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Abstract

Although linkage disequilibrium, epistasis and inbreeding are common phenomena in genetic systems that control
quantitative traits, theory development and analysis are very complex, especially when they are considered together.
The objective of this study is to offer additional quantitative genetics theory to define and analyze, in relation to
non-inbred cross-pollinating populations, components of genotypic variance, heritabilities and predicted gains,
assuming linkage disequilibrium and absence of epistasis. The genotypic variance and its components, additive and
due to dominance genetic variances, are invariant over the generations only in regard to completely linked genes and
to those in equilibrium. When the population is structured in half-sib families, the additive variance in the parents’
generation and the genotypic variance in the population can be estimated. When the population is structured in
full-sib families, none of the components of genotypic variance can be estimated. The narrow sense heritability at
plant level can be estimated from the parent-offspring or mid parent-offspring regression. When there is dominance,
the narrow sense heritability estimate in the in F2 is biased due to linkage disequilibrium when estimated by the
Warner method, but not when estimated by means of the plant F2-family F3 regression. The bias is proportional to the
number of pairs of linked genes, without independent assortment, and to the degree of dominance, and tends to be
positive when genes in the coupling phase predominate or negative and of higher value when genes in the repulsion
phase predominate. Linkage disequilibrium is also cause of bias in estimates of the narrow sense heritabilities at
full-sib family mean and at plant within half-sib and full-sib families levels. Generally, the magnitude of the bias is
proportional to the number of pairs of genes in disequilibrium and to the frequency of recombining gametes.
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Introduction

Linkage disequilibrium, epistasis and inbreeding are
phenomena that when considered separately or especially
together, make the characterization and analysis of genetic
systems responsible for quantitative traits very complex.
Although the fundamental theory for each was established
many years ago (Cockerham, 1954, 1956; Kempthorne,
1955, 1957; Schnell, 1961, 1963; Cockerham and Weir,
1977), discussion on linkage disequilibrium and epistasis
related to breeding is surprisingly uncommon in statistical
genetics (Kempthorne, 1973), quantitative genetics
(Wricke and Weber, 1986; Hallauer and Miranda Filho,
1988; Comstock, 1996; Falconer and Mackay, 1996; Lynch
and Walsh, 1998) and biometrical genetics (Mather and
Jinks, 1974; Kearsey and Pooni, 1996) books, compared to
other subjects relevant to breeders. Linkage disequilibrium
and absence of epistasis are compulsorily assumed in al-
most all the methodologies developed to analyze quantita-

tive traits. The consequence, clearly, is biased estimates of
genetic parameters and predicted gains, as linkage and
genic interaction are the rule and not the exception.

Although relevant, knowledge of the effects of link-
age disequilibrium on the coefficients of the components of
genotypic variance, including epistasis, on the covariance
between relatives (Cockerham, 1956; Schnell, 1961, 1963;
Weir et al., 1980) does not represent all the theory of quan-
titative genetics for polygenic systems with genes in dis-
equilibrium. The objective of this study was to supply
additional theoretical information, characterizing and ana-
lyzing the components of genotypic variance, the
heritabilities and the expected gains from selection, in rela-
tion to non-inbred cross-pollinating populations, assuming
absence of epistasis.

Theory and Discussion

Components of genotypic variance

In the gametic pool of a non-inbred population (gen-
eration n), the probabilities of the gametes AB, Ab, aB and
ab are (Kempthorne, 1973)
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where fij is the probability of carrier of i and j copies of the
genes of loci A and B that increase the trait expression, re-
spectively. The c and r indexes identify the double-
heterozygotes in the coupling and repulsion phases.

The genotypic values are
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where, for each gene, m is the mean of the genotypic values
of the homozygotes, a is the deviation between the
genotypic value of the homozygote of greatest expression
and m, d is the deviation due to dominance, M = m + (p - q)a
+ 2pqd is the population mean, A is additive genetic value
and D is genetic value due to dominance. Regarding one
gene, A = 2qα and D = -2q2d, if the individual is homozy-
gous for the gene that increases the trait expression, or A =
(q - p)α and D = 2pqd, if the individual is heterozygous, or

A = -2pα and D = -2p2d, if the individual is homozygous for
the gene that reduces the trait expression, where α = a + (q -
p)d is the average effect of a gene substitution (Falconer
and Mackay, 1996).

The genotypic mean of generation 0 is
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Among and within family genotypic variances

When the generation 0 is structured in half-sib fami-
lies, the genotypic means of the progenies are
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Therefore, the genotypic mean of a half-sib family is
also equal to the mean of the population plus half the addi-
tive genetic value of the common parent. The among and
within genotypic variances are
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In this case, no component of the genotypic variance
is estimable.

