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Abstract

Senescence-associated proteolysis in plants is a complex and controlled process, essential for mobilization of nutri-
ents from old or stressed tissues, mainly leaves, to growing or sink organs. Protein breakdown in senescing leaves
involves many plastidial and nuclear proteases, regulators, different subcellular locations and dynamic protein traffic
to ensure the complete transformation of proteins of high molecular weight into transportable and useful hydrolysed
products. Protease activities are strictly regulated by specific inhibitors and through the activation of zymogens to de-
velop their proteolytic activity at the right place and at the proper time. All these events associated with senescence
have deep effects on the relocation of nutrients and as a consequence, on grain quality and crop yield. Thus, it can be
considered that nutrient recycling is the common destiny of two processes, plant senescence and, proteolysis. This
review article covers the most recent findings about leaf senescence features mediated by abiotic and biotic stresses
as well as the participants and steps required in this physiological process, paying special attention to C1A cysteine
proteases, their specific inhibitors, known as cystatins, and their potential targets, particularly the chloroplastic pro-
teins as source for nitrogen recycling.
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Proteolysis is associated with leaf senescence

Leaf senescence is a physiological process critical for

plant survival. It is characterized by the dismantling of cel-

lular structures, massive degradation of macromolecules

and efficient relocation of nutrients from senescing leaves

to growing tissues or sink organs (Gregersen et al., 2008,

Krupinska et al., 2012, Avice and Etiene, 2014, Diaz-

Mendoza et al., 2014). This coordinated sequence of events

associated with senescence is triggered by the reprogra-

ming of thousands of genes, down- or up-regulated, in re-

sponse to specific senescence-promoting factors.

Accordingly, many hydrolytic enzymes targeted to degrade

proteins, lipids, nucleic acids and pigments are activated.

At the same time, basic metabolic activities are maintained

to ensure the processing of high molecular weight mole-

cules and the subsequent mobilization of the hydrolyzed

products to the phloem (Gregersen et al., 2008, Yang and

Ohlrogge, 2009, Roberts et al., 2012, Avila-Ospina et al.,

2014, Sakamoto and Takami, 2014).

Protein breakdown is one of the most important cata-

bolic processes associated with leaf senescence with an es-

sential role in nutrient recycling, especially nitrogen.

Changes in the temporal expression pattern of proteases

take place not only in nuclei but also in chloroplasts and mi-

tochondria to cooperatively ensure protein degradation into

amino acids, amides and ammonium (Diaz-Mendoza et al.,

2014, Roberts et al., 2012). As a result, a complex traffic of

proteins, peptides and amino acids takes place among cell

compartments involving chloroplasts, cytosol, special vesi-

cles and lytic vacuoles (Roberts et al., 2012, Carrion et al.,

2013, Avila-Ospina et al., 2014, Diaz-Mendoza et al.,

2014). Finally, the major part of the nitrogen is released as

ammonium after being re-assimilated into amino acids to

be exported via the phloem to developing grains, fruits and

tubers. In consequence, the timing of leaf senescence is of

pivotal importance for yield in crop species (Gregersen et

al., 2013). Figure 1 summarizes the whole set of events re-

lated to the proteolytic processes during leaf senescence.

Leaf senescence is induced by abiotic and
biotic stresses

Leaf senescence is a natural developmental process

but it is also closely linked to abiotic and biotic stresses.

This physiological set of events can be modulated by en-

dogenous and exogenous factors such as plant growth regu-

lators (abscisic acid, cytokinin, ethylene, salicylic acid),

sucrose starvation, dark, cold, heat, drought, salt, or wound.

Moreover, pathogen infection (bacteria, fungi, viruses) and
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phytophagous arthropod infestation can also promote or al-

ter senescence (Figure 1). There are numerous reports dem-

onstrating how abiotic stresses trigger leaf senescence by

reprograming specific subsets of senescence-associated

genes (SAGs) that are differentially expressed in distinct

tissues (Roberts et al., 2012, Diaz-Mendoza et al., 2014).

