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Abstract

Cytogenetic analysis of Astylus antis using mitotic and meiotic cells was performed to characterize the haploid and
diploid numbers, sex determination system, chromosome morphology, constitutive heterochromatin distribution pat-
tern and chromosomes carrying nucleolus organizer regions (NORs). Analysis of spermatogonial metaphase cells
revealed the diploid number 2n = 18, with mostly metacentric chromosomes. Metaphase I cells exhibited
2n = 8II+Xyp and a parachute configuration of the sex chromosomes. Spermatogonial metaphase cells submitted to
C-banding showed the presence of small dots of constitutive heterochromatin in the centromeric regions of nearly all
the autosomes and on the short arm of the X chromosome (Xp), as well as an additional band on one of the arms of
pair 1. Mitotic cells submitted to double staining with base-specific fluorochromes (DAPI-CMA3) revealed no regions
rich in A+T or G+C sequences. Analysis of spermatogonial mitotic cells after sequential Giemsa/AgNO3 staining did
not reveal any specific mark on the chromosomes. Meiotic metaphase I cells stained with silver nitrate revealed a
strong impregnation associated to the sex chromosomes, and in situ hybridization with an 18S rDNA probe showed
ribosomal cistrons in an autosomal bivalent.
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Introduction

The suborder Polyphaga is the most numerous of the

order Coleoptera and displays the greatest structural and bi-

ological diversity of species (Gillot, 1995; Costa, 1999).

The superfamily Cleroidea belongs to the suborder Poly-

phaga and comprises approximately 10,000 taxonomically

described species (Costa, 2003), distributed among eight

families (Lawrence and Newton, 1995), such as Melyridae,

with approximately 5000 species, 68 of which occur in the

Neotropical region (Costa, 2003). The genus Astylus be-

longs to the family Melyridae and includes a number of

Brazilian species, such as Astylus antis, A. quadrilineatus,

A. sexmaculatus and A. variegatus, which are best known

for visiting the flowers of cultivated plants, such as corn,

cotton and sorghum (Rosseto and Rosseto, 1976; Souza and

Carvalho, 1994; Ventura et al., 2007).

In the superfamily Cleroidea, only 16 species have

been cytogenetically analyzed, 12 species belonging to the

family Cleridae and four species of the family Melyridae.

The 12 species of Cleridae, distributed among five genera

(Enoclerus, Priocera, Thanasimus, Trichodes and

Necrobia), exhibit karyotype uniformity, i.e., 2n = 18, the

basal sex determination system for Coleoptera, Xyp, and

meta/submetacentric morphology for all chromosomes

(Smith, 1953; Virkki, 1963; Smith and Virkki, 1978; Yadav

and Dange, 1989; Schneider et al., 2007a). However, the

four species belonging to the family Melyridae display dif-

ferences both in their chromosome number and their sex

determination system (Smith and Virkki, 1978). Chromo-

some morphology was only described for A. variegates, in

which all chromosomes are metacentric (Schneider et al.,

2007a).

Cytogenetic data using differential staining in species

of Cleroidea are limited to A. variegatus, which has small

blocks of heterochromatin in the pericentromeric region of

all chromosomes, except Xyp. In this species, the nucleolus

organizer region (NOR) is located in autosome pair 2

(Schneider et al., 2007a).
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In Coleoptera with the Xyp sex determination system,

it is common to find nucleolus material associated to the

sex chromosomes. Furthermore, there are a number of dif-

ferent mechanisms described to explain the association and

segregation of these chromosomes in meiosis, depending

on their degree of differentiation. These mechanisms oscil-

late between a nucleolus association and/or a synaptic asso-

ciation (Smith and Virkki, 1978; Juan et al., 1993;