Heritabilities and genetic gains

The narrow sense heritability at individual level in the
generation 0 is the square of the correlation between the
phenotypic and additive genetic values (Falconer and
MacKay, 1996; Viana, 2002), given by
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gression of the mean phenotypic value of non-inbred prog-
eny (generation 1) as a function of the phenotypic value of a
parent or of the mean phenotypic value of the parents (gen-
eration 0) (Hallauer and Miranda Filho, 1988). Assuming
that the genotypic value and environmental effect are inde-
pendent variables, the parent-offspring covariance is
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Thus, the ancestor-descendent covariance is
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In the presence of dominance, the estimate of narrow
sense heritability at F2 plant level is biased because of link-
age disequilibrium when the additive variance is estimated
by the method of Warner (1952) but not when estimated by
parent-offspring regression (Frey and Horner, 1957), be-
cause
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where pi is equal to 0, 1/2 or 1, θij is equal to 1, in the case of
coupling genes, or -1, in the case of repulsion genes, θi is
equal to 1 or -1, and k’ is the number of non-fixed genes.

Thus,

2σ σ σ σG
2(0)

G
2

G
2

A ij ij
(-1)

i
j 1

k

i
BC1 BC 2 j

r d d− − = +
=

∑2 0 8( ) ∆
=
∑

1 <

k

Viana 597

Table 1 - Bias (%) in the estimate of the narrow sense heritability at F2 plant level, obtained by the Warner method, considering k non-fixed genes (equal
allelic frequencies), kd genes in disequilibrium, in coupling (c) and repulsion (r), and different degrees of dominance (d/a) and recombinant gamete
frequencies (rab).

d / a rab ∆( )−1 , c k = 2,
kd =2, c

k = 20,
kd =2, c

k = 20,
kd =4, c

∆( )−1 , r k = 2,
kd =2, r

k = 20,
kd =2, r

k = 20,
kd =4, r

2 0 0.25 0.0 0.0 0.0 -0.25 0.0 0.0 0.0

2 0.1 0.2 35.6 5.9 25.9 -0.2 -320.0 -7.0 -73.8

2 0.2 0.15 60.0 9.1 42.3 -0.15 -240.0 -10.2 -90.0

2 0.3 0.1 68.6 9.2 46.4 -0.1 -160.0 -10.0 -75.8

2 0.4 0.05 53.3 6.3 34.3 -0.05 -80.0 -6.5 -43.6

2 0.5 0 0.0 0.0 0.0 0 0.0 0.0 0.0

1 0 0.25 0.0 0.0 0.0 -0.25 0.0 0.0 0.0

1 0.1 0.2 8.9 1.5 6.5 -0.2 -80.0 -1.7 -18.5

1 0.2 0.15 15.0 2.3 10.6 -0.15 -60.0 -2.5 -22.5

1 0.3 0.1 17.1 2.3 11.6 -0.1 -40.0 -2.5 -18.9

1 0.4 0.05 13.3 1.6 8.6 -0.05 -20.0 -1.6 -10.9

1 0.5 0 0.0 0.0 0.0 0 0.0 0.0 0.0

0.5 0 0.25 0.0 0.0 0.0 -0.25 0.0 0.0 0.0

0.5 0.1 0.2 2.2 0.4 1.6 -0.2 -20.0 -0.4 -4.6

0.5 0.2 0.15 3.8 0.6 2.6 -0.15 -15.0 -0.6 -5.6

0.5 0.3 0.1 4.3 0.6 2.9 -0.1 -10.0 -0.6 -4.7



The magnitudes of the bias in relation to polygenic
systems with two and 20 genes, with groups of two and four
in disequilibrium (Table 1), reveal that the heritability esti-
mates in F2, obtained by the Warner method and assuming
linkage equilibrium, can be very biased. Generally, the bias
is proportional to the number of pairs of genes in disequilib-
rium (linked without independent assortment) and to the
degree of dominance, tending to be positive when genes in
the coupling phase predominate and negative when genes
in the repulsion phase predominate. In this case, the bias
should have greater magnitude.

Therefore, linkage disequilibrium is not the cause of
bias in predicting genetic gains from mass selection in
cross-pollinating populations, with estimation of the addi-
tive variance by the parent-offspring or mid parent-
offspring regression. In the presence of dominance, the pre-
diction of gains with selection in F2 is biased due to linkage
disequilibrium when the additive variance is estimated by
the Warner method, but not when estimated by the par-
ent-offspring regression.