This has been reviewed in recent special issues published: J

Exp Bot vol. 65 and J Plant Growth Reg vol. 33 in 2014,

and Plants vol. 4 in 2015, as well as in other reviews from

previous years (Quirino et al., 2000; Yoshida, 2003; Guo

and Gan, 2005; Gregersen et al., 2008; Martinez et al.,

2008b). In contrast, information about the interplay be-

tween leaf senescence and biotic stresses is more limited,

particularly with respect to leaf senescence linked to phyto-

phagous pests. Regarding this interaction between senes-

cence and biotic stress, it is sometimes difficult to elucidate

which event comes first. Pathogen and pest lifestyles deter-

mine the developmental program of the host, and on the

other side, the developmental status of the host may affect

the outcome of the host-pathogen/pest interactions (Haf-

fner et al., 2015). Pathogen infection and herbivore infesta-

tion influence leaf senescence via modulation of the plant

metabolite status directly affecting primary metabolism or

by regulating levels of plant hormones (Masclaux-Dau-

bresse et al., 2010; Machado et al., 2013; Seifi et al., 2013,

Fagard et al., 2014).

There are a wealth of data analysing the relationship

between pathogens and plants. Likewise, induced-senes-

cence genes have been detected during the hypersensitive

response (HR) against incompatible bacteria and fungi as

well as interactions with viruses (Pontier et al., 1999,

Schenk et al., 2005, Espinoza et al., 2007, Fernandez-Cal-

vino et al., 2015). The same SAGs were overexpressed dur-

ing HR produced by fungal, bacterial and viral infection

(Fagard et al., 2014). In Arabidopsis and grapevine, tran-

scripts coding for aspartyl- and cysteine-protease (CysProt)

increased during senescence and as a part of plant re-

sponses during compatible viral interactions (Espinoza et

al., 2007). In tobacco, expression of the CysProt SAG12

was also induced during the HR against viruses and bacte-

ria (Pontier et al., 1999). Down-regulation of OsSAG12-1

in rice brings about early senescence and enhances cell

death when inoculated with Xanthomonas oryzae (Singh et

al., 2013). Biotic stresses mediated by pathogens induce N

mobilization in Arabidopsis (Masclaux-Daubresse et al.,

2010, Fagard et al., 2014). However, references about pro-

teolysis in leaf senescence upon arthropod feeding are oc-

casional. Very recently, Kempema et al. (2015) have

demonstrated that three SAGs, one of them SAG12, were
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Figure 1 - Physiological events involved in induced-senescence mediated by biotic/abiotic stresses. Multiple biotic and abiotic stresses induce leaf senes-

cence characterized by a dismantling of organelles and proteolysis, mainly from chloroplastic proteins. In consequence, protein breakdown and mobiliza-

tion from stressed tissues to growing and sink organs are the major metabolic features essential for nutrient recycling.



induced in Arabidopsis plants by infestation of the

hemipteran Bemisia tabaci. The green peach aphid, Myzus

persicae, when fed on Arabidopsis, induces the expression

of SAG13, SAG21 and SAG27 genes, cell death alongside

chlorophyll degradation (Pegadaraju et al., 2005). Petrova

and Smith (2015) demonstrated that the application of sali-

vary secretions of the planthopper Nilaparvata lugens to

rice induced host mRNAs associated with nutrient mobili-

zation.

Plant responses to confluent abiotic and biotic stres-

ses are not only the addition of the responses to independent

stress. Abiotic stress factors alter not only plant defence re-

sponses but also their susceptibility to biotic interactions

(Prasch and Sonnewald, 2013). The presence of an abiotic

stress may reduce or enhance susceptibility to a biotic pest

or pathogen and vice versa (Atkinson and Urwin, 2012).

Thus, dark-induced senescence in potato promoted feeding

and nymph development of the aphid Myzus persicae prob-

ably due to amino acid mobilization and phloem sap load-

ing (Machado-Assefh et al., 2014). Similarly, nitrogen

deficiency in barley seedlings induced molecular and meta-

bolic adjustments that trigger aphid resistance. This is be-

cause N-deficient leaves were enriched in amino acids and

sugars providing a more nutritive diet to phloem-feeding

insects (Comadira et al., 2015), The metabolic plant pro-

files demonstrated that plants were adapted to low N avail-

ability by reducing photosynthesis but not respiration or

protein turnover. The significance of this overlap and the

precise roles of biotic- and senescence-responsive path-

ways remain still unknown.

