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ABSTRACT
The objective of the study was to present mathematical models and strategies for fitting equations 
to estimate dry biomass for tree species in forest restoration areas. The presence of outliers was 
analyzed in each fitted equation using values of the matrix H, leverage points, means of standard 
and studentized residuals, and of influential points through DFFITS, DFBETAS and COOK 
distance values. Furthermore, the normality, homoscedasticity and independence of residuals 
were checked. The accuracy of the fitted equations was evaluated by means of the R2

adj., Syx, 
analysis of residuals, and AIC and BIC criteria. The results showed that the model for estimating 
dry biomass as a function of the variables Dc2, DBH2, Hc2 and DBH provides the more accurate 
solution, with Syx = 40.91% and R2

adj. = 0.92. We concluded that the performance of this equation 
improves when adjusted to data stratified by classes of height-diameter ratio, which reduces the 
value of the estimated error.
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1. INTRODUCTION

Forests are important for fixing carbon, absorbing 
it from the atmosphere in the form of carbon dioxide 
and converting it into carbohydrates to form wood 
tissues, leaves, seeds and fruits (Rochadelli, 2001). 
This process promotes the reduction of the concentration 
of greenhouse gases (GHG) and, consequently, of the 
risk of global warming caused by their high levels in 
the atmosphere.

Forests play an important role in the global 
carbon cycle, being responsible for about one-third of 
emissions of anthropogenic carbon dioxide (CO2) to 
the atmosphere. However, human activities in forests 
have also been a source of emission of carbon dioxide 
into the atmosphere, with deforestation contributing 
with about a fifth of annual anthropic emissions of 
GHG, especially in the tropics. Planting forests for 
the recovery of degraded areas has become one of the 
main measures to mitigate global warming, because 
carbon is stored permanently.

Measuring how well forests store carbon is essential 
because it allows not only knowing the accumulated 
biomass but also highlighting the importance of it 
within the climate change scenario. Besides providing 
information on the quantity of CO2 released in the 
case of slash-and-burn, biomass estimates allow the 
monitoring and evaluation of export of nutrients during 
forest exploitation (Higuchi  et  al., 1998). The term 
biomass corresponds to the organic matter stored in 
a particular ecosystem, composed mainly of carbon 
structures and mineral elements (Larcher, 1986).

Forest biomass can be quantified by direct and 
indirect methods. The direct method is destructive, 
because the tree is chopped down and its components 
are weighted. The indirect method is performed 
by means of estimates, which can be made with 
satellite images (Goetz et al., 1999; Chen et al., 2003; 
Drolet et al., 2005; Watzlawick et al., 2009; Corte & 
Sanquetta, 2007; Frankenberg et al., 2011; Song et al., 
2013) or via mathematical models (Rezende et al., 2006; 
Urbano et al., 2008; Morais et al., 2013b; Melo et al., 
2014). In the case of mathematical models, the biomass 
is estimated as a function of variables easily measured in 
forest inventories. Linear and non-linear mathematical 
models can be used in such estimations, but non-linear 
models are preferred (Baskerville, 1972; Ketterings et al., 

2001; Gehring et al., 2004; Sanquetta et al., 2004; Segura 
& Kanninen, 2005; Wang, 2006; Soares et al., 2006; 
Kenzo  et  al., 2009; Moore, 2010; Addo-Fordjour & 
Rahmad, 2013), because their application enables the 
estimation in more extensive forests areas.

However, modeling should be done with caution 
because various factors affect biomass production. 
Some examples are the species composition, stage of 
forest development, nutritional status and edaphological 
characteristics (Larcher, 1986), in addition to factors 
related to respiration and photosynthesis (Kramer & 
Koslowski, 1972) and the ecological groups to which 
the species belong to (Luo et al., 2014; Barbosa et al., 
2014). Vogel et al. (2006) still mention that biomass 
estimation of a forest depends on its vegetation type 
and its location.

The objective of this work was to present alternative 
mathematical models and strategies for fitting 
equations to estimate the dry biomass of species in 
forest restoration areas.

