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Abstract

The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnor-
malities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an
intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technol-
ogy linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the di-
mension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and
research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology
techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of
microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods,
cytogeneticists have used a range of technologies to study the association between visible chromosome rearrange-
ments and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable num-
ber of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful
and informative complement to other molecular and genomic approaches. This manuscript does not present a de-
tailed history of the development of molecular cytogenetics; however, references to historical reviews and experi-
ments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the
technologies used to identify chromosomal rearrangements and copy number changes, and the applications for
cytogenetics in biomedical diagnosis and research are presented and discussed.
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Introduction

Arnold (1879), Flemming (1882) and Hansemann
(1890) reported the first microscopic observations of hu-
man mitotic chromosomes in the late 1800s. However, de-
cades passed before the precise modal chromosome num-
ber in humans was determined. Until Eagle developed
specific culture media in 1955, the cytogenetic analysis of
chromosomes depended on spontaneously dividing cells.
Tjio and Levan (1956), using cultured embryonic cells,
were the first researchers to report the correct number of
human chromosomes as 46. Moorhead et al. (1960) estab-
lished an in vitro culture method for the accumulation of di-
viding cells using colchicine to arrest cells at metaphase. In
the same year, Nowell (1960) discovered the mitogenic
property of phytohemagglutinin, resulting in further techni-
cal improvements, particularly the use of peripheral blood
cells. Both events significantly increased the number of
metaphase spreads available for chromosome analysis.
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Steele and Breg Jr (1966) succeeded in culturing amniotic
fluid cells and karyotyping fetal chromosomes. In the
1970s, an in vitro culture technique for chorionic villi was
developed (Hahnemann, 1974), and Niazi ef al. (1981) and
Brambati and Simoni (1983) improved this culture tech-
nique several years later. Cytogenetics in hematology and
oncology initially used peripheral blood as a specimen due
to technical difficulties in processing and culturing solid tu-
mor tissue. Because the development of newer techniques
and more adequate methods has continued to increase the
resolution of chromosomes, human cytogenetics has
evolved from a more basic science into a valuable strategy
for diagnosing prenatal, postnatal and acquired chromo-
somal abnormalities. The introduction and successful ap-
plication of a variety of chromosome-staining techniques in
previous years and molecular cytogenetic methods in re-
cent years has tremendously improved the number of chro-
mosomal abnormalities described. Since the first observa-
tion of an extra copy of chromosome 21 (Lejeune et al.,
1959) in patients with Down syndrome, many more chro-
mosomal abnormalities, such as other trisomies, translo-
cations, inversions, insertions, deletions, duplications and
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complex chromosome rearrangements, have been de-
scribed. Novel methods for investigating the mechanisms
underlying copy number changes, characterizing gene in-
teractions and analyzing genes within copy number varia-
tions (CNVs) are now being explored. Because the majority
of techniques have been developed to study human
genomes, man has been by far the most extensively studied
organism in cytogenetics. An overview of the first years of
human cytogenetics and descriptions of classical and mo-
lecular cytogenetic techniques applied to the study of chro-
mosomal abnormalities and evaluate copy number changes
are discussed in more detail below.

The Beginning of Human Cytogenetics

Human cytogenetics research began in 1879 with the
observations of the German pathologist Arnold, who exam-
ined carcinoma and sarcoma cells because the voluminous
nuclei of these cells facilitated analysis. Later, Flemming
and Hansemann were the first to examine human mitotic
chromosomes. In the late 19" century Waldeyer (1888)
proposed the word “chromosome”, which means, “colored
body” (from the Greek chroma = color and soma = body).
The use of colchicine for chromosome preparations was
first implemented in plant cytogenetics in the 1930s
(Blakeslee and Avery, 1937; Levan, 1938). This substance
acts as a poison that inhibits spindle formation during mito-
sis, increasing the number of metaphase spreads available
for analysis in a preparation. The treatment of cells with a
hypotonic solution facilitated better chromosome spread-
ing, leading to better definition for counting the chromo-
somes. Previous studies have shown that unspread and
tangled chromosomes make it difficult to count the number
of mammalian chromosomes in a preparation (Matthey,
1949). An improved hypotonic treatment technique (hypo-
tonic shock) was then applied to examine lung fibroblasts
in human embryos, thereby establishing the correct modal
number of 46 chromosomes in human diploid cells (Tjio
and Levan, 1956). In decades prior to this discovery, a hu-
man chromosome number of 48 had been described in a
number of reports (see Gartler, 2006). This number was
based on an examination of chromosome preparations of
human spermatogonia, which suggested that humans had
48 chromosomes (Painter, 1923).

Although only a few chromosome details were
known during the pre-banding era, the chromosomes them-
selves could be arranged in different groups based on their
sizes and centromere positions. Following the determina-
tion of the correct modal chromosome number, the identifi-
cation of the first inherited chromosomal abnormality
(aneuploidy) leading to human diseases in man was identi-
fied. Lejeune et al. (1959) reported trisomy 21 in Down
syndrome patients. Subsequently, the chromosomal abnor-
malities causing Klinefelter (47, XXY) and Turner (45, X)
syndromes were identified (Ford et al., 1959; Jacobs and
Strong, 1959). During the same period, the first acquired
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chromosome anomaly (Philadelphia chromosome) was de-
scribed in patients with chronic myeloid leukemia (Nowell,
1960). Subsequent technical improvements in cytogenetics
included the use of phytohemagglutinin (a substance that
stimulates the division of T lymphocytes in vitro) and the
introduction of banding techniques at the end of the 1960s.
Banding techniques use chemical treatments to produce
differentially stained regions on chromosomes. The band-
ing pattern is highly characteristic for each chromosome
and facilitates the complete identification of the human

karyotype.