Petitpierre, 1996). In Coleoptera, however, NORs are lo-

cated in either autosomes and/or sex chromosomes (Al-

meida et al., 2000; Schneider et al., 2007a, 2007b). The few

studies that have employed fluorescent in situ hybridization

(FISH) in Coleoptera have found conflicting results be-

tween the location of the rDNA genes and the silver stain-

ing, particularly regarding the sex chromosomes of the Xyp

system in some species. Therefore, the nucleolus theory for

the maintenance and segregation of the sex chromosomes

belonging to this system (Weber, 1971; Drets et al., 1983;

Virkki, 1983; Postiglioni and Brum-Zorilla, 1988; Pos-

tiglioni et al., 1991; Juan et al., 1993; Maffei et al., 2001)

has been questioned (Juan et al., 1993; Moura et al., 2003;

Schneider et al., 2007a, 2007b).

In order to understand how chromosome evolution

occurred in the different species of this group, it is impor-

tant to establish the constitutive heterochromatin distribu-

tion pattern and to identify the NOR-bearing chromosomes.

These were the aims of the present study, in addition to

chromosomally characterize the species Astylus antis, us-

ing both the mitotic karyotype and meiotic cells.

Materials and Methods

The 17 specimens of Astylus antis (Perty, 1830) ana-

lyzed were collected in the cities of Carambeí

(S 24°58’071”; W 50°06’817”) and Ponta Grossa

(S 25°08’985”; W 49°58’992”) in the region of Campos

Gerais, Paraná, Brazil.

Cytological preparations were obtained from the go-

nads of adult male individuals. The gonads were removed

in insect saline solution, treated with hypotonic solution

(tap water) for six minutes and fixed in Carnoy I. Then, the

gonads were macerated in 45% acetic acid solution, and the

slides were dried on a metal plate at a temperature of 35 to

40 °C; later on, the slides were stained with 3% Giemsa in

pH 6.8 phosphate buffer for 15 min.

The C-banding and base-specific fluorochrome stain-

ing (DAPI/CMA3) methods described by Sumner (1972)

and Schweizer (1980), respectively, were used to determine

the distribution and the AT/GC content of the constitutive

heterochromatin. The silver nitrate impregnation method

described by Howell and Black (1980) and the fluorescent

in situ hybridization (FISH) method with 18S rDNA de-

scribed by Pinkel et al. (1986) were used to identify the

chromosomes bearing NORs. The partial 18S rDNA probe

(732 pb) was obtained through amplification by PCR la-

beled with biotin-14-dATP hapten (Invitrogen), using the

cloned 18S fragment of Omophoita octoguttata

(Coleoptera) as template. The hybridization signals were

detected using avidin-fluorescein isothiocyanate

(Avidin-FITC, Sigma). For amplification of the signals, we

used anti-avidin biotinylated (Sigma) and Avidin-FITC

(Sigma) conjugated antibodies. Overall hybridization was

performed under high stringency conditions (2.5 ng/�L

probes, 50% deionized formamide, 10% dextran sulfate,

2XSSC at 37 °C overnight). After hybridization, the slides

were washed in 15% formamide/0.2XSSC at 42 °C for

20 min, 0.1XSSC at 60 °C for 15 min, and 4XSSC /0.05%

Tween at room temperature for 10 min, the latter consisting

of two washes of 5 min each. Chromosomes were counter-

stained with DAPI (0.2 mg/mL) in anti-fade solution.

Approximately 40 cells from each specimen were ex-

amined. Chromosomes were counted and identified when-

ever possible. The best mitotic and meiotic cells in both

conventional and differential staining were photographed

under an optical photomicroscope (Olympus BX41), with a

100x immersion objective. The metaphase cells submitted

to the base-specific fluorochromes and FISH were photo-

graphed with a digital camera (Olympus C-5060 5.1

Megapixel) with specific filters, or recorded by real-time

digital imaging with a DP-71 camera and DP controller

software.

The karyotypes were arranged and numbered in de-

creasing order, based on size and morphology of the chro-

mosomes, and the homologous chromosomes were tenta-

tively paired to facilitate presentation and comparison, as

proposed by Levan et al. (1964).