The narrow sense heritability at half-sib family mean
level is the square of the correlation between the mean
phenotypic value of the progeny and the additive genetic
value of the common parent (Viana, 2002), given by
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Linkage disequilibrium is, then, cause of bias only in
predicting gain from within selection.

With full-sib families, the narrow sense heritabilities
at progeny mean level, that is the square of the correlation
between the progeny mean phenotypic value and the mean
additive genetic value of the parents (Viana, 2002), and at
plant within family level are

h 2 A
2(0)

PaFSF
2(1)

=
( / )1 2 σ

σ

h

r

1- r
2

A
2(1) ij

ij

ij
(0)

i
j 1

k

i 1
j

=

−










==
∑( / )1 2 2σ α α∆

<

k

PwFSF
2(1)

∑
σ

Assuming linkage equilibrium, the estimated
heritabilities are
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Therefore, the predicted gains with among and within
selection are biased due to linkage disequilibrium.

The analysis of the bias due to linkage disequilibrium
in the estimates of genetic population parameters is com-
plex because of the infinite combinations of genotype and
gene frequencies, degree of dominance, frequency of re-

598 Quantitative genetics for populations in linkage disequilibrium

Table 1 (cont)

d / a rab ∆( )−1 , c k = 2,
kd =2, c

k = 20,
kd =2, c

k = 20,
kd =4, c

∆( )−1 , r k = 2,
kd =2, r

k = 20,
kd =2, r

k = 20,
kd =4, r

0.5 0.4 0.05 3.3 0.4 2.1 -0.05 -5.0 -0.4 -2.7

0.5 0.5 0 0.0 0.0 0.0 0 0.0 0.0 0.0

0 0 0.25 0.0 0.0 0.0 -0.25 0.0 0.0 0.0

0 0.1 0.2 0.0 0.0 0.0 -0.2 0.0 0.0 0.0

0 0.2 0.15 0.0 0.0 0.0 -0.15 0.0 0.0 0.0

0 0.3 0.1 0.0 0.0 0.0 -0.1 0.0 0.0 0.0

0 0.4 0.05 0.0 0.0 0.0 -0.05 0.0 0.0 0.0

0 0.5 0 0.0 0.0 0.0 0 0.0 0.0 0.0



combining gametes, number of genes in the polygenic sys-
tem and number of pairs of genes in disequilibrium.
Considering two and 20 genes in the genic system, with
groups of two and four in disequilibrium (Tables 2, 3 and
4), it can be seen that the bias in the narrow sense
heritability estimates at plant within half-sib family level, at
full-sib family level and at plant within full-sib progeny

level is generally reduced but may have a very high magni-
tude, depending on the number of genes and the number of
pairs of genes in disequilibrium. The bias is proportional to
the number of genes, to the number of pairs of genes in dis-
equilibrium and to the frequency of recombining gametes.
The magnitude of the bias is minimized when the frequency
of the dominant genes is intermediate. When the dominant
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Table 2 - Bias (%) in the estimates of the narrow sense heritabilities at plant within half-sib family (h wHSF
2 ), at full-sib family mean (h FSF

2 ) and at plant

within full-sib progeny levels (h wFSF
2 ), considering k non-fixed genes, kd genes in disequilibrium, dominant genes at low frequencies (0.1 to 0.2), and

different degrees of dominance (d/a) and recombining gamete frequencies (rab).

d / a rab ∆(- 1) h wHSF
2 h FSF

2 h wFSF
2

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

2 0 0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.1 0.025 2.1 0.2 1.4 1.7 0.2 1.1 5.0 0.6 3.1

2 0.2 0.025 4.4 0.5 2.8 3.4 0.4 2.2 10.5 1.2 6.5

2 0.3 0.026 6.9 0.8 4.3 5.2 0.6 3.3 16.5 1.8 10.2

2 0.4 0.026 9.6 1.0 5.9 7.0 0.8 4.5 23.3 2.4 14.2

2 0.5 0.027 12.6 1.3 7.6 8.9 1.0 5.7 30.8 3.1 18.5

1 0 0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.1 0.025 2.1 0.2 1.3 1.6 0.2 1.0 4.9 0.6 3.1