Chromosome Banding Techniques

With the possibility of more specific identification
and detailed analyses of human chromosomes, a new phase
in cytogenetics began. The first method for the visualiza-
tion of a pattern of bands on human chromosomes was
Q-banding (Caspersson et al., 1968). Subsequently, G-ban-
ding (Seabright 1971), a technique based on the application
of trypsin (a proteolytic enzyme) using Giemsa staining,
was developed, and this method is still the most widespread
cytogenetic method routinely used in clinical settings.
Classical cytogenetics became a traditional powerful diag-
nostic tool for detecting genomic aberrations, including
both gains and losses of segments of the genome and rear-
rangements within and between chromosomes. However,
the resolution of standard cytogenetics techniques re-
mained limited, with a count of approximately 400-500
bands per haploid genome (Figure 1). The approaches de-
scribed above facilitated the identification of structural
chromosomal aberrations of at least 5-10 Mb in size. The
average resolution depends on different elements, such as
the optical characteristics of the microscope, the complex
manner in which the DNA is packaged into chromosomes
and the quality of the metaphase preparations. The resolu-
tion of the standard karyotype was improved after the intro-
duction of high-resolution banding based on the use of
synchronized lymphocyte cultures (Yunis, 1976). Using
this technique, it was possible to increase the number of
cells in the pro-metaphase or prophase stages. Detailed
principles, protocols and potential applications for these
cytogenetic banding techniques have been summarized
elsewhere (Wegner, 1999).

Fluorescence in situ Hybridization (FISH) and
Multiple Advances

The considerable gap between the limited resolution
for observing chromosome structure through banding tech-
niques (> 5 Mb, depending on the banding resolution ap-
plied) at the light microscopy and gene levels was bridged
after the introduction and application of several molecular
cytogenetic approaches. The first applications of molecular
techniques to chromosome slide preparations, called in situ
hybridization (ISH), were attempts to identify and locate



196

113
- | 5 )
= 5 t“ FIEl.
8y ¥ S B, %
4 % 3[’*% Bl § ?
H 5 & Bl «/ 2 |E| X4
1 T —
s JEf ¢ 2
AP ¢ 3
T B2 il 1§
g A no= 2 2 &
6 A
[ { &g £ B¢
£ Ei E :
B 4 5
B2 B g sk
— 19*-..,,. —— ‘2'.;.). ——— _2.1

Human molecular cytogenetics

-t

*‘a
.&'

%

;

E
_ e
i
|

16 17
V“
-l i A 2 ?
,_‘i ap |
22

Figure 1 - Human Karyotype. GTG-banded male patient with a normal metaphase spread with approximately 550 bands.

specific nucleic acid sequences inside cells or on chromo-
somes (Gall and Pardue, 1969; John et al., 1969). The ISH
technique was based on the discovery that radioactively la-
beled ribosomal RNA hybridized to acrocentric chromo-
somes. The hybridization was visualized using autoradio-
graphy, which had been applied to human chromosomes
since the early 1960s (German and Bearn, 1961). The use of
ISH technology provided another dimension to the study of
chromosomes, facilitating the visualization of DNA or
complementary RNA sequences on chromosomes and in
cells at the molecular level. However, the use of this
method was limited due to the use of radioactive isotopes,
highly repetitive DNA sequences and corresponding RNA
in the satellite regions of chromosomes and centromeres
(Pardue and Gall, 1970).

Subsequently, Langer et al. (1981) improved ISH
with the development of a technique involving the use of a
nonradioactive probe (such as biotin) for indirect labeling
through nick translation. The hybridization (DNA probe
and target sequence) could be visualized through avidin or
streptavidin fluorescent labeling. The development of fluo-
rescent molecules led to direct (combined with a fluoro-
chrome) or indirect (through an intermediate molecule
incorporated into a probe) binding to DNA bases, which
eventually evolved into fluorescence in situ hybridization
(FISH). FISH increased the resolution at which chromo-
some rearrangements could be identified at submicroscopic

levels, making this technique applicable for both clinical
diagnosis and research. FISH has been a driving force in the
further development of cytogenetic techniques. The basic
principle of FISH is that a target DNA in cells, nuclei or
metaphase chromosomes is fixed and denatured on the sur-
face of the slide. The probe DNA must be labeled with a nu-
cleotide that is either conjugated to fluorescein (direct
labeling) and/or a non-fluorescent hapten (indirect label-
ing), and the probe is first denatured and pre-hybridized
with unlabeled repetitive DNA. Before hybridization, the
metaphase chromosome suspension and/or interphase nu-
clei are enzymatically pretreated to enhance accessibility to
the probe and reduce the amount of cytoplasm. The pre-
treated slide containing the target and probe DNA is heated
to denature the DNA. The prepared probe is subsequently
applied to the slide for ~16-48 h at 37°C for hybridization.
The speed of the hybridization between the probe and the
target DNA varies depending on the probe used. Post-
hybridization washes remove unbound single-strand DNA
and non-specifically bound DNA from the slide. When a
non-fluorescent hapten is used (e.g., biotin or digoxigenin),
the detection occurs through a fluorescence-coupled anti-
hapten. After washing, an anti-fade solution containing
DAPI (4°, 6-diamidino-2-phenylindole) is applied to the
slide, and a coverslip must be added. DAPI is a fluorescent
stain used extensively in fluorescence microscopy. FISH
signals are typically observed using epifluorescence micro-
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scopes with specific filters for identifying fluorochromes
(Marcus, 1988; Reichman, 2000)), a charge-coupled device
(CCD) camera captures the image and the fluorescent sig-
nals are subsequently quantified (Hiraoka ef al., 1987). The
resulting images can be analyzed using commercially avai-
lable systems.

