴645 − 0.00468𝐴663 (3) 

𝐶ℎ𝑙𝑎 + 𝑏(𝑔𝑙−1) = 0.0202𝐴645 − 0.00802𝐴663 (4) 

 

Spectral image processing 

An image processing algorithm was implemented to 

extract information for predictive model development. 

Procedures included image normalization using CCD 

(Charged Couple Device) camera response curve, 

segmentation using reference mask images, ROI (Region of 

Interest) pixels organization in a dataset matrix, and spectral 

matrix creation by average spectra calculation.  

Images were normalized following the procedure 

described by Wetterich et. al (2016). This normalization is 

needed since the exposure time of each sample and 

wavelengths are not identical. The first step was to obtain 

the spectral function (Equation 5) from the product of the 

CCD spectral sensitivity curve (Tc) and the transmission 

rate of the optical bandpass filter used (Tf). Once the E 

function was obtained, spectral information at a specific 
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wavelength (I (λ) could be eliminated from Equation 6. 

Finally, after the new images were acquired, Is (λ), the 

different exposure times of the CCD camera were 

eliminated by multiplying these new images by the ratio 

between minimum exposure time (min) and exposure time at 

a given wavelength (t (λ)) (Equation 7). Further details about 

these procedures can be found in Wetterich et. al (2016).  

𝐸 = 𝑇𝑐 × 𝑇𝑓 (5) 

𝐼𝑠(𝜆) =
𝐼(𝜆)

𝐸𝑛(𝜆)
 (6) 

𝐼𝑓𝑖𝑛𝑎𝑙(𝜆) = 𝐼𝑠(𝜆) ×
𝑡𝑚𝑖𝑛

𝑡(𝜆)
 (7) 

 

Where:  

E is the final response curve after the multiplication 

of response curves;  

Tc is the CCD response curve (obtained from camera 

datasheet); 

Tf is the optical filter response curve;  

Is represents the image after spectral information 

elimination;  

I is the original image; 

tmin is the minimum exposure time (ms);  

t is the exposure time at each wavelength, and  

𝜆 is the wavelength (nm).  

 

After normalization, the algorithm performed a 

supervised image segmentation for background elimination. 

During the process, an image was acquired with a white 

excitation source and no optical filters. The image was 

converted into a binary mask using a histogram-based 

threshold for further application in each normalized image 

(all wavelengths), resulting in a segmented image.  

The next step was to automatically find the 

minimum ROI within samples using the area given in 

pixels. Using this area, the algorithm applied an average 

mask onto the image to estimate average 

reflectance/fluorescence response for each excitation 

source, resulting in a matrix of dimensions 36 (leaf samples 

or ROIs) x 21 (wavelengths) for each excitation source, i.e., 

each spectral response. For absorbance, as mentioned above, 

a mathematical conversion based on [eq (1)] was used. 

Development of prediction models 

In this study, chemometric predictive models were 

developed using the multivariate regression methods of 

Partial Least Squares Regression (PLSR) and Principal 

Components Regression (PCR). Their advantage is to 

model several predictor variables (reflectance, absorbance, 

and fluorescence of spectral images at different 

wavelengths), considering synergy among them to predict a 

variable response (chlorophyll content).  

The first set of samples (2/3) was used for calibration 

and cross-validation, and the second (1/3) for prediction. 

Full cross-validation was used to determine the optimal 

number of latent variables (LV) or principal components 

(PC) in the calibration models. To identify the outlier, the 

leverage and Student's t residual of each sample were 

quantified and evaluated as decision-making criteria.  

Variable selection based on correlation spectrum 

was also evaluated by testing different correlation 

thresholds. To select the best calibration models, the 

accumulated variance was firstly evaluated as a function of 

the number of factors selected, aiming to use the smallest 

number of factors with more variance. Afterwards, the root 

mean square error of calibration (RMSEC), root mean 

square error of cross-validation (RMSECV), determination 

coefficient of calibration (R2C), and determination 

coefficient of cross-validation (R2CV) were the statistical 

parameters used to evaluate each model performance. The 

models with fewer factors and better RMSE and R2 values 

were selected as the best for each method (PLSR and PCR). 

Thereafter, the best calibration models were used to predict 

the dataset of independent samples. The models were 

validated using RMSECV and RMSEP to quantify their 

precision, and R2C and R2P to quantify their fit. 