1 0.2 0.025 4.4 0.5 2.8 3.3 0.4 2.1 10.3 1.1 6.4

1 0.3 0.026 6.9 0.8 4.3 5.0 0.6 3.2 16.2 1.7 10.0

1 0.4 0.026 9.6 1.0 5.9 6.8 0.8 4.3 22.9 2.4 13.9

1 0.5 0.027 12.5 1.3 7.6 8.6 1.0 5.5 30.2 3.0 18.1

0.5 0 0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.1 0.025 2.1 0.2 1.3 1.6 0.2 1.0 4.8 0.5 3.0

0.5 0.2 0.025 4.4 0.5 2.7 3.2 0.4 2.0 10.1 1.1 6.3

0.5 0.3 0.026 6.8 0.8 4.2 4.9 0.6 3.1 16.0 1.7 9.9

0.5 0.4 0.026 9.5 1.0 5.8 6.6 0.8 4.2 22.5 2.3 13.7

0.5 0.5 0.027 12.4 1.3 7.5 8.3 1.0 5.4 29.8 3.0 17.9

0 0 0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.1 0.025 2.1 0.2 1.3 1.5 0.2 1.0 4.7 0.5 3.0

0 0.2 0.025 4.3 0.5 2.7 3.1 0.4 2.0 9.9 1.1 6.2

0 0.3 0.026 6.7 0.7 4.2 4.7 0.5 3.0 15.6 1.7 9.6

0 0.4 0.026 9.3 1.0 5.7 6.4 0.7 4.1 22.0 2.3 13.4

0 0.5 0.027 12.1 1.3 7.3 8.1 0.9 5.2 29.0 2.9 17.4

Table 3 - Bias (%) in the estimates of the narrow sense heritabilities at plant within half-sib family (h wHSF
2 ), at full-sib family mean (h FSF

2 ) and at plant

within full-sib progeny levels (h wFSF
2 ), considering k non-fixed genes, kd genes in disequilibrium, dominant genes at intermediate frequencies (0.4 to 0.6),

and different degrees of dominance (d/a) and recombining gamete frequencies (rab).

d / a rab ∆(- 1) h wHSF
2 h FSF

2 h wFSF
2

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

2 0 -0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.1 -0.019 -1.0 -0.1 -0.6 -0.5 -0.0 -0.3 -1.9 -0.2 -1.1

2 0.2 -0.017 -1.7 -0.2 -1.0 -0.9 -0.1 -0.5 -3.5 -0.3 -2.0

2 0.3 -0.015 -2.2 -0.2 -1.3 -1.3 -0.1 -0.8 -4.6 -0.4 -2.7

2 0.4 -0.013 -2.5 -0.2 -1.5 -1.6 -0.2 -0.9 -5.3 -0.5 -3.1
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Table 3 (cont.)

d / a rab ∆(- 1) h wHSF
2 h FSF

2 h wFSF
2

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

2 0.5 -0.011 -2.6 -0.3 -1.6 -1.7 -0.2 -1.0 -5.6 -0.6 -3.3

1 0 -0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.1 -0.019 -1.0 -0.1 -0.6 -0.7 -0.1 -0.4 -2.3 -0.2 -1.3

1 0.2 -0.017 -1.8 -0.2 -1.1 -1.3 -0.1 -0.8 -4.0 -0.4 -2.4

1 0.3 -0.015 -2.4 -0.2 -1.4 -1.7 -0.2 -1.0 -5.2 -0.5 -3.1

1 0.4 -0.013 -2.7 -0.3 -1.6 -2.0 -0.2 -1.2 -5.9 -0.6 -3.5

1 0.5 -0.011 -2.8 -0.3 -1.7 -2.1 -0.2 -1.2 -6.2 -0.6 -3.7

0.5 0 -0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.1 -0.019 -1.1 -0.1 -0.6 -0.8 -0.1 -0.5 -2.4 -0.2 -1.4

0.5 0.2 -0.017 -1.9 -0.2 -1.1 -1.4 -0.1 -0.8 -4.1 -0.4 -2.4

0.5 0.3 -0.015 -2.4 -0.2 -1.4 -1.8 -0.2 -1.1 -5.4 -0.5 -3.2

0.5 0.4 -0.013 -2.8 -0.3 -1.6 -2.1 -0.2 -1.2 -6.1 -0.6 -3.6

0.5 0.5 -0.011 -2.9 -0.3 -1.7 -2.2 -0.2 -1.3 -6.3 -0.6 -3.8

0 0 -0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.1 -0.019 -1.1 -0.1 -0.6 -0.8 -0.1 -0.5 -2.4 -0.2 -1.4