Interplay between proteases, protease
inhibitors and target proteins

Proteases

Among the more than 800 proteases identified in

plant genomes (Rawlings et al., 2016), serine-proteases and

CysProt have been described as the most abundant en-

zymes associated with leaf senescence in different plant

species (Roberts et al., 2012, Diaz and Martinez, 2013,

Bhalerao et al., 2003, Diaz-Mendoza et al., 2014, Kidric et

al., 2014a). Aspartic-, threonine- and metallo-proteases

also participate in this physiological process but their role

has been less documented (Graham et al., 1991, Roberts et

al., 2012). Expression studies have shown changes in the

temporal patterns and subcellular location of proteases dur-

ing senescence, which is consistent with alterations in pro-

teolytic activities (Breeze et al., 2011, Roberts et al., 2012,

Kidric et al., 2014a). Plant proteases have been detected in

different cellular compartments such as nuclei, chloro-

plasts, cytosol, endoplasmic reticulum (ER), vacuoles, mi-

tochondria, apoplast, cell wall or special vesicles (Figure

2), where they fulfil specific functions.

The main proteolytic system in the cytosol is the

ubiquitin/26S proteasome pathway, a complex structure in-

volving several proteolytic activities as well as a large set of

enzymes needed for covalent binding of targeted proteins

to ubiquitin for degradation (Vierstra, 2009). Organelles

such as mitochondria, peroxisomes and chloroplasts pos-

sess their own conserved proteolytic machinery. In particu-

lar, the degradation of the chloroplastic proteins associated

with senescence is mediated by the combination of their

own proteases and the action of nuclear encoded proteases.

These nuclear genes encode precursor proteins with N-ter-

minal extensions known as signal peptides that redirect the

processed protein to specific cell locations (Teixeira and

Glaser, 2013). Intra-plastidial proteolysis takes place

mainly by the action of different forms of FtsH metallo-

proteases, Clp serine-proteases, and Lon-like ATP-depen-

dent proteases and DegP serine-proteases, ATP-indepen-

dent proteases. Members of the DegP, Clp and FtsH pro-

teases are up-regulated in senescing leaves and participate

in the degradation of plastidial photosystem II (Roberts et

al., 2012). Kato et al. (2004) described the proteolytic ac-

tion of the chloroplast CND41 aspartic-protease on Rubis-

co (Ribulose 1,5- bisphosphate carboxylase-oxygenase)

breakdown during senescence as well as its implication in

nitrogen translocation. The over-expression of CND41 re-

duced Rubisco in senescent tobacco leaves whereas

CND41-silenced lines delayed senescence and maintained

higher levels of Rubisco in old leaves (Kato et al., 2005).

Besides, activities of other chloroplast proteases have been

shown to increase under senescence, as in the case of an al-

kaline serine-protease (subtilase) induced in leaves of spin-

ach under salinity stress and in desiccated leaves of

Ramonda serbica (Srivastava et al., 2009, Kidric et al.,

2014b).

Plastidial proteolysis proceeds outside the organelle

through the action of proteases in the cytosol, apoplast or

vacuoles (Figure 2). Subunits of the proteasome system are

up-regulated by abiotic stress-induced senescence in leaves

of tomato and seedlings of Arabidopsis thaliana under iron

or potassium deficiency (Kidric et al., 2014a). Another ex-

ample is the Tr-cp14 CysProt of Trifolium repens, localized

in the ER and associated with senescence in leaves

(Mulisch et al., 2013). Proteolytic activities have been also

detected in cell walls and inter-cellular spaces (Brzin and

Kidric, 1995). Extra-cellular proteases that catalyze the hy-

drolysis of proteins into peptides and amino acids for sub-

sequent incorporation into the cell constitute a very impor-

tant step in nitrogen metabolism at this level (Vierstra,

1996, Lopez-Otin and Bond, 2008, Kidric et al., 2014a).

