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Abstract

The muriqui (Brachyteles) is one of the most endangered primates in the world, however little is known about the via-
bility of the remaining populations. We evaluated the technique of extracting DNA from wild muriqui feces for PCR
applications. In order to determine the effect of the DNA in subsequent amplifications, we analyzed five different ex-
tracts. The importance of the recommended BSA and the HotStarTaq DNA polymerase was tested. The minimal
conditions to successfully amplify highly degraded fecal DNA were determined, showing that the recommended re-
agents are not required. We envision that this method may be useful in further conservation management studies.
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The genus Brachyteles (muriqui) represents the largest
neotropical nonhuman primate and comprises two endemic
species occurring in the Brazilian Atlantic Rainforest. The
species B. hypoxanthus (Kuhl, 1820) or northern muriqui can
be found in the States of Bahia, Minas Gerais and Espirito
Santo, and B. arachnoides (E. Geoffroy, 1806) or southern
muriqui is distributed along over the States of Rio de Janeiro,
Sao Paulo and Parana (Aguirre, 1971; Lemos de Sa ef al.,
1990, Lemos de Sa et al., 1993; Martuscelli et al., 1994). Their
small population size and the deforestation of the Atlantic For-
est have led to the classification of muriqui as an “endan-
gered” primate since 1982, and as “critically endangered”
since 2000 (Rylands et al., 2003). B. hypoxanthus is also listed
as one of the 25 most endangered primates of the world since
the year 2000 (Mittermeier et al., 2005). Historically, the
muriqui species roamed throughout the Atlantic Brazilian
Rainforest, but now it is estimated that there are no more than
1200 individuals living in a few dozen remaining forest frag-
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ments (Strier and Fonseca, 1996/1997). Thus, questions about
the consequences of habitat fragmentation in the genetic struc-
ture of populations, gene flow and probability of extinction
are frequently addressed with regard to muriqui (Leigh and
Jungers, 1994; Strier, 1995; Strier, 2000). DNA assessment is
critical for investigating these questions, and genotyping for
molecular markers like microsatellites is essential to conduct
more realistic population viability analyses (PVAs), improv-
ing the currently available data (Strier, 1995).

Until recently, molecular genetic analyses of primates
have been limited by the availability of blood or tissue sam-
ples for DNA extraction (Surridge et al., 2002). Despite the
fact that noninvasive DNA sampling usually yields low
quantities of DNA (Taberlet et al., 1996; Taberlet et al.,
1997; Constable et al., 2001), the advent of the polymerase
chain reaction (PCR) technique has been successfully used
to assess the genetic composition of social groups and popu-
lations, and to evaluate both species and genealogical rela-
tionships based on such small samples (Hoss et al., 1992;
Morin et al., 1994; Constable et al., 1995; Gerloff et al.,
1995; Taberlet et al., 1996; Reed et al., 1997; Constable et
al.,2001).
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Boom et al. (1990) presented the first study that was
successful in isolating DNA from shed epithelial cells
mixed with feces. Since then, studies in conservation genet-
ics using DNA from fecal samples have been carried out in
threatened species, including bears (Taberlet et al., 1997)
and wolves (Creel et al., 2003). In spite of this scenario, in
the last few years, fecal samples from muriquis have been
used exclusively to monitor ovarian cycle hormones in fe-
males, and testosterone and cortisol levels in males (Strier
and Ziegler 1997; Ziegler et al., 1997, Strier et al., 1999). In
the present study, our primary goal was to test the reliability
of results obtained from muriqui fecal DNA by down-
stream PCR. The conclusions reached may be a starting
point for future population genetic studies in this species.

Feces were collected from 28 individually identified
muriquis that have been the subjects of long-term observa-
tional field research at the “Estacdo Biologica de Caratin-
ga” (EBC/RPPN-FMA) in Minas Gerais, Brazil. Approxi-
mately 5 g of feces per individual were transferred into a
sterile 50 ml polypropylene conical tube containing silica
gel beads. About 20 g of humidity-sensitive silica beads
and a fine layer of cotton were placed underneath and above
the feces, to completely fill the tubes, in order to isolate and
quickly dehydrate the samples. Until DNA extraction, the
dehydrated samples were conserved at 4 °C, and the silica
beads were changed whenever humidity was detected.