Results

Conventional staining

Analysis of spermatogonial metaphase cells revealed

the diploid chromosome complement 2n = 18 = 16+Xyp.

Most of the autosomes were metacentric, only pairs 5 and 7

were submetacentric. The Xp chromosome was submeta-

centric, and the yp chromosome was extremely small,

which made it impossible to determine its morphology but

it may be acrocentric (Figure 1a).

The pachytene cells showed all bivalents completely,

including the sex chromosomes, which displayed a para-

chute configuration. Small positive heteropycnotic blocks

were found in these cells (Figure 2a). The study of diplo-

tene cells revealed the occurrence of one or two chiasmata

per bivalent (Figure 2b). The metaphase I cells examined

showed the chromosome meioformula 2n = 8II+Xyp and

the parachute configuration of the sex chromosomes (Fig-

ure 2c). The metaphase I cells showed a haploid comple-

ment n = 8+Xp or n = 8+yp (Figures 2d and 2e), indicating

normal chromosome segregation during anaphase I. The yp
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chromosome exhibited negative heteropycnosis in the ma-

jority of meiotic phases analyzed.

Differential staining

C-banding and base-specific fluorochrome

(DAPI/CMA3) staining of spermatogonial metaphase cells

revealed the presence of small dots of heterochromatin in

the centromeric regions of most autosomes, as well as an in-

terstitial band on one of the arms of the pair 1 chromosomes

and on the short arm of the Xp chromosome (Figure 1b),

but with no differentiation between AT- and GC-rich sites

(data not shown). Sequential Giemsa/AgNO3 staining of

spermatogonial mitotic cells revealed no NOR-specific la-

beling on the chromosomes.

Meiotic cells submitted to C-banding and base-

specific fluorochrome staining showed no specific AT- or

GC-rich blocks or sites. Sequential Giemsa/AgNO3 stain-

ing of meiotic metaphase I cells revealed strong silver ni-

trate impregnation on the sex chromosomes (Figures 3a and

3b). This block was interpreted as argyrophilic material.

FISH analysis of pachytene and metaphase I cells using an

18S rDNA probe revealed a fluorescent signal strongly as-

sociated to an autosomal bivalent and no labeling on the sex

chromosomes (Figures 3c and 3d).

Discussion

The results obtained for Astylus antis regarding the

sex determination system, chromosome morphology,

C-band distribution pattern and location of NORs are in

agreement with those described for many other species of

Coleoptera. The 2n = 18 = 16+Xyp chromosome number is

similar to that described for the 12 species of Cleridae

(Smith, 1953; Virkki, 1963; Smith and Virkki, 1978; Yadav

and Dange, 1989), whereas it is in agreement with only one

of the four Melyridae species analyzed - A. variegatus

(Schneider et al., 2007a). Furthermore, the chromosome
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Figure 1 - Mitotic karyotype of a male Astylus antis specimen with

2n=18=16+X+yp: a. chromosomes stained with Giemsa; b. the same cell

after C-banding, showing the centromeric heterochromatin region on the

X chromosome (larger arrows) and an additional band on one of the arms

of pair 1 (smaller arrow). Bar = 5 �m.

Figure 2 - Meiotic cells from Astylus antis: a. pachytene cells; b. diplotene with 2n = 8II+Xyp (arrows = chiasmata); c. metaphase I cell, showing

2n = 8II+Xyp; d. and e. metaphase II cells, with n = 8+X and n = 8+y, respectively. Bar = 5 �m.



formula 2n = 18 differs from the 2n = 20 = 18+Xyp de-

scribed as basal for the order by Smith (1950) and sup-

ported by a number of recent studies (Maffei et al., 2000;

2001; Moura et al., 2003; Rozek et al., 2004; Almeida et

al., 2000; Schneider et al., 2007a, 2007b). The difference

between the chromosome number found and the basal num-

ber may be explained by the occurrence of fusion-type

chromosome rearrangements between two pairs of auto-

somes, followed by pericentric inversion, as also proposed

for A. variegatus by Schneider et al. (2007a).

