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Abstract 

In South America, Tambaqui (Colossoma macropomum) stands as the primary target for aquaculture, yet breeding 
programs for this Amazon native species are in their early stages. While high-density single nucleotide polymorphism 
(SNP) arrays are pivotal for aquaculture breeding, their costs can be prohibitive for non- or semi-industrial species. To 
overcome this, a cost-effective approach involves developing low-density SNP arrays followed by genotype imputation 
to higher densities. In this study, a 1K SNP array for tambaqui was created and validated, offering a balance between 
SNP quantity and genome representativity. The imputation accuracy from various SNP densities to a medium-density 
array was evaluated, with the 1K density demonstrating the best trade-off (accuracy of 0.93). This subset was further 
utilized to construct a commercial array through Agriseq™ targeted genotyping-by-sequencing, validated in 192 DNA 
samples, affirming its high quality for genotyping tambaqui. The low-density SNP array, with genome-wide coverage and 
high polymorphism, emerges as an effective tool for exploring genetic variation within diverse populations. Population 
analyses using the 1K panel proved to be an efficient tool for genetic characterization of sampled broodstocks, making 
it a valuable resource for genetic improvement programs targeting this Amazon native species.
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Introduction
The tambaqui fish (Colossoma macropomum) is 

classified as an omnivorous species, with preference for 
frugivorous behavior, in contrast to its closely related 
predatory counterparts, the piranhas of the Serrasalmidae 
family (Woynárovich and Van Anrooy, 2019). This unique 
species exhibits remarkable resilience, rapid growth, artificial 
feed acceptance, substantial productivity, and holds significant 
commercial value in international markets (Valladão et al., 
2018). Tambaqui stands out as the principal Amazon fish 
species cultivated in Brazil, particularly concentrated in the 
northern region of the country (IBGE, 2022). As evidenced 
by statistics from the Brazilian Institute of Geography and 
Statistics (IBGE, 2022), aquaculture production of tambaqui 
attained 94.6 thousand tons in 2021. Moreover, this remarkable 
fish species possesses desirable characteristics that make it 
advantageous to aquaculture development in Latin America, 
such as adaptability to different environments, high feed 
conversion efficiency and market demand (Hilsdorf et al., 
2022). As a result, tambaqui aquaculture has experienced 
successful expansion beyond Brazil, extending to countries 
such as Bolivia, Colombia, Peru, Ecuador, and Venezuela 
(Valladão et al., 2018).

In Brazil, most of the native fish aquaculture relies on 
unselected stocks, in which breeding programs are still in the 
beginning stage of development. Genetic selection programs 
have been initiated in tambaqui targeting efficient growth and 
disease resistance (Agudelo et al., 2022). As research and 
breeding techniques continue to advance, the application of 
genomic selection for complex traits is poised to revolutionize 
tambaqui aquaculture and contribute significantly to the 
industry’s growth. This modern approach allows fish breeders 
to make more precise breeding decisions, thereby accelerating 
the genetic progress of tambaqui populations. One of the 
primary challenges in implementing genomic selection-based 
breeding programs for native species is associated with the 
high cost of investment. In addition, a significant portion of 
native fish production is carried out by small to medium-
scale producers, who generally lack the financial solvency 
and specialized workforce to invest in genetic improvement 
programs.

Recently, more comprehensive genomic studies have 
been conducted on tambaqui, including the sequencing of a 
reference genome (Hilsdorf et al., 2021), population genetic 
studies (Agudelo et al., 2022), linkage mapping, identification 
of Quantitative Trait Loci (QTLs) (Ariede et al., 2020, 2022), 
and the development of a dense array of Single Nucleotide 
Polymorphisms (SNPs) (Mastrochirico-Filho et al., 2021). 
However, the high cost of genotyping thousands of SNPs for 
accurate genomic prediction in a species primarily utilized 
in small-scale aquaculture, remains a limiting factor in the 
routine application of genomic selection programs.
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An alternative approach to mitigate costs involves the 
adoption of lower density marker panels and the imputation 
of unobserved genotypes using data from higher density SNP 
arrays of related animals, thereby enhancing the genomic 
prediction accuracy (Phocas, 2022). Recent research has 
assessed the imputation accuracy from low- to high density 
panels in different fish species such as, Salmo salar (Tsai et al., 
2017; Yoshida et al., 2018; Tsairidou et al., 2020; Kriaridou 
et al., 2023) and Oreochromis niloticus (Garcia et al., 2022). 
Nevertheless, a fully validated low-density SNP array suitable 
for genotype imputation at a commercial scale is yet to be 
made available in tambaqui.