Together with the development of standard FISH
(Pinkel ef al., 1986a,b), more sensitive FISH-based tech-
niques were gradually developed, and several digital imag-
ing systems were introduced for FISH image acquisition,
image pre-processing and digital image analysis. FISH pro-
vides the option for the simultancous use of one or more
DNA probes, and these probes can be distinguished after la-
beling with different colors or color combinations. The
probes primarily determine the resolution of these molecu-
lar cytogenetic techniques and can be classified according
to the pattern of detected DNA sequences. Many types of
probes can be used for FISH (Figure 2). Currently, a range
of commercial probes (e.g., whole-chromosome painting
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probes, chromosome-arm painting probes, and repetitive
centromeric, subtelomeric and locus-specific probes) is
available for the detection of certain constitutional and ac-
quired chromosomal abnormalities. Nevertheless, FISH
probes can be generated through chromosome flow sorting
(Pinkel et al., 1988) or microdissection (Meltzer et al.,
1992) using universal degenerate oligonucleotide-primed
PCR (DOP-PCR) (Telenius et al., 1992).

FISH is a flexible technique that has driven the fur-
ther development of other cytogenetic techniques. There
are multiple approaches using FISH-based methods for dif-
ferent applications, e.g., reverse-FISH (Carter et al., 1992),
fiber-FISH (Florijn et al., 1995; Heiskanen et al., 1995),
(M-FISH multicolor FISH) (Speicher et al., 1996), SKY
(spectral karyotyping FISH) (Schrock et al., 1996), flow-
FISH (Rufer et al., 1998), Q-FISH (quantitative FISH)
(Martens et al., 1998), COBRA-FISH (combined binary ra-
tio labeling FISH) (Tanke et al., 1999), cenM-FISH
(centromere-specific M-FISH) (Nietzel ef al., 2001), pod-

Figure 2 - FISH with different types of probes and partial metaphases. (a) Whole chromosome 21 painting; (b) partial chromosome painting probe for the
long arm of chromosome 9; (c) locus-specific probe for chromosome 4p16.3 (red) and Alfa satellite probe 4p11-q11(green); (d) subtelomeric probe for
the short arm (red) and long arm (green) of chromosome 1; (e) human telomeric probes; and (f) Interphase-FISH with locus-specific SRY (sex-
determining region Y) probe located in Yp11.31(red) and control probes for the X centromere (DXZ1) (blue) and for the heterochromatic block at Yq12
(green).
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FISH (parental origin determination FISH) (Weise ef al.,
2008), (heterochromatin-M-FISH) (Bucksch et al., 2012)
and other modified FISH approaches. If modified, several
FISH techniques can also be applied to interphase cells
(interphase FISH) (Vorsanova et al., 2010), which confers
the advantages of FISH for the visualization of DNA
probes in interphase nuclei (Cremer et al., 1986). The limi-
tation of standard FISH, however, is that it is not possible to
simultaneously detect all of the chromosomes in the entire
genome.

COBRA-FISH, M-FISH, and SKY are the most ad-
vanced FISH-based approaches, and these approaches fa-
cilitate the simultaneous visualization and detection of all
human and non-human chromosomes through color karyo-
typing. The simultaneous staining of each of the 24 human
chromosomes with a different color involves the use of
whole-chromosome painting (WCP) probes, and all three
of these FISH techniques use similar probe sets. Four to
seven different fluorescence dyes can be used to label the
WCP probes, and the chromosomes are counterstained with
DAPI. The required 24 color combinations can be achieved
through combinatorial or ratio labeling. The most impor-
tant aspect of these techniques is the acquisition and mea-
surement of the complete emission spectra between 400
and 800 nm, rendering a unique image that contains spe-
cific spectral information for each image point. The result-
ing chromosome classification is performed automatically
using commercial software, and the DAPI image is also
used to complement the analysis with chromosome band-
ing information (Schrock et al., 2006). A high-resolution
molecular cytogenetic technique for the analysis of meta-
phase chromosomes, called multicolor banding (MCB), has
been proposed, which involves the microdissection of chro-
mosomal loci to obtain a set of probes that produce
multicolor pseudo-G-banding (Liehr et al., 2002).

For either standard or advanced FISH methods, the
preparations should be analyzed using a well maintained
and calibrated fluorescence microscope equipped with the
optical filter sets appropriate for the fluorochromes used
and an image-recording system. The development of nu-
merous FISH protocols and multiple approaches is the re-
sult of the efforts of many diagnostic and research scientists
from different research groups worldwide. These tech-
niques have been continuously improved, and it is not pos-
sible to cover every modification of FISH in this
manuscript. Detailed FISH protocols and applications are
described elsewhere (Liehr, 2009).