2. MATERIAL AND METHODS

2.1. Data collection

The data for this study were collected in a restoration 
forest area in the municipality of Seropédica, RJ, in the 
coordinates 22° 43’ 34” S and 43° 38’ 34” W. The climate 
of the region, according to the Köppen classification 
is Aw (Brasil, 1992), is tropical with rainy summer. 
According to data collected in the last 20 years by the 
PESAGRO-RJ meteorological station, the closest to the 
place of study, the average annual rainfall is 1,245 mm 
and the average annual temperature is 23.7 °C, with a 
relative humidity of 69%.

The data used in this study were obtained from 
111 trees, distributed in 50 different species and 
contemplating all the diametric structure of individuals 
measured in the inventory. The species sampled were: 
Acacia polyphylla DC., Aegiphila sellowiana Cham, Albizia 
polycephala, Alibertia concolor K. Schum, Anadenanthera 
macrocarpa (Benth.) Brenan, Anadenanthera falcata 
(Benth.), Bauhinia forficata Link., Bixa orelana L, 
Caesalpinia echinata Lam, Caesalpinia ferrea Mart, 
Caesalpinia peltophoroides (Benth.), Cecropia pachystachya 
Trec, Cedrela fissilis (Vell.), Centrolobium robustum 
(Vell) Mart. ex Benth., Cordia superba Cham, Cordia 
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trichotoma (Vell.) Arrab. ex Steud., Croton urucurana 
Baill., Cytharexyllum myrianthum Cham. , Dalbergia 
nigra (Vell), Enterolobium contortisiliquum (Vell.) 
Morong, Erythrina mulungu Mart., Eugenia uniflora 
L., Genipa americana L., Gochnatia polymorpha (Less) 
Cabr., Guarea guidonia (L.) Sleumer, Guazuma ulmifolia 
Lam., Helietta apiculata Benth., Inga uruguensis Hooker 
at Arnott, Jacaranda mimosifolia D. Don, Lafoensia 
glyptocarpa Kohne, Lithraea molleoides (Vell.) Engl., Luehea 
divaricata Mart., Mabea fistulifera Mart., Machaerium 
stipitatum (DC.) Vog, Melia azedarach L., Mimosa 
caesalpiniaefolia Benth., Myroxylon peruiferum L. f, 
Peltophorum dubium (Spreng), Piptadenia gonoacantha 
(Mart.) J.F.  Macbr., Psidium guajava, Pterocarpus 
violaceus Vogel, Samanea saman (Jacq.) Merr., Schinus 
terebinthifolius Raddi, Schizolobium parahyba (Vell.) Blake, 
Syzygium malaccense (L.), Handroanthus chrysotricha 
(Mart. ex DC.), Handroanthus impetiginosa (Mart ex, 
DC.), Handroanthus tuberculosis (Mart. ex DC.), Trema 
micrantha (L.) Blume and Triplaris americana L.

Each tree was classified in their respective ecological 
group and measured for canopy diameter (CD), diameter 
at 1.30 m above ground (DBH) and total height (Ht). 
Each tree was felled and its commercial height (Hc) 
up to a stem diameter equal to 5 cm was measured.

Different fractions of forest biomass from each tree 
were separated using a complete dissection technique 
and weighted. Each tree was separated into the following 
compartments: bole, live branches, dried branches, 
leaves and roots. All components of the tree were 
separated and weighed on a scale in the field. For the 
root sampling, a 0.50 m deep trench was opened around 
each felled tree and the roots with a diameter equal or 
greater than 1 cm were pulled out. The removed roots 
were cleaned and then weighed. Finally, the total green 
weight of each felled tree was obtained by the sum of 
all compartment weights.

After the weighing (total green weight) of each 
compartment in the field, samples were collected and 
stored in plastic bags to prevent moisture loss and sent 
to the laboratory for analysis. In the laboratory, the 
samples were weighed in a precision scale to obtain the 
green weight of the sample. After drying, the dry weight 
of the material was estimated and, consequently, the 
moisture content according to the following Equation 1:

% .100GW DWMC
DW
− =  

 
	 (1)

Where:

MC = moisture content (%); DW= dry weight (kg); 
GW= green weight (kg).

The dry weight of each compartment was estimated 
by multiplying the total green weight obtained in the 
field by its moisture content (%). The total dry biomass 
of each tree was obtained by the sum of the dry weights 
of all compartments.

During the felling of 111 trees in the field, wood 
disks were removed at DBH level in each tree to quantify 
the wood basic density (d), which was determined 
according to the Equation 2:

Md
V

= 	 (2)

where:

d = wood basic density (g.cm-3); M = dry mass (g); 
V = saturated volume (cm3).