A low-density SNP panel combined with imputation 
techniques may be used to decrease costs of genotyping without 
compromising the reliability of genomic predictions. This 
study evaluated the feasibility of genotype imputation from 
five different low SNP densities (0.5, 1, 2, 3 and 9K) using as 
reference a medium-density 30K SNP array (Mastrochirico-
Filho et al., 2021). We used an experimental tambaqui breeding 
population from Brazil to validate the results and offer a 
cost-effective solution for genotyping without compromising 
accuracy.

Material and Methods

Ethics statement

This study was conducted in strict accordance with 
the recommendations of the National Council for Control 
of Animal Experimentation (CONCEA) (Brazilian Ministry 
for Science, Technology and Innovation) and was approved 
by the Ethics Committee on Animal Use (CEUA number 
1038/21) of Faculdade de Ciências Agrárias e Veterinárias, 
UNESP, Campus Jaboticabal, SP, Brazil.

Experimental population and SNP genotyping

The population under investigation in this study 
constitutes the breeding population maintained at the 
Aquaculture Center, São Paulo State University (UNESP), 
located in Jaboticabal city, São Paulo State, Brazil. The 
animals used for SNP genotyping were previously described 
in an analysis of GWAS for resistance against Aeromonas 
hydrophila in tambaqui by Ariede et al. (2020, 2022), which 
consisted of 18 half and full-sib families. Breeding involved 
9 females and 14 males, with four males each mating with 
two females (resulting in four half-sibling groups, equivalent 
to eight full-sibling families), three males each mating with 
one female (forming one half-sibling group, equivalent to 
three full-sibling families), two males each mating with one 
female (yielding one half-sibling group, equivalent to two 
full-sibling families), and five males and five females paired 
individually (resulting in five full-sibling families). To obtain 
these families, induced spawning was conducted using carp 
pituitary extract (Danubio piscicultura LTDA), administered 
in two doses with a 12-hour interval. The first and second 
dosages were 0.5 and 5.5 mg/kg, respectively, and a single 
dosage of 2.5 mg/kg of carp pituitary extract was used for 
males, simultaneously with the second dosage for females 
(Pinheiro-Lima and Silva, 1988).

Genomic DNA was extracted from blood samples 
obtained from 272 fish, consisting of 34 parents and 238 
offspring, using the commercial Wizard Genomic Kit from 
Promega, following the manufacturer’s instructions. The 
quantity and quality of the DNA were evaluated in the 
following steps. Firstly, a NanoDrop spectrophotometer® 
from Thermo Fisher Scientific was utilized, which allowed 
the quantification of DNA to check concentration and purity. 
Secondly, agarose gel electrophoresis was performed to further 
verify the integrity and quality of the DNA samples. To quantify 
the extracted DNA accurately, the Qubit fluorescence detector, 
in conjunction with the Qubit dsDNA BR Assay kit® from 
Invitrogen, was employed. This approach enabled precise 
measurements of DNA concentration in units of nanograms 
per microliter (ng/μl). The application of these techniques 
ensured a comprehensive assessment of the DNA’s quantity 
and quality, facilitating reliable subsequent analyses and 
experiments.