According to Smith and Virkki (1978), the evolution-

ary tendency for Coleoptera of the suborder Polyphaga was

to maintain the chromosome number close to the original,

whereas, for representatives of Adephaga, the tendency

was to increase the chromosome number through auto-

somal centric fission. However, centric fusion events ap-

pear to be less frequent, as there are only few species with

low chromosome numbers.

In the few cytogenetically studied species from the

family Cleridae, no change in sex chromosomes was ob-

served, so the Xyp sex determination system was main-

tained. Nevertheless, in the family Melyridae, maintenance

of the Xyp system has been observed in Hoppigiana

hudsonica (2n = 6II+Xyp) and A. variegatus

(2n = 8II+Xyp), while Collops sp (2n = 8II+X0) and

Endeodes collaris (2n = 9II+X0) lost the yp chromosome,

giving rise to an X0 sex determination system (Smith,

1953; Virkki, 1963; Smith and Virkki, 1978; Yadav and

Dange, 1989; Schneider et al., 2007a).

Small karyotype differences were found when com-

paring the results from A. antis with the description for A.

variegatus regarding the metacentric morphology of all the

chromosomes, the behavior of the sex chromosomes and

the presence of B chromosomes (Schneider et al., 2007a).

Thus, it can be inferred that small rearrangements of the in-

version type and differentiation of the sex chromosomes

occurred during the chromosome differentiation of these

species.

Negative heteropycnosis as observed in the yp chro-

mosome of A. antis has also been found in some species of

Coleoptera, including A. variegatus. Differences involving

heteropycnosis may occur due to differential chromosome

condensation and/or the presence of a special type of chro-

matin (Virkki, 1967; Yadav et al., 1985; Almeida et al.,

2000). The number of chiasmata found in A. antis is in

agreement with the number described for most species of

Coleoptera, as well as for Enoclerus sp, Necrobia ruficollis

and Astylus variegatus, which belong to the superfamily

Cleroidea (Virkki, 1963; Yadav and Dange, 1989; Schnei-

der et al., 2007a).

The centromeric constitutive heterochromatin pattern

observed in A. antis by C-banding is in line with that de-

scribed for various species of Coleoptera, including those

with the Xyp sex determination system, such as Epilachna

paenulata (Drets et al., 1983), Gonocephalum patruele, G.

rusticum, Hegeter grancanariensis, Pachychila sublunata,

Tenebrio molitor, Tentyria grossa (Juan and Petitpierre,

1989), Epicauta atomaria, Palembus dermestoides (Al-

meida et al., 2000), Eriopis connexa (Maffei et al., 2000),

Phyllophaga (Phytalus) vestita (Moura et al., 2003),

Adelocera murina, Oedemera podagraridae, O. virescens

(Rozek et al., 2004), and Astylus variegatus (Schneider et

al., 2007a). However, the interstitial band found on the long

arm of the chromosomes of pair 1 in Astylus antis is not

present in the karyotype of A. variegatus.

From the results obtained with the double staining

(DAPI/CMA3), which coincide with those obtained by C-

banding, it can be concluded that the weakly fluorescent

signals are heterochromatic regions, but with no differenti-

ation between AT- and GC-rich sites. A number of studies

have attempted to explain the conflicting results between

the content of DNA bases and responses to base-specific

fluorochromes (Comings and Drets, 1976; Saitoh and

Laemmli, 1994; Vicari et al., 2008). The fluorochrome

DAPI binds to DNA, but its fluorescence is significantly

enhanced in AT-rich domains. According to Comings and

Drets (1976), Comings (1978) and Johnston et al. (1978),

the antibiotic daunomycin only emits fluorescence when

the AT content exceeds 65%. According to Vicari et al.