Comparative Genomic Hybridization (CGH) and
Array-based CGH

The comparative genomic hybridization (CGH) tech-
nique is an efficient approach to genome-wide screening
for chromosomal copy number changes (gains/duplications
and losses/deletions) within a single experiment, and this
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technique was initially introduced to study chromosomal
abnormalities that occur in solid tumors and other malig-
nancies (Kallioniemi et al., 1992). Chromosomal CGH is
based on quantitative two-color FISH and overcomes the
problems of tissue culture failure and artifacts because this
method is based on using tumor DNA extracted directly
from either fresh or archival tumor tissue (Kallioniemi,
2008). The major advantage of CGH over standard FISH
techniques is that only the DNA from the tumor cells is
needed for analysis, avoiding the difficulties of obtaining
metaphase chromosomes with good morphology and reso-
lution for the analysis. In CGH, total genomic DNA ob-
tained from control cells and test samples is differentially
labeled using green (fluorescein isothiocyanate, FITC) and
red (Texas red) fluorescent dyes, denatured, co-precipitated
in the presence of blocking DNA to suppress repetitive se-
quences and subsequently co-hybridized to normal meta-
phase chromosomes. Due to the simultaneous hybridiza-
tion to normal denatured metaphase chromosome spreads,
there is competition for DNA hybridization to homologous
sites. After hybridization and washing, the metaphase
spreads are observed under a fluorescent microscope, and
image analysis is performed using image analysis software.
The resulting fluorescence intensities of the test and refer-
ence hybridizations are digitally quantified along the length
of each chromosome. Chromosomal regions equally repre-
sented in both the test and reference samples appear yellow
because of the presence of an identical amount of red and
green dye, while regions with copy number loss are red and
have a ratio below one (Figure 3a).

Although chromosomal CGH has increased the po-
tential for identifying new chromosomal abnormalities, this
technique is time consuming and does not significantly
improve resolution (> 3 Mb) compared with routine G-ban-
ding chromosome analysis. More recently, the develop-
ment of array-based CGH (array-CGH) approaches involv-
ing the substitution of metaphase chromosomes with DNA
sequences adhered onto glass slides has increased the reso-
lution for detecting copy number changes in the human ge-
nome, leading to more detailed information on genomic
gains and losses (Figure 3b). Among all of the recent ad-
vances in techniques for examining chromosomes, array-
CGH technology has been suggested as a technique that
will gradually replace classical cytogenetics in clinical di-
agnosis. The fundamental principle of array-CGH is essen-
tially the same as that in CGH. Indeed, the process involves
comparative genomic hybridization using an array rather
than a metaphase spread as the substrate (Solinas-Toldo et
al., 1997; Pinkel et al., 1998).

The actual microarray comprises thousands of spots
of reference DNA sequences applied in a precisely gridded
manner on the slide. The initial arrayed DNA segments
could be larger (~150 kb) human DNA segments inserted
into a bacterial artificial chromosome (BAC clones) or bac-
terial/P1-derived artificial chromosomes (PAC clones)
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Figure 3 - Comparative Genomic Hybridization. (A) Conventional CGH analysis: a mixture of test DNA from a patient and a normal reference DNA la-
beled with different fluorochromes are hybridized to normal chromosome spreads (fop panel). The left panel illustrates the hybridization pattern of chro-
mosome 13. The interstitial segment of g-arm appears red, which indicates a loss of the region indicating rev ish dim (13q21q31). The right panel shows a
graph of the ratio profiles of chromosome 13. The black line represents the balanced fluorescence intensities, and the red line is the threshold for loss, and
the green line is the threshold for a gain of material. (B) Chromosome 4 array-CGH profile of a test DNA and a reference DNA. The figure shows a copy
number loss corresponding to the segment of 4p16.3-p15.33 in a genomic segment with the median log?2 ratio shifted to -1.0. The lower panel shows the
4p16.3-p15.33 region with the deletion segment and the genes present in this region.

(Snijders et al., 2001; Fiegler et al., 2003; Chung et al.,
2004; Ishkanian et al., 2004). As the resolution of the array
yields improves, shorter sequences have been used as tar-
gets, including smaller cDNA fragments (Pollack et al.,
1999), PCR products (Mantripragada et al., 2004) and
oligonucleotides (Rouillard ef al., 2002). Furthermore, ar-
ray-CGH provides resolution at the nucleotide level. Sin-
gle-nucleotide polymorphism arrays (SNP arrays) have the
highest resolution (5-10 kb) of all of the available ar-
ray-based platforms (see Le Scouarnec and Gribble, 2012).
The co-hybridization of the test and reference DNAs is not
required because the test DNA can hybridize directly to the
SNP array. In addition to CNVs, the genotype information
obtained from SNP arrays enables the detection of stretches
of homozygosity and thus the identification of recessive
disease genes, mosaic aneuploidy or uniparental disomy
(UPD) (de Leeuw et al., 2012). While only SNP arrays en-
able the detection of copy number-neutral regions in the ab-
sence of heterozygosity (AOH), these arrays have limited
ability to detect single-exon copy CNVs due to the distribu-
tion of SNPs across the genome. Combining both array-
CGH and SNP genotyping in a single platform optimizes
the clinical diagnostic capability, offering the simultaneous
detection of copy number neutral and small intragenic copy
number changes (Wiszniewska et al., 2014).

The number, size and distribution of the DNA seg-
ments on the glass slide determine the array resolution, but
commonly, the higher the number of DNA fragments, the
higher the resolution. According to Balliff ef al. (2006) and
Cheung et al. (2007), array-CGH also has increased the
sensitivity for detecting cell lines with chromosomal abnor-
malities in peripheral blood, as chromosomal abnormalities
are typically detected in only 5-7% of cells. Currently, there
are several different commercially available diagnostic
DNA microarray platforms comparing thousands of DNA
sequences from a patient sample with reference (control)
DNA samples or control datasets to detect chromosomal
CNVs. A common limitation of SNP and CGH arrays is the
inability to identify balanced translocations and inversions.

Recently, a modified array protocol, called trans-
location CGH (tCGH), was developed to address recurrent
translocation breakpoints in hematological neoplasms.
Prior to the hybridization step in the array procedure, a lin-
ear PCR amplification is performed across the known re-
current translocation breakpoints in hematological neo-
plasms. Thus, it is possible to detect copy number changes
and known recurrent translocations near or at the break-
points (Greisman et al., 2011). Custom-made commercial
arrays that use general standard protocols can also be or-



200

dered. Detailed information on the protocols and references
is available elsewhere (Banerjee and Shah, 2013).