Proteolysis during senescence is completed in the acidic

environment of the vacuole, which mainly contains C1A

CysProt with acidic pH optima, among other enzymes

(Thoenen et al., 2007, Ishida et al., 2008, van Doorn et al.,

2011). One example is CysProt RD21A, a major protease

activity in Arabidopsis leaf extracts and responsible for in-

ducing proteome degradation in the vacuoles of senescing

leaves (Yamada et al., 2001, Gu et al., 2012). The silencing
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of the CaCP gene encoding the vacuolar CysProt CaCP of

Capsicum annuum L. delays salt- and osmotic-induced leaf

senescence (Xiao et al., 2014). Although less abundant,

carboxy-proteases belonging to serine-protease are also

present in vacuoles (van der Hoorn, 2008). For instance, the

Arabidopsis AtSASP subtilisin serine-protease has been

detected in the proteome of central vacuoles isolated from

vegetative leaves (Carter et al., 2004), as well as other two

subtilisins, also termed Senescence-Associated Subtilisin

Proteases (SASP) with increased proteolytic activity in

senescing leaves of this model plant species (Martinez et

al., 2015). Recently, Distelfeld et al. (2014) have listed sev-

eral direct and indirect lines of evidence demonstrating the

importance of the vacuolar proteases for the complete

plastidial protein degradation.

This extra-plastidial pathway of degradation is de-

pendent on ATG genes which contribute at different levels

in the autophagy pathway and requires a complex traffick-

ing of proteins from the chloroplast to the central vacuole.

A recent review published by Carrion et al. (2014) has char-

acterized the Senescence-Associated Vacuoles (SAVs) as

specific lytic compartments for degradation of chloroplas-

tic proteins. SAVs coexist with the central vacuole in senes-

cent leaves and they are part of the vesicular transport

system where proteolysis may continue due to the presence

of active CysProt (Otegui et al., 2005, Martinez et al., 2007,
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Figure 2 - Location of plant proteases in different cellular compartments involved in plant senescence. Different families of proteases are represented:

Cysteine-Proteases (CP), Serine-Proteases (SP), Metallo-Proteases (MP), Threonine-Proteases (TP) and Aspartic-Proteases (AP). Subcellular localiza-

tion of specific proteases, indicated in brackets, are in chloroplast (FtsH-, Clp-, Lon-, DegP- CND41- and subtilase-like proteases), vacuole (RD21A,

CaCP, VmSh-EP, AtSAP, subtilase-, SASP-like proteases), mitochondria (Lon-like protease), SAV (SAG12-like protease), ER (Tr-cp-14-like protease)

and apoplast (subtilisin). Endoplasmic Reticulum (ER), Rubisco Containing Body (RCB), Senescence Associated Vesicle (SAV) and Chloroplast Con-

taining Vesicles (CCV).



2008a). The detection of the large subunit of Rubisco and

glutamine synthetase 2 (GS2) in a SAV- enriched fraction

purified from senescent leaves, and the presence of the

CysProt SAG12-GFP, confirms the co-location of both

plastidial proteins and CysProt to SAVs during senescence

(Martinez et al., 2008a, Carrion et al., 2013). Martinez et al.

(2008a) also detected a small fraction of chlorophyll a us-

ing HPLC technology in these acidic vesicles suggesting

that pigment disassembly may be carried out through this

transport pathway under certain conditions. Moreover, in

vivo inhibition of CysProt completely abolished Rubisco

degradation in isolated SAVs (Carrion et al., 2013, 2014).

In addition to SAVs, autophagic bodies named Rubisco-

Containing Bodies (RCBs), double membrane bounded

vesicles of small size derived from chloroplasts, have been

detected in the cytosol of senescent leaves and are also redi-

rected to the central vacuole (Chiba et al., 2003, Prins et al.,

2008,). These vesicles carry stromal proteins or their

hydrolytic products but not thylakoid proteins, with no evi-

dences of any protease activity within them (Ishida et al.,

2008, Carrion et al., 2013). Wang and Blumwald (2014)

described a third pathway for the degradation of chloro-

plastic proteins in stress-induced senescing Arabidopsis

based on chloroplast vesiculation (CV), independent of

RCBs or SAVs. CCVs (Chloroplast-Containing Vesicles)

carry stromal proteins as thylakoid membrane protein

(FtsH1), luminal protein (PsbO1) and inner envelope mem-

brane protein (Tic20-II), are released from chloroplasts and

redirected to the central vacuole for proteolysis. Further

studies are needed to identify partners and protein traffick-

ing routes to senescence in which plastids, vesicles, vacu-

oles and cytosol are inter-connected for an efficient protein

degradation and the subsequent relocation of nutrients.

