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METHODOLOGY

Null expectation of spatial correlograms under a stochastic process of

genetic divergence with small sample sizes

Mariana Pires de Campos Telles'® and José Alexandre Felizola Diniz-Filho?

Abstract

An Ornstein-Uhlenbeck processwas used to simul ate the exponential rel ationship between genetic divergence and geographic distances,
aspredicted by stochastic processes of population differentiation, such asisolation-by-distance, stepping-stone or coal escence models.
Thesesimulationswere based only onthe spatial coordinatesof thelocal populationsthat defined aspatial unweighted pair-group method
using arithmetic averages (UPGMA) link among them. The smul ated genefrequency surfaceswerethen andyzed using spatia autocorreletion
proceduresand Nei’sgenetic distances, constructed with different numbers of variables (genefrequencies). Stochastic divergencein space
produced strong spatial patternsat univariateand mutivariatelevels. Using arelatively small number of local populations, the correlogram
profilesvaried considerably, with M anhattan distances greater than those defined by other simulation studies. Thismethod allowsoneto
establisharangeof correlogram profilesunder the same stochastic process of spatial divergence, thereby avoiding the use of unnecessary
explanations of genetic divergence based on other microevol utionary processes.

INTRODUCTION

Patterns and processes of genetic divergence among
local populations have recently been investigated using
spatial correlograms to describe autocorrelation of gene
frequenciesfor increasing classes of spatia distance (Sokal
and Jacquez, 1991). Simulations have shown that thistech-
niqueisapowerful tool for studying the microevolution-
ary processes of genetic divergence (Sokal and Wartenberg,
1981; Sokal et al., 1989, 1997; Epperson, 1995a,b).

One of the random processes most widely used to
describethe present genetic divergence among local popu-
lationsisisolation-by-distance (Wright, 1943) and itsdis-
continuous version, the stepping-stone model (Kimuraand
Weiss, 1964). The basic isolation-by-distance model is
usually modeled in a unidimensional distribution space
through the Morton-Mal ecot equation

¢ (d) =ac™

where ¢ (d) isthe“kinship” between populationslocated at
ageographic distanced, and aand b are constants that can
be interpreted as a function of the demographic and ge-
netic characteristics of the populations (Wijsman and
Cavalli-Sforza, 1984). In both models, anegative exponen-
tial relationship between genetic similarity and spatial dis-
tanceisgenerated by driftinlocal populationsandiscon-
strained by migration effects at short distances. Thisrela-

tionship aso holds for coalescence models, in which the
main determinant of divergenceisgenetic drift withinlo-
cal populations, that accumul ates variancethrough timeand
not through spatially structured geneflow (Nielsenetal.,
1998; Avise, 2000).

Sokal and Wartenberg (1983) showed that isol ation-
by-distance correlograms have similar profiles, with an
exponential decrease between autocorrelation and geo-
graphic distances, despite thelow correlation among sur-
faces. Testing the similarity of correlograms and compari-
son of the results with correlations among gene frequen-
cies are then anal ogous to the L ewontin-Krakauer test of
neutrality based on the homogeneity of the Fg; statistics
(Kimura, 1983; Barbujani, 1987). Sokal and Wartenberg
(1983) and Sokal (1986) proposed that the same stochas-
tic spatial process could generate correlogramswith Man-
hattan distances of less than 0.1 or 0.2 (produced using
uncorrelated genefrequencies). However, acritical aspect
of this proposal isthat if the sample size (number of lo-
cal populations) used to construct the correlograms is
small, their profiles can vary considerably, even if they
were generated by the same stochastic process of popu-
lation divergence.

In thispaper, we used an Ornstein-Uhlenbenck (O-U)
stochastic process to simulate exponential relationships
between genetic divergence and geographic distance, ina
manner anal ogousto isolation-by-distance, stepping-stone
or coalescence models. For a specified sample size and
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spatial distribution of local populations, this relatively
simple and general method allows definition of the null
expectation of variation for correlograms under asimple
stochastic process of spatial divergence among local popu-
lations.