 

RESULTS AND DISCUSSION 

Chlorophyll content 

Figure 3 shows the chlorophyll content responses of 

each cultivar and their standard deviation. The results 

obtained for IAC 5000 corroborate those of Boaretto et al. 

(2014), who tested two soil water stress levels. Cultivar did 

not affect the range of chlorophyll contents, which had 

similar means and high standard deviations in all cases. 

Both fertigation doses (Figure 3A and 3B) produced similar 

and indistinguishable ranges of chlorophyll content, also 

influenced by high standard deviations.  

Since physiological development time is a factor in 

the variation in chlorophyll content, the same analysis was 

applied for three weeks and under stress conditions (Figure 

3C). Such descriptive statistics reinforce that cultivar and 

fertigation rate variation factors do not affect chlorophyll 

content. However, physiological development time and 

stress have a greater influence on chlorophyll contents.
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FIGURE 3. Characterization of chlorophyll measurements separated by cultivar for A) full-dose treatment, B) half-dose 

treatment, and C) development time.  

 

A close relationship was found between chlorophyll 

contents using the analytical method and the portable 

chlorophyll meter (SPAD) (Figure 4). This relationship was 

better expressed by a linear model in a wide range of 

chlorophyll (Chl) contents, although most authors agree that 

nonlinear models are more suitable for the relationship 

between portable measurements and real Chl contents 

(Yang et al., 2019; Kalaji et al., 2017; Silva et al., 2016; 

Rigon et al., 2012). This may be related to Chl uniform 

distribution and absence of multiple spreading associated 

with leaf thickness, as the leaves used were from young 

seedlings (Marenco et al., 2009). 

Determination coefficients were 0.76, 0.57, and 0.77 

for Chl a, Chl b, and Chl t, respectively. These are similar 

to those reported by Jangpromma et al. (2012) for sugarcane 

under water stress. These authors, however, performed a 

separate correlation analysis for each treatment. In turn, we 

intended to create a functional predictive model for a wide 

range of Chl contents.
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FIGURE 4. Relationship between portable SPAD chlorophyll meter readings and the contents of A) chlorophyll a, B) chlorophyll 

b, and C) total chlorophyll using the laboratory reference method. 

 

The SPAD Chl meter is designed for leaf chlorophyll 

quantification and has proven to be precise for fast and 

nondestructive measures of Chl content in several crop 

species (Beresel et al., 2017; Riccardi et al., 2014; Sala et 

al., 2013; Rigon et al., 2012). However, leaf chlorophyll 

contents are affected by environmental factors, leaf traits, 

and crop nutritional conditions (Xiong et al., 2015). Given 

these influences and to increase its accuracy, the SPAD 

must be calibrated for each cultivar and species. 

Furthermore, as it is a handheld and portable device, it 

requires a sampling procedure before measuring 

chlorophyll contents in sugarcane seedlings. 

Spectral image processing 

Mean spectra were calculated by exploratory 

analysis for each spectral response (reflectance, absorbance, 

and fluorescence), and the first inspection implemented to 

identify key response regions for each optical property 

(FIGURE 5). 

When examining the average reflectance spectra in 

Figure 5A, we can point out a high reflectance region near 550 

and 620 nm wavelengths, which are highly correlated with 

chlorophyll contents (Phetpan et al., 2018). By evaluating the 

average absorbance spectra (Figure 5B), we can note 

absorption at the wavelengths of 490, 570, 580, 590, and 600 

nm. Also, in Figure 5C, we can see a satisfactory fluorescence 

response for excitation at 405 nm, while for excitation at 470 

nm (Figure 5D) there was a significantly larger response for 

the range of 480 to 580 nm. However, this region is associated 

with a reflection from the 470 nm excitation source. Since red 

band fluorescence emission overlaps the long-wavelength 

range of the chlorophyll absorption spectrum, strong 

reabsorption occurs (Lu & Lu, 2020). 
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FIGURE 5. Mean spectral response for A) Reflectance, B) Absorbance, C) Fluorescence 405 nm, and D) Fluorescence 470 nm.  

 
Prediction models 

The variable selection method based on correlation 

spectrum was also evaluated for the model development. It 

only improved model performance for absorbance response, 

wherein the threshold was set at 0.3 (absolute value               

of correlation coefficient). Furthermore, all spectral regions  

with lower absolute values of correlation coefficient were 

not considered in the model development (FIGURE 6). To 

select the best model, the predictive capacity was assessed 

using RMSEP (root mean square error of prediction) for 

accuracy and R2P (determination coefficient of prediction) 

for fit (TABLE 1). 