(2008), the absence of fluorescence on large heterochro-

matic blocks of the fish Astyanax janeiroensis is due to the
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Figure 3 - Meiotic cells from Astylus antis: a. metaphase I cell stained

with Giemsa, 2n = 8II+Xyp; b. the same cell stained with silver nitrate,

showing strong impregnation associated to the sex chromosomes (arrow-

head); c. and d. pachytene and metaphase I cells, respectively, hybridized

with an 18S rDNA probe, showing an autosomal bivalent with a fluores-

cent signal (arrows). Bar = 5 �m.



effect of competition between two families of repetitive

DNA co-located in the same chromosome domains. Con-

trarily, competition and/or excitation energy transference

between DAPI and CMA3, together with the absence of

AT/GC differentiation in these regions (Zimmer et al.,

1971) and the state of heterochromatic compaction, could

explain the coinciding results of the C-bands and the

DAPI-CMA3 fluorochrome signals (Saitoh and Laemmli,

1994).

Moura et al. (2003) obtained similar results using tri-

ple CMA3/DA/DAPI staining: they found that in

Phyllophaga (Phytalus) vestita there was no difference be-

tween the CMA3 and DAPI signals, both of which were

positive. Lyogenys fuscus displays a strong fluorescent sig-

nal by DAPI in the pericentromeric region of all chromo-

somes. Likewise, Vitturi et al. (1999) found that positive

CMA3 regions coinciding with C bands were also DAPI-

positive in Thorectes intermedius (Geotrupidae).

Analyzing Epilachna paenulata with the fluorochro-

me method (Quinacrine HCl or Hoechst 33258), Drets et al.

(1983) found intensely fluorescent regions in the centro-

meric region of the autosomes, a region rich in AT se-

quences. Juan et al. (1991) studied Tenebrio molitor and

Plohl et al. (1993) analyzed testicular cells from Tribolium

confusum using DA/DAPI fluorochromes and found that

the pericentromeric and centromeric regions of all chromo-

somes in the complement were rich in AT sequences.

FISH with the 18S rDNA probe revealed a fluores-

cence signal strongly associated to an autosomal bivalent in

Astylus antis. The labeling obtained by silver nitrate stain-

ing on the sex chromosomes without the presence of ribo-

somal cistrons (which were detected by FISH only in one

autosomal bivalent) in A. antis is in agreement with the re-

sults obtained for other species of Coleoptera with the Xyp

system (Vitturi et al., 1999; Colomba et al., 2000a; Moura

et al., 2003; Bione et al., 2005). It is also in agreement with

a survey carried out by Schneider et al. (2007b), in which

81% of Adephaga and Polyphaga species had NORs lo-

cated on the autosome pairs. The silver staining of these

nonspecific blocks may result from the presence of an

argyrophilic substance, which theoretically facilitates the

configuration, maintenance and segregation of the sex

chromosomes of the Xyp system, as described by a number

of authors (Virkki et al., 1990, 1991; Juan et al., 1993;

Petitpierre, 1996; Moura et al., 2003; Bione et al., 2005;

Schneider et al., 2007a, 2007b). A large number of studies

have associated these nonspecific silver nitrate marks with

argyrophilic proteins and heterochromatic regions, particu-

larly proteins associated to these regions (Virkki et al.,

1991; Vitturi et al., 1999; Colomba et al., 2000a, 2000b,

2004, 2006; Bione et al., 2005).

The karyotype differences observed regarding chro-

mosome morphology, C-banding patterns and behavior of

the sex chromosomes in meiosis of A. antis in comparison

to the description of A. variegatus suggest that the

karyotype evolution of these two species may have in-

volved different types of chromosome rearrangements,

such as small inversions and the addition of heterochro-

matin. Regarding the plesiomorphic characteristics for the

order, the reduction in number may have occurred due to

pericentric inversion, followed by fusion between

autosomes, with no involvement of the sex chromosomes.