SNP genotyping of the fish was conducted using 
the multispecies SerraSNP Affymetrix® Axiom® array, a 
custom-designed array developed by our research group and 
commercially available for pacu Piaractus mesopotamicus and 
tambaqui (Mastrochirico-Filho et al., 2021). The SerraSNP 
Affymetrix® Axiom® array comprises 29,575 SNPs specific 
for tambaqui. The genomic DNA samples were sent to 
Thermo Fisher Scientific, located in California, USA, for 
the genotyping process. The raw data, containing the intensity 
calculation results (CEL files), was imported into the Axiom 
Analysis Suite (v2.0.035, Affymetrix) for quality control 
analysis and genotype calling, utilizing default parameters. 
To pass the initial quality control assessment, samples with 
a dish quality control (DQC) value exceeding 0.82 and a 
QC (quality control) call rate exceeding 0.97 (following the 
“Best Practices Workflow” recommended by Affymetrix) 
were considered satisfactory. Furthermore, additional quality 
control procedures were conducted using the software PLINK 
1.9 (Chang et al., 2015), as follows: 1) Minor allele frequency 
(MAF) filtering was performed with a threshold of < 0.05, 
which was applied to the entire population, rather than 
within each family, to enhance the stringency in excluding 
potential genotyping errors; 2) Mendelian error analysis was 
conducted for each family, using the parameters –me 0.05 
0.1, to identify and eliminate individuals and/or SNPs based 
on the Mendelian error rate.

Selection of low-density subsets of SNPs for 
imputation accuracy

Different low-density SNP subsets were selected to 
evaluate the accuracy of genotype imputation. For this step, 
we used the genotypes of 81 tambaqui individuals from 5 
different broodstock populations, considering 2 populations 
from North and 3 populations from Southeast regions of Brazil. 
All samples were genotyped by the multispecies SerraSNP 
Affymetrix® Axiom® array, according to the section 2.2. The 
quality control (QC) filter was carried out by the PLINK 
1.9 software, using Hardy-Weinberg equilibrium (HWE) 
(p-value < 0.05 after Bonferroni correction), call rate of 
90%, and MAF (< 0.01). In addition, the extent of linkage 
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disequilibrium (LD) between SNPs was assessed within each 
broodstock population using the LD-based variant pruner by 
PLINK. A range of r2 pruning thresholds, varying from 0.9 
to 0.6, was then applied to eliminate redundant combinations 
of SNPs. This process resulted in the selection of subsets of 
common SNPs among the broodstock populations, ensuring 
the retention of non-highly redundant genotypic information 
for further analyses.

Accuracy of genotype imputation on low-density 
SNPs

After extracting the low-density subsets of SNPs, a cross-
validation system consisting of 10 replicates was employed to 
evaluate the imputation accuracy in the population comprising 
the 34 parents and 238 offspring. In each replicate, a random 
subset of animals was assigned using pipelines implemented 
in the R Software (R Core Team, 2018). For this setup, 10% 
of the individuals were designated for validation purposes, 
while the remaining 90% served as a reference for imputation. 
As a result, each replicate consisted of 27 to 29 individuals 
for validation, leading to a total of 272 individuals used in the 
analysis. To simulate the imputation scenario, individuals in 
the validation category had their SNPs masked, leaving only 
the low-density subsets of SNPs representing the low-density 
panel. In contrast, individuals classified in the reference 
category remained unmodified in their genotype data. For 
the validation category, genotypes were imputed using the 
FIMPUTE3 software (Sargolzaei et al., 2014). This process 
was conducted across all 10 replicates to mitigate the effects 
of stochastic sampling. Subsequently, the imputed genotypes 
obtained from the validation replicates were compared to the 
true genotypes to determine the accuracy of the imputation. 
The Pearson correlation coefficient (R) was employed as 
a measure to assess the accuracy, and the “R” value was 
estimated using the following formula:

 