Protease activity regulation

Senescence-associated proteolysis in plants is a con-

trolled process where protease activities can be regulated

by controlling the protease transcript content through trans-

criptional regulation, or by control of the activity itself by

post-translational processing (Cambra et al., 2012b, Chris-

tiansen and Gregersen, 2014, Hollmann et al., 2014). Addi-

tionally, enzyme activity is regulated by specific inhibitors

and cofactors and through the activation of zymogens. In

particular, members of the papain-like subfamily C1A

CysProt, probably the most widely studied among plant

proteases, are synthesized as inactive or little active precur-

sors to prevent spatio-temporal inappropriate proteolysis.

To become active, the C1A proteases are either self-proces-

sed or require the aid of other enzymes. Activation takes

places by limited intra- or inter-molecular proteolysis clea-

ving off the inhibitory pro-peptide (Wiederanders, 2003).

Therefore, the pro-sequences play important roles as modu-

lators of the protease activity to guarantee that the mature

enzyme is formed in the right place and/or at the right time.

Pro-peptides are not only able to inhibit their cognate en-

zymes but also other related proteases in trans (Cambra et

al., 2012a). Until now, no information has been published

about the pro-peptide function as modulators of leaf senes-

cence, but there are some examples demonstrating their

regulatory role of such peptides in barley grain germination

(Cambra et al., 2012a, 2012b).

Although protease inhibitors act as modulators of the

protease activities to control protein turnover, plant prote-

ase-inhibitor interactions in response to abiotic stresses are

still poorly documented apart from the CysProt and their

specific inhibitors known as phytocystatins (Kidric et al.,

2014a, Kunert et al., 2015). Cystatins and proteases not

only co-localize to the ER and to the Golgi complex, but

also interact in these compartments (Martinez et al., 2009).

Evidence of in vivo interactions has been obtained from

BiFC (Bimolecular Fluorescent Complementation) assays

using barley cystatins and cathepsin L-like CysProt fused

to moieties of the green fluorescent protein marker (GFP).

The formation of a CysProt-cystatin complex has also been

reported in senescent spinach leaves (Tajima et al., 2011).

In a recent publication, Kunert et al. (2015) have comented

on a current study that they are doing on the interaction be-

tween purified recombinant cystatins and CysProt that are

expressed during drought using in vitro assay systems.

These data, in combination with immuno-histochemistry

assays will allow them to analyze the intra-cellular local-

ization under optimal and stress conditions. These studies

can be essential to demonstrate the specificity of any prote-

ase-inhibitor interaction. The CysProt-cystatin interaction

has also been indirectly explored in transgenic plants. Prins

et al. (2008) found an increase of immunogold-labelled

Rubisco in chloroplasts as well as in RCBs of tobacco

plants overexpressing the rice cystatin OC-I in comparison

to the non-transformed controls, whereas OC-I in the cy-

tosol, vacuole, and chloroplasts of these transgenic plants

(Prins et al., 2008). Expression of this rice cystatin in soy-

bean and Arabidopsis plants leads to enhanced drought

stress tolerance through effects on strigolactone pathways

and can also result in improved seed traits (Quain et al.,

2014). Overexpression of the broccoli BoCPI-1 cystatin

leads to a decrease in total protease activity and delays

chlorophyll degradation and, in consequence, the onset of

senescence in broccoli florets after harvest (Eason et al.,

2014). Je et al. (2014) have shown that DREB2 (Dehydra-

tion-Responsive Element-Binding factor) acts as transcrip-

tional activator of the thermotolerance-related cystatin 4

gene from Arabidopsis, reducing CysProt activity. These

findings demonstrate that cystatins can be applied as im-

portant regulatory proteins of senescence in biotechnologi-

cal systems. Other classes of protease inhibitors, mainly

targeting serine-proteases, also enhance tolerance to abiotic

stress conditions (Shan et al., 2008, Srinivasan et al., 2009),

but there is still little information about their importance for

leaf senescence.
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Protease targets

Leaf senescence is characterized by a yellowish phe-

notype parallel to strong plastid disorganization while the

rest of the cell organelles remain practically intact until the

end of the senescence period. This main hallmark of senes-

cence, leaf yellowing, is caused by the preferential degra-

dation of chlorophyll over carotenoids (Matile, 1992).