2.2. Mathematical modeling

Sixteen mathematical models were fitted by means 
of 5 different strategies in order to estimate the total dry 
biomass as a function of the variables: diameter at 1.30 m 
above ground (DBH), total height (Ht), commercial 
height (Hc), average canopy diameter (CD) and wood 
basic density (d) (Table  1). These parameters were 
chosen because they are the basic properties of a tree, 
besides being easy to measure. Density was included 
as an auxiliary variable attempting to improve the 
performance of the models to estimate tree biomass. 
The estimated descriptive statistics for each variable 
analyzed were mean, standard deviation, coefficient 
of variation, mean standard deviation, absolute and 
percentage sampling error, and confidence interval 
(Péllico & Brena, 1997).

In the strategy I, the single-entry models 1 to 6 were 
fitted only in function of the DBH. In the double-entry 
models 7 to 12, the adjustment was done for total dry 
biomass as a function of the independent variables 
DBH and Ht.

In the strategy II, the models 1 to 6 were fitted only 
in function of the basic density of the wood. The models 
7 to 12 were fitted using the basic wood density and the 
DBH as independent variables. In the third strategy, the 
models 13 and 14 proposed by Chave et al. (2005) were 
considered and denominated Chave 1 and 2, respectively. 
These models are appropriate for inclusion of wood 
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basic density of total dry biomass as an independent 
variable, according to Nogueira et al. (2008).

In the strategy IV, a modeling via stepwise procedure 
was performed using the variables DBH, Ht, Hc, CD 
and d in their normal and operational forms. In the 
Type 1 model, variables were used only in their normal 
form. In the Type 2 model, the transformations made 
were: inverse, squared, logarithmic, square of the 
inverse, logarithm of the inverse and all combinations of 
them, totaling 66 possible variables. In both cases, after 
analyzing the correlation matrix between variables, it was 
possible selecting the best mathematical combination 
by the stepwise method.

Finally, the model with the best performance used 
in the previously described strategies was applied in 

the strategy V. For this reason, the fit of the model 
was carried out with the data stratified into classes of 
diameter, height-diameter ratio, and ecological group 
of species. The diameter classes were: DBH < 5 cm 
(Group A), with 67 trees; 5 ≤ DBH < 9 cm (Group B), 
with 37 trees; and DBH ≥ 9 cm, with 7 trees. The Ht/DBH 
ratio classes were: Ht/DBH < 1 (Group C), with 39 trees; 
and Ht/DBH > 1 (Group D), with 72 trees. Finally, the 
ecological group classes were: Pioneer (Group F), with 
80 trees; and Secondary (Group G) species, with 31 trees. 
As there was no combination of stratification criteria, 
the number of trees used for adjustment in each class 
was considered sufficient, ensuring the control of tree 
variability in the diameter classes.

Table 1. Adjusted mathematical models to estimate total biomass of trees in forest restoration areas.