� � ∑ ��� � �̅���� � �̅�����
�∑ ��� � �̅���

��� ∑ ��� � �̅���
���

 

 
 where for each SNP in which the true genotypes were masked, 

the possible genotypes were coded as 0, 1, or 2, representing 
the potential number of the smallest allele for that SNP in 
the target population; xi represents the imputed genotype for 
individual i, and x represents the mean value of the imputed 
genotypes across all individuals. Likewise, ɡi and ɡ represent 
the variables corresponding to the observed genotypes, and n 
denotes the number of individuals in the validation group. The 
calculation of R, used as a measure of imputation accuracy, 
was performed at both the SNP marker and individual levels. 
SNPs that were imputed accurately demonstrated an accuracy 
of over 80% (R > 0.8) across all animals. The evaluation of 
imputation accuracy was carried out within the chromosomes 
of tambaqui, which consist of 27 pairs. Considering that the 
ends of the chromosomes are known to have low imputation 
accuracy, after imputation, one hundred markers distributed 
at both ends of each chromosome (5,400 imputed SNPs) were 
evaluated in the lower density subsets (1K, and 0.5K densities).

Development of the low-density SNP array

The development of the low-density SNP array was 
centered on a subset of SNPs that ensured both a reduced 
number of SNPs and maintained a high imputation accuracy. 
For constructing the array, the AgriSeq® Targeted Genotyping 
by Sequencing (Agriseq tGBS) genotyping platform was 
chosen. The sequences containing the SNPs were required to 
be at least 400 base pairs (bp) long. All the SNPs used in the 
low-density array were derived from the Affymetrix® Axiom® 
SerraSNP array (Mastrochirico-Filho et al., 2021), where the 
SNPs are represented by 71-mer nucleotide sequences. To 
align these 71-mer sequences against the tambaqui genome 
(NCBI RefSeq assembly accession: GCA_904425465.1, 
assembled at the chromosome level by Ariede et al., 2022), 
the BLASTn pipeline was employed. The goal was to obtain 
the necessary total 400 bp loci for each SNP to implement 
the Agriseq tGBS strategy. Strict criteria were applied during 
the alignment process, mandating a high percentage of 
sequence similarity and full coverage of the query sequence 
concerning the genomic region of the tambaqui genome. 
The parameters applied were -perc_identity ranging from 
97% to 99% and -qcov_hsp_perc 100%. The resulting 400 
bp flanking sequences containing the SNPs were extracted 
using bioinformatics pipelines and subsequently submitted 
to Thermo Fisher Scientific for quality control analysis and 
primers design. 

The evaluation of the Agriseq tGBS low-density 
array involved genotyping a total of 192 DNA samples 
from tambaqui individuals for genetic population analysis, 
considering 96 individuals from fish farms located in 
the Northern region of Brazil (Amazon region), and 96 
individuals produced in the Southeast region of Brazil. These 
192 fish were not genotyped using the SerraSNP Affymetrix® 
Axiom® array to compare the concordance results with 
Agriseq tGBS. However, our research group previously 
documented different population structures between the 
North and South populations of farmed tambaqui in Brazil 
using SNPs from the SerraSNP Affymetrix® Axiom® array 
(Mastrochirico-Filho et al., 2021; Agudelo et al., 2022). 
Therefore, this result can then be validated using the Agriseq 
tGBS array. DNA extraction and quality parameters were 
performed according to the section 2.2. The genomic DNA 
samples were sent to Thermo Fisher Scientific in Austin, 
Texas, USA, for SNP genotyping. The SNP data were 
subjected to a QC check using the PLINK, applying the 
parameters MAF > 0.01, call-rate for samples and SNPs 
> 0.15, Hardy-Weinberg equilibrium (p = 1e-06). The 
performance of the developed low-density SNP array was 
evaluated applying the PLINK 1.9 software (Chang et al., 
2015) for estimation of the MAF frequencies and mean 
of heterozygosity per genotyped individual. To evaluate 
the genetic structure among the analyzed populations, the 
presence of genotypic clusters among the populations from 
the North and Southeast regions was investigated. This was 
achieved by performing a two-dimensional multidimensional 
scaling analysis (MDS) on the genomic identity-by-state 
(IBS) matrix. Furthermore, population structuring analysis 
was performed using STRUCTURE 2.3.4 software (Pritchard 
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et al., 2000) to estimate the optimum number of population 
clusters (K). The range of K values was predefined from 1 
to 3. The analysis was performed in 5 replicated runs for 
each K value using 50,000 iterations after a burn-in period of 
5,000 iterations. The determination of the number of clusters 
in the dataset was selecting it following the methodology 
described by Evanno et al. (2005) implemented in the 
Structure Harvester software (Earl and von Holdt, 2012). 