Acknowledgments

The authors are grateful to the Brazilian agencies

Fundação Araucária de Apoio ao Desenvolvimento Cien-

tífico e Tecnológico do Estado do Paraná (Process Nº

05155/2008) and Conselho Nacional de Desenvolvimento

Científico e Tecnológico – CNPq (Process Nº

476878/2007-1) for financing this project. Thanks are also

due to Mr. Miguel Airton Carvalho for his collaboration in

field and laboratory activities.

References

Almeida MC, Zacaro AA and Cella DM (2000) Cytogenetic anal-

ysis of Epicauta atomaria (Meloidae) and Palembus

dermestoides (Tenebrionidae) with Xyp sex determination

system using standard staining, C-bands, NOR and synapto-

nemal complex microspreading techniques. Hereditas

133:147-157.

Bione E, Moura RC, Carvalho R and Souza MJ (2005) Karyotype,

C- and fluorescence banding pattern, NOR location and

FISH study of five Scarabaeidae (Coleoptera) species.

Genet Mol Biol 28:376-381.

Colomba MS, Vitturi R and Zunino M (2000a) Karyotype analy-

sis, banding, and fluorescent in situ hybridization in the

Scarab beetle Gymnopleurus sturni McLeady (Coleoptera,

Scarabaeoidea, Scarabaeidae). Heredity 91:260-264.

Colomba MS, Vitturi R and Zunino M (2000b) Chromosome

analysis and rDNA FISH in the stag beetle Dorcus

parallelipipedus L. (Coleoptera, Scarabaeoidea, Lucani-

dae). Hereditas 133:249-253.

Colomba M, Vitturi R, Volpe N, Lannino A and Zunino M (2004)

Karyotype banding and rDNA FISH in the scarab beetle

Anoplotrupes stercorosus (Coleoptera Scarabaeoidea,

Geotrupidae). Description and comparative analysis. Mi-

cron 35:717-720.

Colomba M, Vitturi R, Libertini A, Gregorini A and Zunino M

(2006) Heterochromatin of the scarab beetle, Bubas bison

(Coleoptera, Sacarabaiedae) II: Evidence for AT-rich com-

partmentalization and high amount of rDNA copies. Micron

37:47-51.

Comings DE (1978) Mechanisms of chromosome banding and

implications for chromosome structures. Annu Rev Genet

12:25-46.

Comings DE and Drets ME (1976) Mechanisms of chromosome

banding. IX. Are variations in DNA base composition ade-

quate to account for Quinacrine, Hoechst 33258 and dau-

nomycin banding? Chromosoma 56:99-211.

Costa C (1999) Coleoptera. In: Joly CA and Bicudo CEM (eds)

Biodiversidade do Estado de São Paulo: Uma Síntese do

Cytogenetic analysis of Astylus antis 241



Conhecimento ao Final do Século XX. Editora FAPESP,

São Paulo, pp 113-122.

Drets ME, Corbella E and Folle GA (1983) C-banding and non-

homologous associations. II. The “parachute” Xyp sex biva-

lent and the behavior of heterocromatic segments in

Epilachna paenulata. Chromosoma 88:249-255.

Gillot C (1995) Entomology. 2nd edition. Plenum Press, New

York, 798 pp.

Howell WM and Black DA (1980) Controlled silver staining of

nucleolus organizer regions with protective colloidal devel-

oper: A 1-step method. Experientia 36:1014-1015.

Johnston FP, Jorgenson KF, Lin CC and Sande JH (1978) Interac-

tion of anthracyclines with DNA and chromosomes. Chro-

mosoma 68:15-129.

Juan C and Petitpierre E (1989) C-banding and DNA content in

seven species of Tenebrionidae (Coleoptera). Genome

32:834-839.

Juan C, Gosálvez J, Mezzanotte R and Petitpierre E (1991) Cyto-

logical and biochemical characterization of the in situ endo-

nuclease digestion of fixed Tenebrio molitor chromosomes.