Nº Model Mathematical Structure

1 Linear 0 1 y x e= + +β β

2 Trorey 2
0 1 2  y x x e= + + +β β β

3 Assmann ( )0 1 1 /y x e= + +β β

4 Henricksen ( )0 1 lny DBH e= + +β β

5 Stofells ( ) ( )0 1ln lny DBH e= + +β β

6 Curtis ( ) ( )0 1ln 1/y DBH e= + +β β

7 Schumacher-Hall ( ) ( ) ( )0 1 2ln  ln  lny DBH Ht e= + + +β β β

8 Spurr ( )2
0 1 2 .y DBH Ht e= + +β β

9 Meyer 2 2
0 1 2 3 4     y DBH DBH DBHHt DBH Ht e= + + + + +β β β β β

10 Stoate ( )2 2 2
0 1 2 3   y DBH Ht DBH Ht e= + + + +β β β β

11 Sanquetta 2 2
0 1 2  y DBH DBH Ht e= + + +β β β

12 Naslund ( )2 2 2 2
0 1 2 3 4   .  y DBH DBH Ht DBH Ht Ht e= + + + + +β β β β β

13 Chave 1 ( ) ( ) ( ) ( )0 1 2 3ln ln ln  lny DBH Ht d e= + + + +β β β β

14 Chave 2 ( ) ( ) ( )( ) ( )( ) ( )2 3
0 1 2 3 4ln  ln  ln  ln  lny DBH DBH DBH d e= + + + + +β β β β β

15 Type 1Model 0 1 2 3 4    y d DBH Hc Dc e= + + + + +β β β β β

16 Type 2 Model 2 2 2
0 1 2 3 4   y DBH DBH Hc Dc e= + + + + +β β β β β

Y = total dry biomass; xi = independent variable, which can assume the values of DBH = diameter at 1.30 m from the ground 
(cm); Ht = total height (m); Hc = commercial height (m); CD = average canopy diameter (cm); d = basic density (g.cm-3) and their 
transformations, namely, inverse, squared, logarithmic, square of the inverse, logarithm of the inverse and all combinations of them; 
ln = natural logarithm; e = estimation error. The models 1 to 12 were adapted from Scolforo (2005) and the models 13 and 14 from 
Chave et al. (2005).
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Significant differences between the equations fitted 
with the entire data set and appropriately stratified, 
considering the different strategies previously mentioned, 
were examined by means of an identity test between 
the models (Regazzi, 1992).

The accuracy of the equations, adjusted in all cases, 
was evaluated by means of the adjusted coefficient of 
determination (R2

adj.) (Equation 3), standard error 
of the estimate in percentage (Syx%) (Equation 4), 
graphical analysis of residuals and significance of the 
coefficients by means of a t-test, at 95% probability level. 
In addition, the Akaike information criterion (Akaike, 
1998) (Equation 5) and the Bayesian information 
criterion (Schwarz, 1978) (Equation 6) were evaluated.

( ) ( )
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Where: R2
adj. = adjusted coefficient of determination; 

Syx = absolute standard error of the estimate; 
Syx% = standard error of the estimate in percentage; 
yi = observed dry biomass (kg); ŷ = estimated dry 
biomass (kg); y  = arithmetic mean of observed dry 
biomass (kg); n = number of observed data; p = number 
of coefficients of the model; SQres. = sum of squares of 
residuals; SQtotal = total sum of squares; AIC = Akaike 
Information Criterion; BIC = Bayesian Information 
Criterion; ei = error estimate and ln = natural logarithm.

In addition, a diagnosis of the models was done 
for each adjusted situation, as described in Scolforo 
(2005). The projection matrix H was analyzed for 
leverage points to check the occurrence of outliers 
in the data base, and the standard residuals (rp) and 
Studentized residuals (rs) were used to detect outliers 
in the total dry biomass variable. The significant 
presence of discrepant observations was verified 
by the Bonferroni’s test at 95% probability level. 
The detection of influential points on model fitness 
was performed by means of DFFITS, DFBETAS and 
COOK distance values. The Shapiro‑Wilk’s test, White 
test, and Durbin‑Watson statistics were applied to 
check normality, homoscedasticity and independence 
of the residuals, respectively, at 95% probability level, 
applying the box-cox transformation when needed. 
When appropriated, multicollinearity was also examined 
to check the existence of correlation between the 
independent variables. The adjustments of the models 
as well as the statistical analysis applied in this research 
were done with the softwares R (R Development Core 
Team, 2001) and SAS (Statistical Analysis System).

3. RESULTS AND DISCUSSION

The statistics in Table 2 indicate that the variable total 
dry biomass (DW) had one of the greatest variability 
among tree volumes in the forest restoration area. 
The coefficient of variation for this variable was 140% 
and the sampling error approximately 20%. An error 
less than 10% indicates that the sample is representative 
of the population to estimate the variable in question 
(Péllico Netto & Brena, 1997). However, the sampling 
error obtained in this research can be considered low 
in view of the high variability of dry biomass among 

Table 2. Descriptive statistics for the selected variables.

Statistics DBH (cm) Ht (m) Hc (m) Dc (cm) PS (kg)
x 6.17 5.85 3.08 3.33 16.98

2s 19.62 5.38 3.84 2.63 572.78

s 4.43 2.32 1.96 1.62 23.93
CV 71.85 39.66 63.70 48.72 140.99

xs 0.33 0.17 0.15 0.12 1.78

e 0.65 0.34 0.29 0.24 3.52

( ) %e 10.57 5.83 9.37 7.17 20.74

IC 5.51 ≤ Μ ≤ 6.82 5.51 ≤ Μ ≤ 6.19 2.79 ≤ Μ ≤ 3.37 3.09 ≤ Μ ≤ 3.57 13.45 ≤ Μ ≤ 20.50
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trees in this forest community (Melo  et  al., 2014; 
Morais et al., 2013a).