Results

Selection of low-density subsets of SNPs for 
imputation accuracy

The QC processes to select high-quality SNPs present 
in each broodstock population (Broodstock 1-5), which 
composed the low-density subsets for the evaluation of 

genotype imputation accuracy, were described in Table 1 
and Figure 1. The high-quality SNPs ranged from 14,985 
SNPs in Broodstock 4 to 16,792 SNPs in Broodstock 5. The 
Broodstock 5 had a higher proportion of high-quality SNPs, 
with higher MAF values and genotyped markers present in 
most of its individuals (call rate > 0.90). On the other hand, 
Broodstock 4 had a higher proportion of its markers removed 
(approximately 13.7%) (Table 1).

In relation to the filtering of linkage disequilibrium aimed 
at removing redundant information among the broodstock, 
the squared correlation (r2) threshold between pairs of SNPs 
varied from 1 to 0.6. This process resulted in the creation of 
distinct low-density subsets: 9,471 SNPs (9K), 3,541 SNPs 
(4K), 2,169 SNPs (2K), 1,022 SNPs (1K), and 500 SNPs 
(0.5K) (Figure 1). The imputation accuracy of each subset 
was then evaluated.

Table 1 – Quality control (QC) process of the SNPs used to compose the low-density subsets for evaluating the accuracy of genotype imputation in 
tambaqui. The high-quality SNPs were filtered from five tambaqui broodstocks of fish farms.

QC process Broodstock 1
(N = 20)

Broodstock 2
(N = 33)

Broodstock 3
(N = 9)

Broodstock 4
(N = 9)

Broodstock 5
(N = 10)

Before QCa 15,821 15,821 17,372 17,372 17,372

HWEb 15,814 (99.9 %) 15,793 (99.8 %) 17,372 (100 %) 17,372 (100 %) 17,372 (100 %)

Call ratec 15,814 (99.9 %) 15,793 (99.8 %) 16,682 (96.0 %) 16,710 (96.2 %) 17,296 (99.6 %)

MAFd 15,668 (99.0 %) 15,626 (98.8 %) 16,398 (94.4 %) 14,985 (86.3 %) 16,792 (96.7 %)

a SNPs from the validation of the Affymetrix® Axiom® SerraSNP array (Mastrochirico-Filho et al., 2021). 
b SNPs in Hardy-Weinberg Equilibrium (HWE) (p > 0.05, after Bonferroni correction). 

c SNPs with call rate > 90%
d SNPs with minor allele frequency (MAF) > 0.01

Figure 1 – Linkage disequilibrium filtering (LD) applied to remove redundant SNP combinations. The common SNPs among the populations were used 
to form the low-density subsets that will be evaluated for imputation accuracy.
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Accuracy of genotype imputation on low-density 
SNPs

After QC analysis, 280 genotyped samples and 17,368 
SNPs were used as final dataset for assessing the accuracy of 
imputation. The genotype imputation accuracies were assessed 
both at SNP and individual levels for each density (Figure 2 
and Table 2). In brief, consistently high to moderate accuracy 
values were maintained across densities ranging from 9K to 
1K. However, a notable decrease in accuracy was observed 
when the density reduced to 0.5K. Specifically, at the SNP 
level, mean accuracies ranged from 0.98 (SD 0.04) to 0.93 
(SD 0.10) for densities 9K to 1K, decreasing to 0.81 (SD 
0.17) at the 0.5K density. At the individual level, the mean 
accuracy reached 0.83 (SD 0.05) for the 0.5K density, whereas 
it exceeded 0.93 for the other densities. The proportion of 
SNPs with accuracy greater than 0.8 was notably lower at the 

0.5K density, ranging from 88.4% when assessing accuracy 
solely based on SNPs to 76.8% when considering accuracy 
based on animals. Conversely, for the other densities at the 
SNP level, more than 90% of the SNPs exhibited accuracies 
exceeding 0.8.