FISH Applications in Pre- and Postnatal
Diagnostics and Research

Several decades ago, molecular methods were intro-
duced into cytogenetic studies, facilitating the development
of new applications, many of which were used diagnosti-
cally or as prognostic tools in medicine. Furthermore, mo-
lecular cytogenetic approaches have also become indis-
pensable for a range of research purposes. The use of
molecular techniques in cytogenetic studies is increasing,
and the many variations, adaptations and specifications
make it challenging to cover all of the possible applications.
Since the introduction of FISH in the late 1980s, there has
been a tremendous increase in the number of studies using
molecular approaches in cytogenetics to detect chromo-
somal abnormalities and evaluate CNVs in the human ge-
nome. FISH offers numerous possibilities for studying ei-
ther the whole genome or specific genomic loci (regions),
and this technique has been widely used to detect aneu-
ploidies and recurrent chromosomal abnormalities in pre-
implantation genetic, prenatal, and postnatal diagnoses and
cancer cytogenetics. Moreover, the application of FISH has
long been demonstrated as extremely valuable for studying
chromosomal and genome organization, evolution and
variations in health and disease (see Geurts and de Jong
2013; McNamara ef al., 2014; Pita et al., 2014).

A significant advantage of FISH is that it can be ap-
plied in non-dividing cells, thereby facilitating the direct in-
vestigation of chromosomes in cytological preparations
and tissue sections. Classical cytogenetic analysis depends
on cells undergoing mitosis to obtain metaphase chromo-
some spreads. Therefore, cells must be cultured in vitro ei-
ther as a short- or long-term culture. Thus, interphase FISH
on uncultured amnion cells has become a useful method for
the rapid and early diagnosis of the most common chromo-
some disorders (trisomies 21, 13, 18 and sex chromosome
aneuploidies) in fetal cells (Eiben et al., 1998). For prenatal
aneuploidy screening using uncultured amniocytes, no
time-consuming cell culture is required, and the results can
be obtained within 24-48 hours. Three satellite centromeric
probes for chromosomes X, Y and 18 and two locus-
specific probes for the 13q14 and 21q22.13 regions are the
most commonly applied. Interphase FISH in prenatal diag-
nosis is a quick, accurate, sensitive and relatively specific
method to detect ancuploidies in samples of uncultured
chorionic villus (Rosner et al., 2013) and amniotic fluid
cells (Stumm et al., 2000).

Using site-specific DNA probes (YACs, BACs,
PACs, and cosmids), FISH is typically applied for mapping
chromosomal regions with located breakpoints (Liehr,
2009). In addition, using locus-specific probes, FISH has
also been used to confirm clinical diagnoses of known

Human molecular cytogenetics

microdeletion and microduplication syndromes (Riegel
and coworkers, unpublished data). However, FISH has lim-
itations in the detection of known microdeletion syn-
dromes. Occasionally, patients with small and unusual
deletions might escape detection, depending on the speci-
ficity of the fluorescent probe. Moreover, cases with gene
or imprinting mutations, occurring in some microdeletion
syndromes, e.g., Angelman syndrome (AS), Prader-Willi
syndrome (PWS), Sotos syndrome (SoS), Miller-Diecker
syndrome (MDS), Smith-Magenis syndrome (SMS) and
Rubinstein-Taybi syndrome (RTS), cannot be detected
through FISH. The analysis of telomeres using FISH tech-
niques has been conducted in cancer and aging research
(telomere biology); however, due to the lack of specificity
of the DNA probes (TTAGGG repetitive sequence motifs),
this technique is poorly applicable for diagnosis (Aubert
and Lansdorp, 2008). Multicolor FISH approaches have
been most valuable for cancer cytogenetics, but these meth-
ods have also been applied to diagnose constitutional chro-
mosomal abnormalities (Liehr et al, 2004) and define
translocations and marker chromosomes in complex karyo-
types (Kearney, 2006).

Applications of CGH Analysis

Although CGH has primarily been applied to study
solid tumors, this technique has also used to study leukemia
and lymphoma (Kallioniemi ef al., 1992; Forozan et al.,
1997; Gebhart, 2004; Carless, 2009). However, given that
CNVs are associated with many conditions, ranging from
cancer to developmental abnormalities, CGH has also been
applied to identify constitutional chromosomal abnormali-
ties in clinical samples (Daniely et al., 1998; Lestou et al.,
1999; Kirchhoff et al., 2001; Ness et al., 2002; Schou et al.,
2009). Several reports have demonstrated the use of either
standard CGH or array-CGH to detect chromosomal abnor-
malities in single cells of pre-implantation embryos (Wells
and Delhanty, 2000; Le Caignec ef al., 2006; Harton et al.,
2013).

Array-CGH was initially applied to identify chromo-
somal imbalances through the detection of CNVs in tumors
to distinguish candidate genes involved in the pathogenesis
of cancer (Cai et al., 2002; Albertson and Pinkel, 2003). In
clinical diagnostics, both oligonucleotide array-CGH and
SNP genotyping have been demonstrated as powerful ge-
nomic technologies for evaluating idiopathic mental retar-
dation (MR) (also referred to as developmental delay (DD),
intellectual disability (ID) or learning difficulty), associ-
ated congenital abnormalities (MCA), autistic spectrum
disorders (ASDs), schizophrenia and other neuropsychiat-
ric disorders. Furthermore, the introduction of genome-
wide array platforms facilitated the detection of chromo-
somal abnormalities consistent with genetic syndromes at
earlier ages, when only a few clinical findings might be
present.
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CNVs are DNA segments that present a variable copy
number compared with a reference genome, which has the
typical copy number of N =2 (Feuk ef al., 2006). In 2004,
two studies employing array-based platforms revealed that
CNVs exist in many large DNA genomic segments be-
tween normal human individuals, suggesting that these
variations are fairly common and might represent polymor-
phic variations and a significant source of genetic variation
(Tafrate et al., 2004; Sebat et al., 2004). Furthermore, the
examination of the genomic content of CN'Vs revealed that
these genomic regions include many functional genes in-
volved in the regulation of cell growth and metabolism
(Iafrate, 2004), implicating CN'Vs in human traits, disease
and evolution. Since that time, many additional studies us-
ing a multitude of different high-resolution genome-
analysis platforms have advanced our knowledge regarding
CNVs.