The error was less than 10% for the variables 
DBH, Ht and Hc, confirming the representativeness 
of the sample. The low mean values of these variables 
characterize young stands in the development phase. 
Furthermore, all trees scaled in the study area belong 
to the ecological group of pioneer or secondary species.

The presence of outliers and influential points was 
analyzed in all the adjustment strategies, in addition 
to normality, homoscedasticity and independence of 
residues. Only in the case of the Type 2 model adjusted 
according to the strategy V, the values of the matrix H, 
Standardized (rp) and Studentize (rs) residuals indicated 
three observations as possible leverage points or outliers 
in relation to the dependent variable Dry Weight. This is 
owing to values of the matrix H above the critical value 
of 0.1351 (3p/n) and of residues within the acceptable 
limit (-3 ≤ rp or rs ≤ 3). However, the non-significant 
(p-value > 0.05) result of the Bonferroni test at 5% 
probability indicated that these observations are not 
considered as discrepant values. The DFFITS, DFBETAS 
and COOK distance values indicated some influential 
points in the fit of the Type 2 model. An alternative to 
improve the fit of the model in the presence of these 
points is to use robust regression (Cunha et al., 2002).

The coefficients and statistics to adjust the models used 
in the strategy I are presented in the Table 3. The lower 
values of adjusted coefficients of determination were 
obtained when DBH alone was used to explain the total 
dry biomass of trees (models 1 to 6). The equations 
derived from these models also provide the largest 

errors of estimate (Syx), reaching values greater than 
100%, characterizing low accuracy, in addition to high 
AIC and BIC values. When the variable total height 
was included in the models (7 and 12), there was 
an increase in accuracy of the estimated dependent 
variable, which was characterized by a decrease of 
AIC and BIC values and the standard error of the 
estimate, which varied between 60 and 80%. However, 
this accuracy is still low when compared with that 
obtained in other reaserchs in which double entry 
variables were applied in models for estimating tree 
biomass in native forests (Watzlawick  et  al., 2009; 
Rezende et al., 2006). An alternative would be to apply 
the models to the species separately, thus reducing the 
variability caused by the characteristics of different 
species. Good results can be obtained even when the 
models include only the diameter (Litton & Kauffman, 
2008; Melo et al., 2014). In the work of Melo et al. (2014), 
the best models to estimate the biomass of “caixeta” 
(Tabebuia cassinoides (Lam.) DC.) were the ones that 
included only the diameter as independent variable.

For the strategy I, the Schumacher-Hall model 
was the one that provided the best estimates of dry 
biomass, even though it did not provide the best 
adjusted statistics and the largest adjusted coefficient 
of determination (R2

adj.).  This model was used by 
Scolforo et al. (2008) to estimate the amount of biomass 
and carbon in different forest physiognomies in the 
State of Minas Gerais, demonstrating its applicability. 
This model was selected by means of graphical analysis 
of residuals, which presents a distribution without 
trends when compared to other models (Figure 1).  
The Shapiro‑Wilk’s test (normality) and Durbin-Watson 

Table 3. Coefficients and adjusted statistics of the single- and double-entry models adjusted according to the 
strategy I.

Nº β0 β1 β2 β3 β4 Syx % R2
adj. AIC BIC

1* -10.58* 4.60* 81.69 0.67 59014.68 59020.10
2* -0.02 1.42 0.16* 75.80 0.71 57057.78 57065.68
3* 32.69* -76.62* 123.84 0.23 69265.48 69270.90
4* -23.18* 24.30* 106.60 0.43 65573.48 65578.89
5* -0.47* 1.62* 79.59 0.68 58372.67 58378.09
6* 3.59* -6.50* 121.47 0.26 68789.32 68794.74
7* -2.04* 0.91* 1.62* 83.16 0.65 59344.97 59352.87
8* 8.44* 0.02* 78.64 0.69 58077.48 58082.90
9* -11.30* -0.48 0.12 3.93* 0.00 64.33 0.79 52788.96 52801.94