The analysis of accuracy means was also conducted 
concerning the MAF values (Figure 3). The outcomes revealed 
that imputation accuracies displayed only a marginal increment 
in their values with the increase in MAF values. Notably, 
rare SNPs were absent from the analysis due to their removal 
during the QC steps. Interestingly, SNPs with low MAF values  
(0.01-0.049) exhibited high to moderate mean accuracy, 
surpassing even SNPs with more frequent alleles when lower 
densities were taken into consideration.

The accuracy of imputed SNPs for each low-density 
subset was evaluated across the 27 chromosomes (Figures 
4a-e). The findings revealed that imputed SNPs situated at 

Table 2 – The summary of the accuracy of genotype imputation using different low-density (LD) subsets of SNPs. The accuracy was described for 
imputed SNPs and at the individual level. The mean (SD), minimum and maximum accuracy, as well as percentage (%) of SNPs with accuracy greater 
than 0.8 in each scenario, were registered (% > 0.8). 

Accuracy at SNP level Accuracy at individual level

LD subsets Imputed SNPs Mean (SD) % > 0.8 Mean (SD) Min. Max. % > 0.8

9K 7,897 0.98 (0.04) 99.0 0.98 (0.01) 0.95 0.99 100

3K 13,816 0.98 (0.04) 98.9 0.98(0.01) 0.95 0.99 100

2K 14,882 0.97 (0.05) 97.9 0.98 (0.01) 0.94 0.99 100

1K 14,822 0.93 (0.10) 90.8 0.94 (0.02) 0.86 0.99 100

0.5K 16,836 0.81 (0.17) 64.0 0.84 (0.05) 0.68 0.97 76.8

Figure 2 – Comparing the Pearson correlation coefficient (r) between imputed and observed genotypes as a measure of imputation accuracy (R) for each 
low-density subsets of SNPs. The accuracy was assessed for imputed SNPs (a) and at the individual level (b).



Agudelo et al.6

both the beginning and end of each chromosome displayed 
lower imputation accuracy compared to SNPs located in other 
regions of the chromosomes. This decrease in accuracy at both 
ends was particularly pronounced when evaluating the 1K and 
0.5K subsets (Figure S1). Nevertheless, for the 1K subset, the 
mean accuracy fluctuated between 0.67 (SD 0.20) and 0.96 
(SD 0.07) in these regions, suggesting no significant decline 
in imputation accuracy (refer to Figure S1). Consequently, 
a substantial proportion of imputed SNPs exhibited high 
accuracy, enhancing the imputation performance of the 1K 
subset along the chromosome regions. Notably, a minority 
of SNPs with accuracies below 80% were more prevalent, 
particularly for LG22.

In contrast, the 0.5K SNP density resulted in significantly 
lower accuracy at the chromosome extremities, with average 

values ranging from 0.34 (SD 0.22) to 0.91 (SD 0.08). This 
indicated a higher prevalence of low and variable imputation 
accuracies compared to the other densities (see Figure S1). 
Considering the accuracy for each low-density subset, 1K 
SNPs were identified as the optimal density for constructing 
the low-density SNP array for tambaqui.

Validation of the low-density SNP array

The SNPs amount of the 1K low-density array in the 
genetic map of tambaqui (Ariede et al., 2022) is succinctly 
outlined in Table 3. There were between 19 and 74 markers 
distributed across the specified chromosomal regions. This 
implies that approximately 3.58% to 10.33% of all SNPs 
covering the chromosomal regions of the genetic map were 
incorporated into the low-density panel.