DNA was extracted from 200 mg of dried feces, using
the QIAamp DNA Stool Mini Kit (Qiagen) according to the
manufacturer’s protocol. All procedures were carried out
using a face mask. Few extractions were manipulated si-
multaneously, in order to avoid cross-contamination and
contamination by exogenous DNA. Muriquis have a vege-
tarian diet (Strier, 1991; Olmos ef al., 1997), which elimi-
nates the need to remove prey parts, such as bones and hair,
as in carnivore fecal extractions (Paxinos et al, 1997,
Wasser et al., 1997; Farrell et al., 2000). After extraction,
DNA was qualitatively evaluated in 0.8% agarose gel and
quantified in a spectrophotometer (260 nm of wavelength
and 1:25 pL of dilution). DNA concentration was calcu-
lated as described by Sambrook ez al. (1989), and the yields
varied from 18 to 140 ng/pL. Three of the 28 samples pre-
sented DNA concentrations below the detection threshold
of the spectrophotometer.

We tested the quality and quantity of the DNA tem-
plate, and the influence of bovine serum albumin (BSA,
New England Biolabs), which has been considered essen-
tial in downstream PCR applications using fecal DNA as
template, resulting in 90 different amplification mixtures.
Five muriqui DNAs with different levels of degradation
(quality) in six different quantities (5 ng, 10 ng, 20 ng,
50 ng, 100 ng, and 200 ng), and three final concentrations
of BSA (0.0, 0.1, and 0.2 ng/uL), were tested in the PCR
mixture.

A total volume of 25 uLL PCR mixture was used in a
PTC-100 Thermocycler (MJ Research), including 10% of
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10X PCR buffer (200 mM Tris-HCI pH 8.4, 500 mM KCl),
0.2 mM of each dNTP, 2.5 U of “Taq Brazilian Origin”
DNA polymerase (Invitrogen), 2.0 mM of MgCl,, and
0.2 uM of each primer: L6955 (5’-AACCATTTCATA
ACTTTGTCAA-3’) and H7766 (5’-CTCTTAATCTTTA
ACTTAAAAG-3’). These primers were originally de-
signed to amplify the subunit II of the human cytochrome ¢
oxidase (COII) mtDNA gene (Ashley and Vaughn, 1995),
and successfully tested in the closely related genus Ateles
(Collins and Dubach, 2000). The PCR conditions included
a denaturing phase at 92 °C for 5 min, followed by 35 cy-
cles 0f 92 °C for 1 min, 48 °C for 45 s, and 72 °C for 1 min,
and a final extension step at 72 °C for 5 min. The PCR mix
was prepared in a special chamber, to avoid contamination.
High-molecular-weight human DNA (200 ng) was used as
positive control and distilled water instead of DNA as nega-
tive control. All of the 90 reactions were carried out in du-
plicate, to validate the results. The PCR products of four out
of the five muriqui DNAs were sequenced as control (ac-
cession numbers DQ118288, DQ118289, DQ118290,
DQ118291), to exclude false species-specific amplification
from contamination with exogenous DNA (human, plant,
protozoa, bacteria and others). The human positive control
was also sequenced and deposited in the GenBank (Acces-
sion number DQ118287). DNA sequencing was performed
in an automated MegaBACE 1000 sequencer, using the
DYEnamic ET Dye Terminator Cycle Sequencing Kit
(Amersham Biosciences). First, sequences were compared
through BLAST on the GenBank database, subsequently
they were automatically aligned, and a neighbor-joining
tree was drawn using the MEGA 3.0 package (Kumar et al.,
2004).

Here, we were able to demonstrate the usefulness of a
suboptimal source of DNA such as the feces of the endan-
gered wild muriquis for further PCR applications. We ana-
lyzed three variables that could affect the efficiency of PCR
using fecal DNA samples: (i) Five DNA qualities; (ii) six
DNA quantities (5 ng, 10 ng, 20 ng, 50 ng, 100 ng, and
200 ng); and (iii) three final concentrations of BSA (0.0,
0.1 and 0.2 pg/uL); totaling 90 PCR tests. Only 17 (19%) of
the 90 reactions failed to amplify a COII fragment, indicat-
ing a high success rate for mtDNA, with a doubly longer
amplicon (~800 bp), as compared to previous analyses of
ursids (Wasser et al., 1997).

BLAST query resulted in a 96% similarity of our four
muriqui  sequences with  Brachyteles arachnoides
hypoxanthus (AF216253), 88% with Ateles paniscus
(AF216247), and 87% with Lagothrix lagothrica
(AF216251). The human control sequence crossed with
99% of human mtDNA. None of the four muriqui se-
quences showed any similarity with any organisms other
than nonhuman neotropical primates. Sequences were also
aligned with the complete mtDNA genome of Cebus
albifrons (AJ309866), a neotropical primate. The muriqui
sequences matched at the correct COII position, which is
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7016-7703 bp (Arnason et al., 2000). The absence of con-
tamination is graphically shown in Figure 1a.