10* -1.97 0.14* 0.31* 0.00 62.72 0.80 52277.86 52288.32
11* 5.93* 0.16* 0.00 76.59 0.71 57312.86 57320.76
12* -1.49 0.15* -0.01 0.01 0.26* 62.95 0.80 52254.92 52267.90

*Significant at 95% probability level.
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statistic were not significant (p-value > 0.05), indicating 
that the residuals are normally distributed and are not 
correlated among themselves. The White’s test indicated 
the presence of heteroscedasticity (p-value < 0.05), 
resulting in inefficient and biased estimators for the 
variances, consequently invalidating the significance 
tests for the regression equation. A solution to this 
problem was to use weighted regression using the 
weight 

2
1 
.i

i
w

DBH Ht
= . The weighted equation obtained 

was ( ) ( ) ( )ln 2.0375 0.9137 ln 1.6240lny DBH Ht= − + +  with 

the adjusted statistics (R2
adj. = 0.65) and (Syx% = 83.16%).

When DBH and the wood basic density were used 
as independent variables in the modeling (strategy II), 
the performance of the models 7 to 12 was similar to 
that observed in the strategy I, when evaluating the 

obtained statistics for the adjustments. Strong emphasis 
should be put on single-entry models (models 1 to 6), 
revealing that the variable wood basic density should 
not be used alone to explain the total dry biomass. 
This was demonstrated by the substantial increase of 
AIC and BIC values, errors greater than 140% and the 
R2

adj. values tending to zero (Table 4). This implies that 
the changes in the variable basic density explained 
little of the dry biomass variation. For this strategy, the 
best performance was also achieved with the adjusted 
model of Schumacher-Hall, as seen in the graphical 
distribution of residuals (Figure 2).

The adjustment in strategy III (Table 5), the models 
proposed by Chave et al. (2005), which also include 
wood basic density as an independent variable, presented 

Figure 1. Residual graphic distribution of the single- and double-entry models adjusted for estimating total biomass 
in the strategy I.
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Table 4. Coefficients and adjusted statistics of the single- and double-entry models adjusted according to the 
Strategy II.

Nº β0 β1 β2 β3 β4 Syx % R2
adj. AIC BIC

1 5.42 15.29 140.95 0.00 72454.77 72460.19
2 -21.93 124.08 -100.14 140.39 0.01 72246.56 72254.46
3 22.34* -4.29 140.42 0.01 72362.53 72367.95
4 19.51* 8.85 140.62 0.00 72397.79 72403.21
5 2.33* 0.54 148.67 0.00 73769.78 73775.20
6 2.44* -0.23 148.65 0.00 73765.34 73770.76
7* 0.07 1.71* 1.03* 76.82 0.70 57389.41 57397.31
8* 5.51* 0.40* 75.71 0.71 57140.47 57145.89
9* -13.68* 1.99* 0.12 21.86* 0.03 72.41 0.73 55706.40 55719.38

10* 0.11 0.20* 16.22* 0.03 74.46 0.72 56505.78 56516.25
11* 5.32* 0.07 0.27 75.77 0.71 57049.83 57057.74
12* -1.06 0.29* -0.24 4.83* 2.94 73.28 0.73 55999.43 56012.41

*Significant at 95% probability level.

Figure 2. Residual graphic distribution of traditional models adjusted for estimating total dry biomass in the 
strategy II.
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adjusted statistics similar to the Schumacher-Hall 
model used in strategies I and II. As a comparison, 
it was clear that the Schumacher-Hall model fitted 
as a function of DBH and Ht (Strategy I) stood out 
for providing the best results for the standard error 
of the estimate (67.42%) and the adjusted coefficient 
of determination (0.77). Thus, the inclusion of wood 
basic density of the species, regardless of the model 
adopted, is not an technically feasible option when 
the intention is to estimate the dry biomass in forest 
restoration areas. This is why the model that included 
this variable did not generate significant gains in 
accuracy, as showed in the graphical analysis of residuals 
(Figure 3). Furthermore, this variable is difficult to 

be measured, as highlighted by Chave et al. (2005), 
justifying the use of DBH and Ht alone as they are 
more accessible to be measured. 