Figure 3 – Correlation between accuracy (R2) and minor allele frequency (MAF) range examined for different low-density subsets: 9,471 SNPs (9K), 
3,541 SNPs (4K), 2,169 SNPs (2K), 1,022 SNPs (1K), and 500 SNPs (0.5K).
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For the validation of the 1K SNP array, the QC analysis 
of the genotyping retained 843 SNPs (70% of the total SNPs) 
and 169 individuals (86% of the total individuals). Low 
frequencies of the mutant alleles (MAF values from 0.01 
to 0.05) represented only 1.6% of the total SNPs. Highly 
polymorphic SNPs with MAF values ranging from 0.45 to 
0.50 were more abundant, representing 21.7% of the total 
SNPs (Figure 5a). Differences in mean heterozygosity per 
individual were evident, highlighting genetic distinctions 
between the populations in the Southeast and North regions 

of Brazil (Figure 5b). The Southeast population exhibited a 
higher frequency of heterozygous loci (74%) compared to 
individuals from the North population, underscoring greater 
genetic diversity in the Southeast.

The genetic structure analysis supported the hypothesis 
of the onset of genetic differentiation between the tambaqui 
populations in the Southeast and North regions (Figure 6a 
and 6b). This validation underscores the efficacy of the low-
density SNP panel in capturing genetic diversity within both 
populations. 

Table 3 – Characterization of the SNPs from the 1K SNP array into the genetic map of tambaqui. 

Chromosomes Genetic Map (nº SNPs)a 1K array (nº SNPs)b % SNPsc

1 1,106 54 4.88

2 877 74 8.44

3 811 67 8.26

4 799 71 8.89

5 772 40 5.18

6 772 72 9.33

7 737 58 7.87

8 684 35 5.12

9 675 30 4.44

10 650 56 8.62

11 647 48 7.42

12 629 58 9.22

13 629 65 10.33

14 631 50 7.92

15 611 52 8.51

16 623 32 5.14

17 582 38 6.53

18 555 33 5.94

19 560 55 9.82

20 530 40 7.55

21 532 43 8.08

22 531 19 3.58

23 517 39 7.54

24 513 29 5.65

25 501 44 8.78

26 456 33 7.24

27 444 27 6.08

total 17,374 1,262 7.26

a The total number of SNPs distributed in the genetic map of tambaqui (Ariede et al., 2022).
b The distribution of the SNPs from the 1K SNP array into the genetic map.
c Proportion (%) of the SNPs from the 1K SNP array in relation to the total of SNPs per chromosome of the genetic map.
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Figure 4 – Squared Pearson correlation measure of imputation accuracy (R2) across the 27 chromosomes of tambaqui (Colossoma macropomum) after imputation using low-density subsets, included a) 9K, b) 3K, c) 2K, d) 1K, 
e) 0.5K SNPs.
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Figure 5 – Frequency of MAF values of tambaqui populations from North and Southeast regions of Brazil (a). 
Mean of heterozygosity per individual from North (blue) and Southeast (red) populations (b).

Figure 6 – Analysis of the genetic structure of tambaqui populations from North and Southeast regions of Brazil. 
The figure (a) represents the multidimensional scaling (MDS) plot of the individual IBS distances for the North 
(blue) and Southeast (red) populations. The figure (b) represents the STRUCTURE analysis as a function of the 
number of putative genetic clusters (K). The genetic structure was analyzed approaching K = 2 according to the Delta 
K statistic. Each vertical bar represents an individual. Populations are separated by vertical white bars. The color 
proportions of each bar correspond to the estimated fractions of association of the individuals in each of the clusters.
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Discussion
The developed SNP array stands as one of the pioneering 

low-density panels optimized through genotype imputation 
for the Neotropical aquaculture. This molecular tool allows 
substantial reduction in genotyping costs (in a scenario of 
genotyping 1,000 fish), from approximately $50 per sample 
when using the medium-density array (Axiom technology), to 
$10 per sample (Agriseq platform), representing a reduction 
of 80.0% in genotyping expenses. The low-cost genotyping 
strategy holds significant relevance for target species 
predominantly cultivated by small-scale farmers, herein 
exemplified by the Amazon fish tambaqui. 