Since Vissers et al. (2003) published the first report
on detecting constitutional submicroscopic imbalances us-
ing array-based techniques in a series of patients with
ID/MCA, the results of many more array-based studies
have been published. Array-based genome investigations
have been demonstrated to detect pathogenic imbalances in
approximately 14-18% of consecutive ID/MCA cases re-
ferred for analysis. The rate differences might reflect differ-
ences in the resolutions of the array platforms used, the
criteria for patient selection and the interpretation of the
clinical relevance of the CNVs detected. Most of these
CNVs are deletions and duplications that arise de novo, ei-
ther as unique or recurrent events (Hochstenbach et al.,
2011). The increasing number of laboratories worldwide
applying array-based methods for the diagnosis of patients
with multiple congenital abnormalities has increased the
detection of human genomic imbalances and led to the
identification of a number of diseases caused by chromo-
somal microdeletions and microduplications. In recent
years, common and newer microdeletion and microdu-
plication syndromes associated with a variety of pheno-
types have been revisited (Schinzel et al., 2013; Riegel and
coworkers, unpublished data;) and recognized (Deak et al.,
2011; Rafati et al., 2012; Vissers and Stankiewicz, 2012;
Weise et al., 2012; Shimizu et al., 2013).

The use of array-CGH as a genetic test in selected
sporadic ASD patients has shown that non-syndromic, de
novo CNVs occur in ~7.5% of boys and ~12% of girls. De
novo deletions CNVs in female patients tend to be larger
than in male patients and contain a higher number of pro-
tein-coding genes (Sanders et al, 2011). According to
Hochstenbach ef al. (2011), these findings suggest that
women are more resistant than men to developing ASD and
are less likely to be diagnosed with ASD or both. In syn-
dromic ASD cases, the chance of finding a causal CNV is
nearly 25%. Based on recurrent microdeletions and micro-
duplications identifiable on array-based platforms, a con-
tributing CNV can be expected in approximately 5% of
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patients with schizophrenia. This rate only considers the
currently known CNVs. Thus, it is likely that many more
unique CNVs with major effects exist, similarly to ASD. In
a small fraction of patients with schizophrenia, the alleles
with CNVs are likely the strongest factors contributing to
the pathogenesis of the disease (Stefansson et al., 2014).

Recently, Nicholl ef al. (2014) reported the frequency
of pathogenic chromosomal microdeletions and microdu-
plications in a large group of referred patients with devel-
opmental delay (DD), intellectual disability (ID) or autism
spectrum disorders (ASD), and these authors provided a ge-
netic diagnostic service. The first tier testing was applied
using a standardized oligo-array CGH platform. The fol-
lowing detection rates, excluding the CNVs of uncertain
significance, were observed: DD (13.0%), ID (15.6%),
ASD (2.3%), ASD with DD (8.2%), ASD with ID (12.7%)
and unexplained epilepsy with DD, ID and ASD (10.9%).
Greater diagnostic sensitivity reflects the routine applica-
tion of array CGH, compared with previously used conven-
tional cytogenetics; according to Nicholl et al. (2014), the
greater diagnostic sensitivity outweighs the interpretative
issues arising from the detection of CNVs of uncertain sig-
nificance.

Microarray approaches are increasingly used in pre-
natal settings in pregnancies with ultrasound anomalies and
pregnancies referred for other reasons. However, chal-
lenges in interpreting the results, quality control and ethical
issues have delayed the use of microarray approaches in
prenatal care compared with postnatal diagnoses (Rickman
et al., 2005; Vetro et al., 2012). Numerous case series and
case reports have since been published on the application of
array-CGH in prenatal settings (Brady and Vermeesch,
2012; Brady et al., 2013; Evangelidou ef al., 2013). Ar-
ray-CGH increases the diagnostic yield for detecting addi-
tional genomic imbalances 1-5% compared with normal
karyotyping, depending on the reference source (ACOG
Committee, 2009; Hillman et al., 2011; Lichtenbelt ef al.,
2011).

In hematologic and oncologic disorders, the imple-
mentation of array-based chromosome analysis has been
critical. The complexity of cancer cells requires a sensitive
technique that facilitates the detection of small genomic
changes in a mixed cell population and segmental regions
of homozygosity. However, recurrent balanced genomic
aberrations with important prognostic value in cancer
might be not detected through array-based analyses. Be-
cause array-CGH is based on the principle of CNV detec-
tion, this technique is limited by an inability to identify
balanced translocations and inversions. Nevertheless, ar-
rays have been previously demonstrated as clinically essen-
tial for identifying novel genomic abnormalities that escape
detection using current diagnostic methodologies in a num-
ber of hematological diseases, such as chronic lymphocytic
leukemia (CLL), myelodysplastic syndrome (MDS), multi-
ple myeloma (MM), acute lymphoblastic leukemia (ALL),
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acute myeloid leukemia (AML) and chronic myelomo-
nocytic leukemia (CMML) (Shao et al., 2010; Simons et
al., 2012). Moreover, the identification and accurate geno-
mic mapping of genomic alterations in hematological
malignances in a preclinical stage have shown that it is pos-
sible to refine the current risk stratification of patients, and
this technique might eventually contribute to the develop-
ment of enhanced treatment modalities (van der Veken and
Buijs, 2011; Simons et al., 2012).