MATERIAL AND METHODS

We simulated genefrequenciesfor 13 local popula-
tionsdistributed geographically asshownin Figure 1. These
localities were used in an isozyme study of Eugenia
dysenterica DC (Myrtaceae) population geneticsin are-
gion of the Brazilian“ cerrado” (Telles, 2000), and served
to illustrate the procedure developed here. Simulations
were performed with the PDAP software (phenotypic di-
versity anaysisprogram - Diaz-Uriarteand Garland, 1996)
based on an unweighted pair-group method using arithmetic
averages (UPGMA) clustering of geographic distances
(Sneath and Sokal, 1973), designed to represent the
pai rwise distances among local populationsin atreefor-
mat. Thecophenetic correlation of clustering wasvery high
(r = 0.96), which ensured that running simulations with
PDAP across this tree smulated a spatial diffusion pro-
cess. Thus, the branch lengths of UPGMA based on geo-
graphic distances must be interpreted as a parameter re-
lated to the expected amount of gene flow among local
populations. On the other hand, if onewishesto ssimulatea
gpatialy structured coalescence model (Avise, 2000), these
branch lengths are adirect estimate of the divergencetime
between local populations.

An O-U stochastic process (Felsenstein, 1988; Mar-
tins, 1995; Hansen and Martins, 1996) was then used to
generate 500 distributions of genefrequenciesp maintain-
ing an exponential relationship between genetic divergence
and geographic distances represented in UPGMA cluster-
ing, as expected by the Malec6t-M orton equation for iso-
lation-by-distance and by other stochastic processes of
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Figure1 - Schematic map of the spatial distribution of the 13 local popula-
tions used in the simulations. The circlesindicate the main spatial hierar-
chy defined by unweigthed pair-group method using arithmetic averages
(UPGMA) clustering of geographic distances.

population differentiation. Inthe O-U process, the evolu-
tionary changes were constrained by a constant force to-
ward a central point (the adaptive peak of p), and the
pairwise covariance among local populations (V g, equiva
lent to ¢ (d)) wasrelated to distance (d) by the exponential
relationship

Vg=0%20 (1-e%9) +¢

where 62 isthevariance of evolutionary change under asto-
chastic process, and a. is the restraining force. The vari-
ance of evolutionary changes per unit of time (or space) in
the simulationsindicatesthe range of deviationsof pfrom
its“ancestral” value, and isafunction of thevariance of p
(see bel ow) and of the maximum distance between pairs of
local populations(d,.,). Following Diaz-Uriarte and Gar-
land (1996), the restraining force o was set to 2/d,,,,, in
order to produce amoderate exponential relationship be-
tween V; and geographic distance. Thereisan equivalence
between the previously defined Malec6t-M orton equation
and the O-U process, with the constants a and b being ex-
pressedintermsof 62, c.and e.

Sincethe O-U process “forgets’ past events(inthis
case, long-range spatial patterns), it reduces the level of
“gpatiad inertid’ inthe data. At eachingtant of divergencein
time or space, the stochastic variation in p can be pushed
to the adaptive peak if the value of gene frequencies be-
comestoo high or too low, which explainsthe exponential
decrease of genetic divergence when distantly rel ated popu-
lationsare compared (Felsenstein, 1988). The assumption
of aconstant population size through time, present in most
models of population differentiation, is approximated in
the O-U model used here by the constant variancein evo-
lutionary changes throughout the process.

All smulations started with aninitial genefrequency
(the adaptive peak) of 0.5 + 0.04, so that most values of
genefreguencieswould fall between zero and 1.0 (values
of passume anormal distribution). However, since PDAP
wasoriginally devel oped to generate variation in continu-
ous traits, we also used the boundary option of the pro-
gram to constrain the variation between zero and 1.0 (the
“replace” algorithm; Diaz-Uriarte and Garland, 1996).

Each gene frequency vector simulated represented
surfaces of variation in geographic space (sensu Sokal and
Oden, 1978a,b), and wasanalyzed and interpreted using stan-
dard procedures of spatia autocorrel ation (Soka and Oden,
1978a,b; Sokal and Jacquez, 1991). Moran's| coefficients
were estimated in four geographic distance classesin or-
der to generate the spatial correlograms. A Pearson corre-
lation coefficient was cal cul ated between Moran's| values
and the upper limit of the distance classin order to evalu-
ate thelinearity of the decrease of each correlogram.

To provide microevolutionary inferences (Sokal and
Jacquez, 1991), the correl ogramswere then compared us-
ing pairwise Manhattan distances, which were also com-
pared with pairwise Pearson correlations among original
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genefrequency surfaces. Based on previous studies (Sokal
and Wartenberg, 1983; Sokal and Jacquez, 1991), similar
correl ograms were expected to appear, even if they origi-
nated from uncorrel ated gene frequency surfaces.