The best equations were derived from modeling 
by the stepwise method for variable selection, in 
particular in the Type 2 model. Of the 66 evaluated 
variables, DBH, DBH2, (Hc)2 and (CD)2 were 
selected to compose the model and resulted in an 
adjusted equation with coefficient of determination 
(R2

adj.)= 0.92 and the lowest standard error of the 
estimate (40.91%). The residuals of this equation 
presented homogeneous distribution. However, 
this equation still presented a clear tendency to 

Table 5. Coefficients and adjusted statistics of the models used in the adjustment strategies III (Models 13 and 14) 
and IV (Models 15 and 16).

Nº β0 β1 β2 β3 β4 Syx % R2
adj. AIC BIC

13* -1.10* 1.07* 1.27* 0.94* 71.17 0.75 55393.48 55403.94
14* -0.18 2.19 -0.24 0.04 1.04* 76.62 0.71 57096.77 57109.74
15* -27.66* 14.00* 2.64* 3.44* 3.32* 58.72 0.83 50540.10 50553.08
16* -0.97 -0.13* 0.12* 0.28* 0.55 40.91 0.92 60753.60 60766.58

*Significant at 95% probability level.

Figure 3. Residual graphic distribution of models adjusted according to the strategies III (Keys 1 and 2) and 
IV (type 1 and 2).
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overestimate dry biomass results, mainly in the case 
of trees with smaller diameters (Figure 3).

The Shapiro-Wilk’s test and Durbin-Watson statistics 
were not significant (p-value > 0.05), indicating that 
the residuals were normally distributed and were not 
correlated among themselves, while the White test was 
significant (p-value < 0.05), showing the presence of 
heteroscedasticity of residuals. To correct this problem, 
two alternatives were used: the first consisted in the 
transformation of the dependent variable, and the second 
in the use of weighted regression. The transformation 
of the dependent variable was identified from a family 
of data transformations Y Y′ = λ suggested by Box-Cox. 
In the present case, λ ranged from -1 to 1, with an 
interval of 0.1.  Homogeneity of residuals was not 

achieved even after Box-Cox transformation. Because 
of that, we decided to use weighted regression, applying 
the weight 

2
1
.i

i
w

DBH Ht
= . The resulting equation was: 

2

2 2

 0.97316 0.13167 0.121527 

0.284539 0.555392 

y DBH DBH

Hc Dc

=− − + +

+
, with 

R2
adj

. = 10.60 and Syx% = 88.19%.

The best adjusted statistics were obtained when 
the Type 2 model was applied to adjust the set of 
equations with stratified data. The adjusted coefficients 
of determination (R2

adj.) were higher than those obtained 
with other adjustment procedures, reaching values 
greater than 0.90. Moreover, there was a clear reduction 
in the standard error of the estimate (Syx%), reaching 
errors close to 16% when the number of diameter 
classes was increased (Figure 4). Also, both statistical 

Figure 4. Residual graphic distribution of the Type 2 model adjusted to the stratified data of Ht/DBH ratio (A and B), 
diameter classes (C, D and E) and ecological categories (F and G).
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values of AIC and BIC presented a significant reduction. 
However, these results occurred only in the case of 
trees of larger size, while the error remained high in 
trees of smaller diameter (Table 6). Data stratification 
using the ratio Ht/DBH indicates the best strategy. 
In this situation, the errors were smaller than 50% and 
the graphical distribution of residuals homogeneous 
when compared to other strategies. Additionally, the 
adjusted coefficients of determination were acceptable 
for biomass estimation with the obtained equations.

4. CONCLUSION

Schumacher-Hall model should be used to estimate 
the total dry biomass in forest restoration areas when 
only the variables diameter at 1.30 m above ground 
and total height are used as independent variables.

The inclusion of the variable wood basic density 
does not provide significant gains in accuracy of the 
equation, making its use impractical in mathematical 
models, besides the difficulty to be obtained. The average 
canopy diameter, commercial height and diameter at 
1.30 m above ground, which are easily measured in the 
field, are the variables that best explain the variation in 
total dry biomass. They should be used in the Type 2 
model, as independent variables, because they contribute 
to a more accurate equation when estimating the dry 
weight of native species in forest restoration areas.

Finally, to promote gains in accuracy of the estimation 
of the total dry biomass in the Type 2 model, the model 
should be adjusted to data stratified into classes for the 
height-diameter ratio (Ht/DBH).
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