Chlorophyll degradation occurs by a specific catalytic

route termed PAO (from pheophorbide a oxygenase). It in-

cludes the formation of a primary fluorescent catabolite in

the plastid, followed by isomerization to produce non-

fluorescent catabolites in the central vacuole (Hörtenstei-

ner, 2013, Christ and Hörtensteiner, 2014). Our own results

have demonstrated that a retarded chlorophyll loss parallel

to higher protein content is produced in knock-down

HvPap-1 CysProt barley lines grown under darkness (un-

published data). Proteolysis associated with senescence

provides free peptides or amino acids and redistributes

them within the plant. Degradation of plastidial proteins

represents the main source of nitrogen remobilization, and

most studies have been focused in this organelle rather than

in the other cell compartments (Schiltz et al., 2004, Keech

et al., 2007, Avila-Ospina et al., 2014). Most evidence sug-

gests that degradation of stromal proteins, mainly Rubisco

and GS2, occurs earlier than degradation of chlorophyll and

thylakoidal proteins proteins such as D1, LHCII of the PSII

reaction centre and PSII antenna (Krupinska, 2007). How-

ever, variability in protein degradation depending on spe-

cies/cultivars and environmental conditions has also been

found (Simova-Stoilova et al., 2010; Krupinska et al.,

2012). Degradation of thylakoidal proteins, in particular

these from PSII, represents the second largest pool of

remobilizable nitrogen from chloroplast during leaf senes-

cence, about 30% of the total chloroplast protein (Matile,

1992; Simova-Stoilova et al., 2010). A faster decline in

PSII vs PSI was detected during heat stress-promoted leaf

senescence in wheat (Hortensteiner and Matile, 2004).

Apart from membrane disassembling, photosynthetic pro-

teins both PSI and PSII as well as ATP synthase are hydro-

lyzed as observed in ultrastructural studies (Ghosh et al.,

2001, Guiamet et al., 2002, Krupinska et al., 2012).

Immunoblot and ultrastructural results have shown a pref-

erential degradation of granal over stromal proteins, result-

ing in an unexpected increase in the chlorophyll a/b ratio,

meaning that chlorophyll b is degraded faster (Desimone et

al., 1996).

Regarding stromal proteins, Rubisco and Rubisco

activase seem to be principal targets for CysProt during leaf

senescence in C3 plants (Prins et al., 2008). For this reason,

understanding the mechanisms of Rubisco degradation has

become a key purpose (Desimone et al., 1996, Schiltz et al.,

2004, Irving and Robinson, 2006). Rubisco fragmentation

has been detected in intact isolated chloroplasts of pea and

wheat incubated under continuous light or dark conditions

(Mitsuhashi and Feller, 192, Zhang et al., 2007). Likewise,

Desimone et al. (1996) studied the nature of Rubisco

degradation under oxidative stress in isolated chloroplasts

of barley. Several hypotheses put forward that Reactive

Oxygen Species (ROS) might be involved in the initial de-

naturation of Rubisco, by oxydazing certain cysteine resi-

dues and thus rendering the protein as a more susceptible

target for protease cleavage (Garcia-Ferris and Moreno,

1994). Nonetheless, this ROS prompted degradation does

not seem to be sufficient for complete degradation

(Desimone et al., 1996). It remains to be elucidated if dena-

turation and breakdown events are sequential or if both oc-

cur at the same time.

GS2 is also susceptible to proteolysis as shown in iso-

lated tobacco chloroplasts. This enzyme is almost lost dur-

ing early stages of senescence in cereal leaves but the

cytosolic GS1, the key enzyme for ammonia assimilation

and de novo synthesis of amino acids from released nutri-

ents, is maintained (Mitsuhashi and Feller, 1992, Khanna-

Chopra, 2012). There are some in vitro approaches show-

ing that GS2 is degraded before other enzymes involved in

carbon assimilation, such as Rubisco (Thoenen and Feller,

1998). Proteolysis of GS2 seems to be initiated through oxi-

dative carbonylation of histidine residues (Palatnik et al.,

1999, Ishida et al., 2002). The presence of only stromal pro-

teins (Rubisco and GS2) within specialized SAVs enriched

in CysProt activity, suggests that these enzymes are respon-

sible for the degradation of this stromal protein fraction

(Martinez et al., 2008a, Carrion et al., 2013, 2014). Fischer

and Feller (1994) examined a broad set of other stromal en-

zymes in young winter wheat leaves, detecting different

degradation rates and discussed how proteolysis within the

same organelle can be selectively regulated.