Chromosoma 100:432-438.

Juan C, Pons J and Petitpierre E (1993) Localization of tandemly

repeated DNA sequences in beetle chromosomes by fluores-

cent in situ hybridization. Chromosome Res 1:167-174.

Lawrence JF and Newton AF (1995) Families and subfamilies of

Coleoptera (with selected genera, notes, references and data

on family-group names). In: Pakaluk J and Slipinski SA

(eds) Biology, Phylogeny and Classification of Coleoptera:

Papers Celebrating the 80th Birthday of Roy A. Crowson.

Muzeum I Institut Zoologii, Warszawa, pp 559-1092.

Levan A, Fredga K and Sandberg AA (1964) Nomenclature for

centromeric position on chromosomes. Hereditas 52:201-

220.

Maffei EMD, Gasparino E and Pompolo SG (2000) Karyotypic

characterization by mitosis, meiosis and C-banding of

Eriopis connexa Mulsant (Coccinellidae, Coleoptera, Poly-

phaga), a predator of insect pests. Hereditas 132:79-85.

Maffei EMD, Pompolo SG, Campos LAO and Petitpierre E

(2001) Sequential FISH analysis with rDNA genes and Ag-

NOR banding in the lady beetle Olla v-nigrum (Coleoptera,

Coccinellidae). Hereditas 135:13-18.

Moura RC, Souza MJ, Mello NF and Lira-Neto AC (2003) Karyo-

typic characterization of representatives from Melolon-

thinae (Coleoptera, Scarabaeidae): Karyotypic analysis,

banding and fluorescent in situ hybridization (FISH).

Hereditas 138:200-206.

Petitpierre E (1996) Molecular cytogenetics and taxonomy of in-

sects, with particular reference to the Coleoptera. Int J Insect

Morphol Embryol 25:115-134.

Pinkel D, Straume T and Gray JW (1986) Cytogenetic analysis us-

ing quantitative, high-sensitivity, fluorescent hybridization.

Proc Natl Acad Sci USA 83:2934-2938.

Plohl M, Lucijanic-Justic V, Ugarkovic D, Petitpierre E and Juan

C (1993) Satellite DNA and heterochromatin of the flour

beetle Tribolium confusum. Genome 36:467-475.

Postiglioni A and Brum-Zorrilla N (1988) Non-relationship be-

tween nucleolus and sex chromosome system XYp in

Chelymorpha variabilis Boheman (Coleoptera,

Chrysomelidae). Genetica 77:137-141.

Postiglioni A, Stoll M and Brum-Zorrilla N (1991) Haploid ka-

ryotype analysis of Chelymorpha variabilis Boheman (Co-

leoptera, Chrysomelidae) with microspreading techniques.

Rev Bras Genet 14:653-660.

Rosseto CJ and Rosseto D (1976) Astylus variegatus (Germar,

1824) (Coleoptera, Dasytidae) danificando o sorgo. Bra-

gantia 35:131-132.

Rozek M, Lachowska D, Petitpierre E and Holecová M (2004)

C-bands on chromosomes of 32 beetle species (Coleoptera,

Elateridae, Cantharidae, Oedemeridae, Cerambycidae,

Anthicidae, Chrysomelidae, Attelabidae and Curculio-

nidae). Hereditas 140:161-170.

Saitoh Y and Laemmli UK (1994) Metaphase chromosome struc-

ture: Bands arise from a differential folding path of the

highly AT-rich scaffold. Cell 76:609-622.

Schneider MC, Carraro BP, Cella DM, Matiello RR, Artoni RF

and Almeida MC (2007a) Astylus variegatus (Coleoptera,

Melyridae): Cytogenetic study of a population exposed to

agrochemical products. Genet Mol Biol 30:640-645.