We aso analyzed multivariate patterns of spatial
autocorrelation under this O-U stochastic process by ran-
domly sampling the gene frequencies to estimate Nei’s
(1972) genetic distancesamong local populations. A total
of 100 genetic distance matrices were constructed using
10, 20 and 30 genefreguencies. Each matrix was compared
with the geographic distancesby theMantel test, whichwas
used to establish the statistical significance of the matrix
correlation using 1,000 permutations (Sokal et al., 1986;
Manly, 1991).

RESULTS

The correlograms obtained from the gene frequency
surfaces (Figure 2) usually showed amonotonic decrease
inMoran’s| coefficient with geographi c distance, with very
high negative correlationsamong them (Figure 3). Theav-
erage correlogram showed a continuous decrease in
Moran’'s | coefficients with distance, suggesting aclinal
pattern in space (Sokal and Oden, 1978a,b). Other simula-
tions (Sokal and Wartenberg, 1983; Sokal and Jacquez,
1991; Sokal et al., 1997) produced amore stabilizing pat-
ternin Moran’s | coefficient in the last distance classes.
However, in our study, the variance of the coefficients de-
creased strongly inthisclassin such away that the profiles
were then compatible with those obtained in these previ-
ousstudies.

The values of the Manhattan distances between
correlogramswere widely distributed, ranging from 0 to
1.2, with amodal value closeto 0.2 (Figure 4). Plotting
the Manhattan distances against the correl ation between
surfacesindicated, as expected, that dissimilar surfaces
(with low correlations) can produce similar correlograms
and theseformed atriangular envel opein bivariate space
(Figureb).

The analysis of Nei’s genetic distances using the
Mantel test (Figure 6) also indicated a strong correlation
between multivariate genetic divergence and geographic
space under this stochastic process, although the magni-
tude of this correlation depended on the number of gene
frequencies used to construct each matrix. The average
matrix correlation (standardized Mantel test; Smouseet al.,
1986) increased when the number of genefrequenciesused
to establish Nei’sgenetic distanceswaslarge, whereasthe
variance decreased with anincreasein thisnumber.

DISCUSSION

The correlograms obtained after smulating the varia-
tionin genefrequencies acrosslocal populationswere usu-
ally highly significant, indicating that stochastic processes
generated by an O-U model produced strong spatial pat-

-1.8

-1.2 .

-0.6

-0.6

Moran's | coefficient

-1.2
°
4

-1.8

0 1 2 3 4
Geographic distance class

Figure?2 - Spatial correlograms obtained with simulated data. The average

correlogram is shown by the solid line. See Figure 3 to examine the linear
decrease in most of these correlograms.
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Figure 3 - Frequency distribution of correlations relative to Pearson’'s
correlation between Moran's | coefficient and distance class. Note the
high degree of linearity of the correlograms shown in Figure 2.
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Manhattan distances between correlograms
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Figure 5 - Relationship between pairwise Manhattan distances between
correlograms and correlations between gene frequency surfaces. Note
that similar correlograms can be obtained from uncorrelated surfaces.

70
N p=10

60 Il p=20
Edp=30

50

40

30
20

10

Frequency of matrix correlations

2 I\

0 i [
0 0.2 0.4 0.6 0.8 1

Matrix correlation (Nei's genetic distances versus geographic distances)

Figure 6 - Distribution of the matrix correlations (standardized Mantel
tests) between Nei's (1972) genetic and geographic distances among popu-
lations. The genetic distances were cal culated using increasing number of
simulated p gene frequencies.

terns. The profilesof the correlograms showed adecrease
in Moran's | coefficient with increasing geographic dis-
tances, although thevariancewaslow inthelarger distance
classes, asexpected for anisolation-by-distance model and
other stochastic models of genetic divergence among lo-
cal populationsin timeand space (Sokal and Jacquez, 1991).
Mantel tests used to evaluate the multivariate patterns of
spatial autocorrelationin Nei’ sgenetic distances supported
these conclusions. Matrix correlation values, however, are
sensitive to increases in the number of gene frequencies
used to estimate genetic distances (see modal values of
correlationsin Figure 6).

The most important aspect revealed by the simula-
tionswas the wide range of variation in the correlograms
obtained under the same stochastic process that mimics
theisolation-by-distance model, which resultsin relatively
high Manhattan distances among them. According to Sokal
and Wartenberg (1983) and Sokal (1986), Manhattan dis-

tances of 0.1-0.2 indicate the same spatial processes un-
derlying the gene frequency surfaces, although it is diffi-
cult to makeafinal decision about aspecific critical value.
Indeed, our results show that this critical value is depen-
dent on the sample size. With arelatively low number of
local populations, as used in this study, more variationis
expected in the profiles and, although the modal value of
the Manhattan distance wasvery closeto 0.2, valuesup to
1.2 were obtained between correlograms generated by the
Same process.