Influence of leaf senescence on cereal grain
yield and quality

Up to 90% of the nitrogen in the grain of several cere-

als like barley, wheat and rice comes from senescing vege-

tative tissues. Thomas and Stoddart (1980) postulated that

delayed senescence, which means an extended period of

maximal photosynthetic activity, should lead to higher

yields. However, grain yield is a complex trait that involves

different physiological processes. For example, in cereal

crops, it is determined by both the source tissues and the

sink organs. Fischer (2008) proposed that in small-grain ce-

reals such as wheat, the main limiting factor for grain yield

is the strength of the seed, suggesting that the physiological

events in the period around seed setting are crucial for de-

termining yield levels. Conversely, there are numerous

examples for a positive correlation between delayed senes-

cence and yield levels in both small-grain cereals such as

wheat and barley and large-grain cereals such as maize

(Gregersen et al., 2013). Furthermore, Egli (2011) stated

that enhanced seed yields are obtained when the grain fill-

ing period is longer. Thus, manipulation of senescence
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events could be a way to obtain higher grain yield and qual-

ity.

Yield is not the only grain feature affected by plant

senescence. Grain quality parameters such as protein and

micronutrient (Fe, Zn) concentrations are also affected by

alterations in the senescence process (Distelfeld et al.,

2014). Grain yield and protein content are negatively corre-

lated in wheat and barley (Thoenen and Feller, 1998,

Palatnik et al., 1999, Gregersen et al., 2008). While delayed

senescence may lead to higher grain yield but it also pro-

vokes inefficient nitrogen remobilization and lower harvest

index (Gong et al., 2005), acceleration of senescence con-

fers efficient nitrogen remobilization and high protein con-

tent, but also a lower total grain yield. Distelfeld et al.

(2014) indicated two possible justifications for this effect.

The first explanation suggests that in delayed senescence

the prolonged accumulation of carbohydrates dilutes stored

proteins and micronutrients leading to increased grain

weight and yield but lower grain quality (Slafer et al., 1990,

Gregersen et al., 2008). The second explanation is based on

the fact that the synthesis of storage proteins requires more

carbon consumption than the synthesis of starch, which en-

hances the accumulation of carbohydrates (Munier-Jolain

and Salon, 2005).

To cope with this dilemma it is important to balance

the agronomical or economic consequences with the qual-

ity of the end-product. For barley grains, low protein con-

tent is desirable in malting processes to obtain beer whereas

high protein content is desirable to be used for animal feed-

ing. Moreover, slow grain filling associated with delayed

senescence implies an increased probability of damage by

environmental factors such as heat and drought stress and

drought during the later stages of crop development (Mi et

al., 2002, Yang and Zhang, 2006). Manipulation of the

proteolytic machinery is a potential way to enhance grain

yield and quality. Using this approach, novel breeding

strategies that consider the complexity of the feature are

promising tools to achieve a higher grain yield and quality.

Concluding remarks

Strong indications from multiple studies indicate that

prevention of premature senescence induced by bi-

otic/abiotic stresses may be the key in engineering stress

tolerance. This review compiled the current knowledge on

different aspects related to degradation of proteins as part

of the leaf senescence mediated by different stresses, and

their potential effects on crop yields. Future research

should be done to acquire more precise information about

protease action and protease targets and to increase knowl-

edge concerning the traffic of hydrolysed proteins from

their original subcellular locations via specialized vesicles

to the central lytic vacuole. Clarifying how protease activ-

ity is regulated by a specific inhibitor may contribute to un-

derstand the balance between recovery from stress and

excessive protein degradation resulting in cell death. Over-

all, research is needed to encompass the complete set of in-

formation in order to understand why, how, where and

when leaf senescence is produced. The final goal will be to

control the impact of senescence in agriculture keeping in

mind the current and future effects of extreme weather

events related to climate changes.
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