The detection of common and rare CNVs using ar-
ray-based platforms has generated questions concerning
the origin and molecular mechanisms leading to recurrent
and non-recurrent CNVs (Lupski and Stankiewicz 2005;
Currall et al., 2013; Dittwald et al., 2013; Sun et al., 2013)
and the phenotypic effects of CNVs and recurrence risks
(Girirajan et al., 2012; Priest et al., 2012; Boone ef al.,
2013). Recombination-based mechanisms, i.e., non-allelic
homologous recombination (NAHR), non-homologous
end joining (NHEJ) (Lupski and Stankiewicz, 2005) and
retrotransposition (Kazazian Jr and Moran, 1998; Xing et
al., 2009), have been implicated in genomic rearrange-
ments and the formation of CNVs. A replication-based
mechanism, fork stalling and template switching (FoSTeS)
might account for the complex genomic rearrangements
that cannot be readily explained through NAHR, NHEJ or
retrotransposition (Lee ef al., 2007; Perry et al., 2008; Arlt
et al., 2012). CNVs represent an important component of
genetic variation and have been described as a major con-
tributor to phenotype diversity and disease (Girirajan and
Eichler, 2010; Arlt et al., 2011; Cooper et al., 2011; Giri-
rajan et al., 2011; Girirajan, 2013).

Interpretation of CNVs

The widespread use of array-CGH has revealed that a
large proportion of the human genome contains regions of
copy number variability, and distinguishing between
pathogenic and benign gains and losses has been challeng-
ing. Although array-CGH technology has been well devel-
oped and there are numerous algorithms available for
estimating copy number (McDonnell ef al., 2013), the reso-
lution of the array platforms used in molecular cytogenetics
and our understanding of the clinical effects of CNVs are
still improving. Recurrent CNVs can occur in both patients
and healthy individuals, and frequently, more than one
unique CNV is identified in a patient. A given copy number
change with a high penetrance pathogenic might reduce or
aggravate the clinical phenotype in the presence of other
CNVs/SNPs. For example, Girirajan et al. (2010) demon-
strated that the 16p11.2 microdeletion predisposes individ-
uals to neuropsychiatric phenotypes as a single event and
aggravates neurodevelopmental phenotypes in association
with other large deletions or duplications within the ge-
nome of an individual.

The large quantity of clinical and cytogenetic data
available in open access databases can help decipher which
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combinations of variants lead to varying degrees of patho-
genicity. Factors that influence the pathogenicity of CNVs
and an evidence-based classification for the clinical inter-
pretation of CNVs have been discussed and proposed (Lee
et al., 2007; Hehir-Kwa et al., 2010; Miller et al., 2010;
Gijsbers et al., 2011; de Leeuw et al., 2012; Riggs et al.,
2012; Liehr, 2014). Online resources and public databases
have been developed and are utilized by the scientific and
biomedical community, which has been encouraged to sub-
mit cases to the databases to provide data on the test results
(Vulto-van Silfhout et al., 2013).

Common strategies have been proposed to help inter-
pret CNV findings, and no universal criteria have been es-
tablished thus far. Most laboratories classify the various
CNVs into different categories using some or all of the
CNV classifications: benign CNV or normal genomic vari-
ant; benign CNV; CNV with uncertain clinical relevance or
variants of uncertain significance (VOUS); and CNV with
potential clinical relevance or pathogenic variants. When
array-CGH was initially used, all identified CNVs were
generally reported. In recent years, the trend towards stan-
dardizing the reporting among laboratories worldwide, and
the current tendency is to report only potentially meaning-
ful CNVs. Nevertheless, the array platform used and the re-
porting criteria might vary between individual laboratories.
Different laboratories might also use different methods to
confirm the array findings (e.g., FISH, multiplex ligation-
dependent probe amplification (MLPA), Quantitative Flu-
orescence Polymerase Chain Reaction (QF-PCR), and a
second array-CGH).

When interpreting and classifying CNVs, it is essen-
tial to distinguish gains from losses because the potential
clinical consequences might significantly differ. Further-
more, it is essential to compare gains with gains and losses
with losses (Vermeesch et al., 2007; Conrad et al., 2010;
Vermeesch et al., 2012). de Leeuw et al. (2012) summa-
rized the characteristics of the most commonly used
Internet databases and resources and proposed a general in-
terpretation strategy that can be used for comparative hy-
bridization, comparative intensity and genotype-based
array data. Some of the available online databases associ-
ated with chromosome abnormalities and variants are listed
below (as of January 2014):

Centre for the Development and Evaluation of Com-
plex Interventions for Public Health Improvement
(DECIPHER) project: http://decipher.sanger.ac.uk.

The Chromosome Anomaly Collection:
http://www.ngrl.org.uk/wessex/collection/.

Chromosomal Variation in Man Online Database:
http://www.wiley.com/legacy/products/sub-
ject/life/borgaonkar/access.html.

Cytogenetic Data Analysis
http://www.cydas.org/.

Database of genomic structural variation (bdVar):
http://www.ncbi.nlm.nih.gov/dbvar/.

System (CyDAS):
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Ensembl: www.ensembl.org/.

European Cytogeneticists Association Register of
Unbalanced Chromosome Aberrations (ECARUCA):
wWww.ecaruc.net.