0 0.2 -0.017 -1.9 -0.2 -1.1 -1.4 -0.1 -0.8 -4.2 -0.4 -2.5

0 0.3 -0.015 -2.4 -0.2 -1.4 -1.9 -0.2 -1.1 -5.4 -0.5 -3.2

0 0.4 -0.013 -2.8 -0.3 -1.7 -2.1 -0.2 -1.3 -6.1 -0.6 -3.7

0 0.5 -0.011 -2.9 -0.3 -1.7 -2.2 -0.2 -1.3 -6.4 -0.6 -3.8

Table 4 - Bias (%) in the estimates of the narrow sense heritabilities at plant within half-sib family (h wHSF
2 ), at full-sib family mean (h FSF

2 ) and at plant

within full-sib progeny levels (h wFSF
2 ), considering k non-fixed genes, kd genes in disequilibrium, dominant genes at high frequencies (0.8 to 0.9), and

different degrees of dominance (d/a) and recombining gamete frequencies (rab).

d / a rab ∆(- 1) h wHSF
2 h FSF

2 h wFSF
2

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

2 0 -0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 0.1 -0.024 -2.7 -0.2 -1.5 3.9 0.3 2.2 -0.3 -0.0 -0.2

2 0.2 -0.024 -5.3 -0.5 -3.0 7.2 0.6 4.0 -1.1 -0.1 -0.6

2 0.3 -0.024 -7.8 -0.7 -4.5 9.9 0.8 5.5 -2.5 -0.2 -1.4

2 0.4 -0.024 -10.1 -0.9 -5.9 11.9 1.0 6.6 -4.3 -0.4 -2.5

2 0.5 -0.024 -12.3 -1.2 -7.3 13.3 1.1 7.3 -6.5 -0.6 -3.9

1 0 -0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 0.1 -0.024 -2.7 -0.2 -1.5 -0.2 -0.0 -0.1 -4.2 -0.4 -2.4

1 0.2 -0.024 -5.3 -0.5 -3.0 -0.5 -0.0 -0.3 -8.2 -0.7 -4.7

1 0.3 -0.024 -7.8 -0.7 -4.5 -1.1 -0.1 -0.6 -12.2 -1.1 -7.1

1 0.4 -0.024 -10.1 -0.9 -5.9 -1.9 -0.2 -1.0 -16.0 -1.5 -9.5

1 0.5 -0.024 -12.3 -1.2 -7.3 -2.9 -0.2 -1.6 -19.7 -2.0 -11.8

0.5 0 -0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 0.1 -0.024 -2.9 -0.2 -1.6 -2.1 -0.2 -1.1 -6.2 -0.5 -3.5

0.5 0.2 -0.024 -5.5 -0.5 -3.2 -4.2 -0.3 -2.3 -11.9 -1.1 -6.8

0.5 0.3 -0.024 -8.1 -0.7 -4.7 -6.3 -0.5 -3.5 -17.2 -1.6 -10.0

0.5 0.4 -0.024 -10.5 -1.0 -6.1 -8.4 -0.7 -4.6 -22.1 -2.1 -13.1



genes are at reduced frequencies the bias is positive. If in
the population the frequency of the dominant genes is inter-
mediate to high, the bias tends to be negative. Except for
overdominance, and in populations with high frequencies
of dominant genes, the bias is less affected by the degree of
dominance, with a tendency to be proportional to the degree
of dominance when the dominant genes are at reduced fre-
quencies, but inversely proportional when the frequency of
the dominant genes is intermediate to high. With the same
exception, the bias in the estimate of heritability at plant
within full-sib family level is greater than that of the esti-
mate of heritability at progeny mean level.
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Table 4 (cont.)

d / a rab ∆(- 1) h wHSF
2 h FSF

2 h wFSF
2

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

k = 2,
kd =2

k = 20,
kd =2

k = 20,
kd =4

0.5 0.5 -0.024 -12.8 -1.2 -7.6 -10.5 -0.9 -5.8 -26.6 -2.7 -16.0

0 0 -0.024 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.1 -0.024 -2.9 -0.2 -1.6 -2.2 -0.2 -1.2 -6.4 -0.6 -3.6

0 0.2 -0.024 -5.6 -0.5 -3.2 -4.4 -0.4 -2.4 -12.2 -1.1 -7.0

0 0.3 -0.024 -8.1 -0.7 -4.7 -6.6 -0.6 -3.7 -17.6 -1.6 -10.2

0 0.4 -0.024 -10.6 -1.0 -6.2 -8.9 -0.7 -4.9 -22.6 -2.2 -13.3

0 0.5 -0.024 -12.9 -1.2 -7.6 -11.1 -0.9 -6.1 -27.2 -2.7 -16.3