The simulation strategy used in this study was com-
pletely different from that previously used to investigate
microevolutionary processes using autocorrel ation analyses
(Sokal and Wartenberg, 1981; Sokal etal., 1989, 1997), de-
spite the convergence of the results in terms of expecta-
tions of genetic divergence obtained with an isolation-by-
distancemodd. Instead of simulating the dynamicsof indi-
vidualsin space acrosstime and estimating the correspond-
ing gene frequencies, we simply used a stochastic process
that produced an exponential rel ationship between genetic
divergence and geographic distance. Thisstrategy, athough
lessredlistic, ismore general becauseit doesnot explicitly
use ecologicd and genetic parameters of the organisms (un-
known for most species), and is based only on the shape of
the relati onship between divergence and space. Although bio-
logical parametersrelated to dispersion and drift obvioudly
vary among different organisms, thisrelationship hasbeen
widely described by nonlinear equations. Assuch, null ex-
pectations would be generated using this procedure based
only oninformation about the geographic coordinates of the
local populations studied. This strategy is based on well-
known mathematical proceduresthat have beentestedin phy-
logenetic comparative analyses and can be easily imple-
mented using vari ous computer programs (see Martinsand
Garland, 1991; Martins, 1996; Diaz-Uriarte and Garland,
1996). The correlograms and rel ated statisticsweresimilar
to those previoudy found using these morerealistic proce-
dures, thus validating the simple approach proposed here.

The procedures adopted heredo not allow oneto test
differences among correlograms generated by different
microevolutionary processes, since they do not simulate
such processes. Theideaissimply to approximate the ex-
pected shape of the rel ationship between genetic divergence
and geographic distance (which, in fact, would be gener-
ated by different combinations of microevolutionary pro-
cesses). Nevertheless, this approach does permit one to
establish arange of variation in correlogram profilesthat
could be obtained with a simple stochastic process that
simulates the evolution of gene frequenciesin isolation-
by-distance and related models. This possibility may be
important when working with afew local popul ations be-
causevery distinct correl ogramsmay be obtained by chance
only. Such correlograms suggest that different microevo-
lutionary processesareinvolvedin genefreguency varia-
tion, but the approach used hereindicated that they could
be generated by aunique stochastic process.
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Computing the Manhattan distancesamong simulated
correlograms allowed usto definearangefor thesevalues
that would be expected in a specific situation (defined
samplesize and spatial distribution of local populations).
If correl ograms obtained with real genetic datafor the same
populationsfall within thisrange, we may then conclude
that autocorrel ation analyses do not provide evidence that
other microevol utionary processes, beyond simple stochas-
tic variation structured across spatial dimension, are in-
volvedingenefrequency variation amonglocal populations.
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RESUMO

Nesse artigo, um processo estocastico Ornstein-Uhlenbeck
foi utilizado parasimular arelagdo exponencia entredivergéncia
genéticaedistanciageogréfica, conforme € esperado em modelos
de isolamento-por-distancia, alpondras ou coalescéncia. As
smulagbesforam redizadasapartir deum dendrogramaUPGMA
estimado apartir das distancias geogréficas entre 13 popul agdes
locais. Assuperficiesespaciaisdefrequiénciasaéicas simuladas
foram analisadas através de autocorrel acao espacial e construcéo
dedistancias genéticas de Nel, com base em diferentes nimeros
dealdlos. A divergénciaentre populagdeslocais produziu padrdes
espaciaissignificativos, tanto em nivel univariado (correlogramas
espaciais) quanto em nivel multivariado (teste de Mantel entre
distdnciasde Nei edistanciasgeograficas). Entretanto, seasan&
lises sdo baseadas em um pequeno nimero de popul agdeslocais,
os perfisdos correlogramas variam consideravel mente e asdis-
tancias Manhattan cal culadas entre el es podem ser maiores do
queas previamente estabel ecidas em outros estudos de smulagéo.
O método proposto permite assim estabel ecer umaamplitude de
perfis que podem ser obtidos pel o mesmo processo estocastico
dedivergénciagenética. A comparagdo de correl ogramas obser-
vados com esses perfis permiteassim evitar o uso de outrosmeca-
nismos microevol utivos paraexplicar essadivergénciagenética.
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