 

 

FIGURE 6. Correlation spectrum for total chlorophyll content in the absorbance analysis. 
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TABLE 1. Performance of Principal Component Regression (PCR) and Partial Least Squares Regression (PLSR) models for 

prediction of total chlorophyll in each excitation source evaluated. 

Method LVs/PCs R2C RMSECV R2P RMSEP 

Total chlorophyll prediction using Reflectance Response  

PLSR 11 0.858 7.420 0.630 8.525 

PCR 16 0.859 7.309 0.638 8.584 

Total chlorophyll prediction using Absorbance Response  

PLSR 11 0.861 7.446 0.718 7.665 

PCR 18 0.859 7.413 0.703 7.585 

Total chlorophyll prediction using 405 nm Fluorescence Response 

PLSR 4 0.884 5.385 0.626 8.142 

PCR 4 0.884 5.384 0.442 9.584 

Total chlorophyll prediction using 470 nm Fluorescence Response 

PLSR 7 0.439 10.781 0.241 11.180 

PCR 8 0.399 10.740 0.245 11.010 

Legend: PCR - Principal Component Regression; PLSR - Partial Least Squares Regression; R2C - coefficient of determination of calibration; 
RMSECV - root mean square error of cross-validation; R2P - coefficient of determination of prediction; RMSEP - root mean square error of prediction. 

 

The correlation spectrum clearly shows an inversely 

proportional relationship between spectral response and 

chlorophyll content, with the entire spectrum in the negative 

region (FIGURE 6). The regions (spectral signatures) with 

the highest correlation values were 480, 490, 500, 600, 630, 

and 640 nm. Jay et al. (2017) reported that chlorophyll 

pigments have the highest absorbance peaks within the blue 

(428 to 453 nm) and red (around 641 and 661 nm) regions. 

We also observed higher correlation values for spectra near 

the blue (480 to 500 nm) and red (640 to 660 nm) regions. 

The spectral region beyond 650 nm has the lowest 

correlation coefficients, which is because relatively low 

chlorophyll contents are enough to saturate absorbance in 

the red region (Croft et al., 2015).  

Table 1 shows that the best predictive models 

resulted from absorbance analysis with higher R2P (i.e., 

better fit) and lower RMSEP (i.e., better accuracy). The best 

model was selected based on the number of latent variables 

or principal components. Such criteria were used to reduce 

model complexity since R2C and R2P values were quite 

similar for both methods. In short, the best model obtained 

in this study were selected from absorbance analysis 

through variable selection and the PLSR method. 

Consequently, the absorbance based predictive 

model presented a determination coefficient value with the 

analytical method (R2 = 0.72) close to that presented by the 

SPAD sensor (R2 = 0.77). Based on these results, we can 

conclude that it is possible to implement the VIS absorbance 

based predictive model working with a similar performance 

to the SPAD meter. 

The model obtained in our study performed better 

than those from other studies wherein hyperspectral 

imaging and multivariate analysis were used (Wu et al., 

2016) or even with the use of more sophisticated 

multivariate regression methods and a broader 

electromagnetic spectrum region (Martins et al., 2021). 

Croft et al. (2015) assessed sugarcane chlorophyll 

content using hyperspectral images with a high 

determination coefficient (0.97) but did not assess the 

infrared region, which provided less spectral information 

than ours. However, they identified seven optimal bands 

(495 nm, 555 nm, 655 nm, 675 nm, 705 nm, 915 nm, and 985 

nm), which is consistent with our study where 560 nm was 

the region of highest absorbance in sugarcane chlorophyll. 

Therefore, the method based on spectral image 

processing may provide a chlorophyll measurement 

equivalent to that of SPAD, with the advantage of covering 

the entire leaf area, thus enabling an automated chlorophyll 

measurement technique. 

 

CONCLUSIONS 

According to our results, the best model to predict 

total chlorophyll content was obtained with absorbance 

response in spectral images within the visible spectrum, 

using variable selection and the PLSR method. The 480, 

490, 500, 600, 630, and 640 nm wavelengths were identified 

as spectral signatures for total chlorophyll content. Lastly, 

the spectral image processing-based method can provide a 

chlorophyll measurement equivalent to that of SPAD, with 

the advantage of covering the entire leaf area, enabling an 

automated chlorophyll measurement method.    
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