Schneider MC, Rosa SP, Almeida MC, Costa C and Cella DM

(2007b) Strategies of karyotype differentiation in Elateridae

(Coleoptera, Polyphaga). Micron 38:590-598.

Schweizer D (1980) Simultaneous fluorescent staining of

R_Bands and specific heterochomatic regions (DA-DAPI

bands) in human chromosomes. Cytogenet Cell Genet

27:90-193.

Smith SG (1950) The cyto-taxonomy of Coleoptera. Can Entomol

82:58-68.

Smith SG (1953) Chromosome numbers of Coleoptera. Heredity

7:31-48.

Smith SG and Virkki N (1978) Animal Cytogenetics. Gebr Born-

traeger, Berlin, 366 pp.

Souza B and Carvalho CFC (1994) Aspectos morfológicos do

adulto de Astylus variegatus (Germar, 1824) (Coleoptera,

Mlyridae). Pesqui Agropecu Bras 29:689-694.

Sumner AT (1972) A simple technique for demonstrating cen-

tromeric heterochromatin. Exp Cell Res 75:304-306.

Ventura MU, Pereira T, Nunes DH and Arruda IC (2007) Attrac-

tion of Astylus variegatus (Germ.) (Coleoptera, Melyridae)

by volatile floral attractants. Sci Agric 64:306-307.

Vicari MR, Artoni RF, Moreira-Filho O and Bertollo LAC (2008)

Co-localization of repetitive DNAs and silencing of major

rDNA genes. A case report in the fish, Astyanax

janeiroensis. Cytogenet Genome Res 122:67-72.

Virkki N (1963) On the cytology of some Neotropical Can-

tharoids (Coleoptera). Ann Acad Sci Fenn A-IVB 65:1-17.

Virkki N (1967) Chromosome relationships in some North Amer-

ican scarabaeoid beetles, with special reference to Pleocoma

and Trox. Can J Genet Cytol 9:107-125.

Virkki N (1983) Banding of Oedionychina (Coleoptera, Alti-

cinae) chromosomes: C- and Ag-bands. J Agric Univ Puerto

Rico 67:221-255.

Virkki N, Mazzella C and Denton A (1990) Staining of substances

adjacent to the sex bivalent in certain weevils of Puerto Rico.

J Agric Univ Puerto Rico 74:405-418.

Virkki N, Mazzella C and Denton A (1991) Silver staining of the

coleopteran Xyp sex bivalent. Cytobios 67:45-63.

Vitturi R, Colomba MS, Barbieri R and Zunino M (1999) Ribo-

somal DNA location in the scarab beetle Thorectes

intermedius (Costa) (Coleoptera, Geotrupidae) using band-

ing and fluorescent in situ hybridization. Chromosome Res

7:255-260.

242 Mendes-Neto et al.



Weber F (1971) Korrelierte Formveränderungen von Nukleolus

und nukleolusassoziiertem Heterochromatin bei der Gattung

Carabus (Coleoptera). Chromosoma 34:261-273.

Yadav JS and Dange MP (1989) On the cytology of two species of

Necrobia (Oliv.) (Coleoptera, Cleridae). Genome 32:165-

167.

Yadav JS, Condal K and Yadav AS (1985) Karyotypic notes on 12

species of Carabid beetles (Caraboidea, Adephaga) from

Haryana. Zool Anz 215:338-347.

Zimmer CH, Reinert KE, Luck G, Wähnert U, Löber G and

Thrum H (1971) Interaction of the oligopeptide antibiotics

netropsin and distamycin A with nucleic acids. J Mol Biol

58:329-348.

Internet Resources
Costa C (2003) Estado de conocimiento de los Coleoptera neotro-

picales. Bol SEA (Versión Eletronica 32).

http://www.sea-entomologia.org/aracnet/11/01/index.htm

(April 23, 2010).

Associate Editor: Yatiyo Yonenaga-Yassuda

License information: This is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Cytogenetic analysis of Astylus antis 243