The International Standards for Cytogenomic Arrays

(ISCA)  Consortium:https://www.iscaconsortium.org/in-
dex.php.
Small  supernumerary marker chromosomes:

http://ssmc-tl.com/sSMC.html.

Final Remarks

The methods described herein provide information on
the human genome at different levels of resolution and have
shown potential for diagnostic and research purposes. The
resolution for studying chromosomes has improved from >
5 Mb (metaphase) to 50 kb-2 Mb (interphase) and 5-500 kb
(DNA fibers) and ultimately, to a single nucleotide. Molec-
ular cytogenetics and array-based technologies facilitate
higher resolutions through genome-wide screening for sub-
microscopic genomic CNVs. However, to identify cyto-
genetically visible CNVs (e.g., heterochromatin), low
mosaicisms and balanced translocations, banding cyto-
genetics has been demonstrated as useful. Cytogenetic test-
ing in developed countries primarily uses array-CGH tech-
nology to detect novel or rare
microdeletions/microduplications and has become the
first-line test in the diagnostic investigation of individuals
with MCAs, DDs or unexplained IDs. Although the use of
banding and FISH has gradually been replaced by ar-
ray-based technologies in several laboratories, G-banding
remains the most commonly used approach worldwide to
study the human genome. Moreover, the comparison of
chromosome and array-based chromosome analyses has
demonstrated that chromosome analysis remains valuable
for detecting mosaicisms and to delineate chromosomal
structural rearrangements (Bi et al., 2013). Evaluating the
use of conventional karyotypes or molecular approaches
will likely require continuous evaluation, as questions re-
garding how to achieve cost-effective diagnoses still re-
main in many clinical situations, e.g., rare chromosome
breakage syndromes and low-risk pregnancies (van
Ravenswaaij-Arts, personal communication 2013).

As the number of recognized genetic syndromes and
chromosomal abnormalities grows and as the clinical char-
acteristics of those syndromes overlap, it will be more diffi-
cult to precisely infer which syndrome affects an individual
based only on the clinical examination. Currently, the de-
tection of large numbers of CNVs using molecular cyto-
genetic approaches in patients and healthy individuals has
been considered a diagnostic pitfall due to interpretation
difficulties. Most chromosomal abnormalities have clinical
effects; however, the number of instances in which geno-
mic changes are benign has increased, as the resolution of
chromosome analysis has also increased. In clinical diag-
nosis, both array-CGH and SNP genotyping have been

203

demonstrated as powerful genomic technologies to evalu-
ate DD, MCAs and neuropsychiatric disorders. Differences
in the ability to detect genomic changes between these ar-
rays might constitute a challenge for laboratory managers,
as the request to provide the best approach to detect under-
lying genetic causes of diseases is increasing. In most
cases, imbalances that are cytogenetically visible in size
(several Mb) lead to severe clinical consequences and are
responsible for specific syndromes or clinical features
(Schinzel, 2001). However, CNVs can be expected in every
individual on a chromosomal or molecular genetic level
(1000 Genomes Project Consortium et al., 2012). Thus, it is
expected that the identification of variants of unknown
clinical significance will significantly increase, particularly
as many individuals now have their entire genomes se-
quenced (Bale et al., 2011; Palmer et al., 2014). Segmental
chromosome regions that might be present in variable copy
numbers in the genome without phenotypic consequences
are constantly being identified (Barber, 2005; Liehr, 2012).

To date, the critical point has been to distinguish simi-
lar-looking benign imbalances from pathological imbal-
ances. To facilitate the interpretation and analysis of the
information obtained using molecular cytogenetic ap-
proaches, widely available public databases have been de-
veloped and are constantly updated (e.g., CyDAS,
DECIPHER, ECARUCA, ISCA). Nevertheless, many
genomic imbalances are novel or extremely rare, making
interpretation problematic and uncertain. Thus, further mo-
lecular cytogenetic screenings of large patient cohorts with
common phenotypic features contribute to the ongoing de-
velopment of genotype-phenotype correlations, identifying
CNVs in dosage-sensitivity genes and defining their loca-
tions in the human genome. The use of whole-genome se-
quencing and whole-exome sequencing platforms has been
increasingly popular and powerful for genetic diagnosis
(Bick and Dimmock, 2011; Greisman et al., 2013; Johan-
sen Taber et al.,2013; Rabbani et al., 2014). These methods
might potentially be alternatives to the use of microarrays
in molecular cytogenetic laboratories. The technologies ap-
plied to study genomic imbalances have been rapidly
changing. Therefore, the comprehensive collection, organi-
zation and maintenance of the raw genotype-phenotype
data obtained through different approaches are major chal-
lenges.

The implementation and updating of national, re-
gional and international guidelines on the indications and
interpretations of molecular cytogenetics results along with
clinical management to improve expertise and experience
in clinical and laboratory praxis are necessary to improve
scientific knowledge and medical care. In addition, the re-
porting of molecular cytogenetic results is also another im-
portant issue (ISCN. An International System for Human
Cytogenetic Nomenclature, 2013). As new techniques are
implemented in cytogenetic laboratories for clinical use,
additional provisions for reporting findings should be de-
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veloped though international guidelines. The number of
chromosomal abnormalities and potential genomic rear-
rangements in the human genome are likely unlimited. In
the last decade, the importance of both high-quality cyto-
genetics and genome sequencing for detecting and under-
standing the molecular mechanisms that lead to these
chromosomal changes has been clear. Regardless of the de-
velopment of next-generation molecular techniques for
identifying chromosomal imbalances and CNVs in the hu-
man genome, the essential purpose of cytogenetics will re-
main the same: to study genomic organization and the
structure, function and evolution of chromosomes.
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