Our results indicated that high imputation accuracy 
values (above 0.80) slightly decreased with decreasing 
SNP density in the validation process, a trend observed in 
prior studies on low-density SNP arrays for Atlantic salmon 
(Tsairidou et al., 2020) and Nile tilapia (Yoshida et al., 2019). 
Approximately 99.0% to 90.8% of genotypes achieved an 
accuracy above 0.80 when marker densities ranged from 9K 
to 1K SNPs, respectively. However, imputation accuracy 
sharply declined when the density decreased to 0.5K SNPs. 
Similar trends were noted at the genotyped animal level, with 
accurate imputations being more prevalent between 9K and 
1K densities (100%), decreasing to 76.8% at the 0.5K density. 
Based on these findings, the 1K low-density genotyping array, 
followed by genotype imputation using as reference the 30K 
SerraSNP Affymetrix® Axiom® array, could be tested for 
further cost-effective genomic selection programs in tambaqui.

Previous studies have suggested a positive correlation 
between high MAF values and accurate imputation, in which 
SNPs presenting low MAF are challenging for imputation 
(Brøndum et al., 2012; Ma et al., 2013). Although our results 
revealed a subtle increase in accuracy with rising MAF 
values, we did not observe a high correlation between these 
parameters. Thus, our findings suggests that MAF values are 
closely linked to inaccurately imputed genotypes, and the 
imputation method effectively mitigated any impact of MAF 
on the results. Consequently, the imputation accuracy method 
remains preferable in imputation evaluations, as highlighted 
in prior studies (Calus et al., 2014; Garcia et al., 2022).

SNPs located at chromosome ends also present 
challenges for imputation, displaying lower accuracy across 
all tested densities. Accuracy notably declined, particularly 
with very low SNP densities, such as the 0.5K density in this 
study, consistent with previous research (Ventura et al., 2016; 
Yoshida et al., 2018). Chromosomal ends typically exhibit 
lower imputation accuracy. If traits of interest are influenced 
by this region, genomic association studies may introduce 
bias and compromise the investigation of imputed genotypes. 
To address this issue, including more SNPs at chromosome 
ends, either by increasing SNP array density or utilizing more 
comprehensive SNP arrays in future analyses, could serve as 
a potential strategy to be tested.

The genotyping technology employed for constructing 
the SNP array was targeted genotyping-by-sequencing (Agriseq 
tGBS), which was carefully selected for its high accuracy in 
genotyping heterozygous loci and lower rates of missing data 
(Ott et al., 2017), which was corroborated in the present study 
in the validation process. Moreover, the genetic diversity and 

structure analysis corroborated the distinct patterns previously 
observed between the North and South populations of farmed 
tambaqui in Brazil (Mastrochirico-Filho et al., 2021; Agudelo 
et al. 2022), and reveals the efficiency of using the 1K low-
density array in population analysis.

The development of tambaqui production is currently 
in its early domestication stages and lacks technologies 
that could facilitate the establishment of effective breeding 
programs. The susceptibility of tambaqui stocks to diseases 
(bacterial and parasites), exacerbated by the intensification 
of production, has led to significant economic losses (Ariede 
et al., 2020; Valladão et al., 2020; Hilsdorf et al., 2022). 
The genetic control of disease resistance is known to be 
distributed among several Quantitative Trait Loci (QTLs), 
each elucidating only a small portion of the genetic variation. 
In this case, the prediction of genetic merit of animals, based 
on genomic estimated breeding values (GEBV, referred to as 
Genomic Selection), has been shown to enhance the genetic 
gain in aquaculture breeding (Yáñez et al., 2023). Hence, the 
validated strategy presented here, involving a low-density array 
followed by genotype imputation, can serve as a framework 
for efficiently incorporate disease resistance into genomic 
selection programs for the Amazon fish tambaqui.

Conclusions
We proposed a cost-effective solution involving a 

1K SNP array with imputation techniques, offering precise 
genotyping without exorbitant expenses. The 1K density, 
validated with high accuracy (0.93), proves to be an optimal 
trade-off in terms of accuracy of imputation. In addition, this 
genomic tool may be employed to population genomics studies 
in order to evaluate genetic variability and differentiation of 
populations.
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