With regard to DNA quality, the most degraded DNA
(6* in Figure 1b) presented the lowest amplification effi-
ciency (44%), but the negative results were obtained almost
exclusively in reactions containing 5-20 ng of DNA tem-
plate. The most intact templates (5* and 7* in Figure 1b)
presented 95% efficiency in amplifying the COII segment.
Comparatively, the best results were achieved using
non-degraded DNA templates, as observed in extracts 4*
(89%), 5* (95%) and 7* (95%).

A minimum of nine out of 15 reactions (60%) re-
sulted in positive amplifications when 5-20 ng of DNA
template were used. The optimal amount of DNA was
found to be above 50 ng. Nevertheless, positive amplifica-
tion was achieved with 5 ng, using good quality fecal DNA
(e.g., extracts 4* and 5%).

In order to test the importance of using BSA, we eval-
uated the amplification efficiency of all the reactions with
at least 50 ng of DNA (optimal amount) and moderately to
highly intact DNA (qualities of extracts 4*, 7* and 5*). All
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Figure 1 - A. Neighbor-joining tree showing DNA sequences of
Brachyteles hypoxanyhus (accession numbers DQ118288, DQ118289,
DQ118290 and DQ118291 corresponding to Samples 4*, 5*, 7* and 14%,
respectively, this paper) clustered together, and closely related to
Brachyteles arachnoides hypoxanthus (AF216253), Ateles paniscus
(AF216247) and Lagothrix lagothrica (AF216251). Human control (ac-
cession number DQ118287, this paper) is grouped with Homo sapiens
(AP008260). Bootstrap values (1000 replicates) are shown above bran-
ches B. DNA profiles (6 pul/lane), numbers correspond to 28 DNA ex-
tracts. “M” identifies the 1 kb ladder. Asterisks refer to samples 4, 5, 6, 7

and 14 used in PCR amplification.

Fecal DNA analyses of muriqui

of these samples (27/27) showed positive amplifications,
suggesting that the concentration of BSA did not affect am-
plification, under any of the evaluated conditions. Addi-
tionally, the results remained practically unchanged after
modification of the BSA concentration, when reactions
which contained suboptimal amounts of DNA template,
such as 5-20 ng, were also counted.

Otherwise, previous studies of other mammals had
reported the increasing of the PCR product after addition of
BSA (Péaibo, 1990; Kohn and Wayne, 1997; Al-Soud and
Rédstrom, 2000; Palomares ef al., 2002). Potentially, BSA
can counteract to PCR inhibitors or avoid the adsorption of
PCR reagents to the tube wall, making them available to the
amplification reaction (P. Taberlet and Qiagen Scientific
Support, personal communication). The Qiagen protocol
also strongly recommends the addition of BSA to the PCR
mixture, in a final concentration of 0.1 pg/pL.

However, other authors have also reported the dis-
pensability of BSA, or did not report its use (Hoss et al.,
1992; Takasaki and Takenaka, 1991; Sugiyama et al.,
1993; Wasser et al., 1997). Our results imply that despite
some studies pointed out that fecal DNA can be contami-
nated with PCR inhibitors, BSA was not essential in PCR
(Farrell et al., 2000; Creel et al., 2003). We believe that in-

Figure 2 - PCR products of the DNA extracts numbers 4*, 5*, 6*, 7*, and
14*, respectively. N and P stand for negative and positive controls, respec-
tively. No BSA was added in the reactions, primer concentrations of
0.4 uM and 0.2 pM were used for upper bands and lower bands, respec-
tively. “M” identifies the 1 kb ladder.
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hibitors were eliminated during the extraction procedure,
and thus the activity of BSA was not significant.

The Qiagen protocol also recommends the use of the
Qiagen HotStarTaq DNA polymerase. However we ob-
tained excellent results using a much cheaper polymerase
(Brazilian Taq DNA polymerase, Invitrogen Inc). We
achieved satisfactory results in minimizing nonspecific
PCR bands by reducing the primer concentration from
0.4 uM to 0.2 uM (Figure 2). Additionally, digestion reac-
tions with endonucleases have shown the suitability of
these PCR products for further analysis using Restriction
Fragment Length Polymorphisms (Fagundes et al., unpub-
lished data).

Our results provide additional information to opti-
mize the PCR reactions using noninvasive fecal DNA sam-
ples as template, minimizing both cost and time of
standardization in further genetic studies. In conclusion,
appropriate fecal DNA extraction methods make molecular
studies feasible for endangered species, such as muriquis.
This protocol may also be applicable to a large variety of
primate and non-primate mammals in upcoming genetic
approaches.
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