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Abstract

The advent of next-generation sequencing allows simultaneous processing of several genomic regions/individuals,
increasing the availability and accuracy of whole-genome data. However, these new approaches may present some
errors and bias due to alignment, genotype calling, and imputation methods. Despite these flaws, data obtained by
next-generation sequencing can be valuable for population and evolutionary studies of specific genes, such as
genes related to how pigmentation evolved among populations, one of the main topics in human evolutionary biol-
ogy. Melanocortin-1 receptor (MC1R) is one of the most studied genes involved in pigmentation variation. As MC1R
has already been suggested to affect melanogenesis and increase risk of developing melanoma, it constitutes one of
the best models to understand how natural selection acts on pigmentation. Here we employed a locally developed
pipeline to obtain genotype and haplotype data for MC1R from the raw sequencing data provided by the 1000
Genomes FTP site. We also compared such genotype data to Phase 3 VCF to evaluate its quality and discover any
polymorphic sites that may have been overlooked. In conclusion, either the VCF file or one of the presently described
pipelines could be used to obtain reliable and accurate genotype calling from the 1000 Genomes Phase 3 data.
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Introduction

The advent of Sanger sequencing in 1977 and its cap-

illary electrophoresis automation provided complete

genome sequencing of various species. However, this tech-

nique offers limitations: it is expensive and time consum-

ing, and it can only sequence a small number of sam-

ples/fragments at a time). Consequently, some difficulties

may arise when the goal is to sequence complete genomes

for multiple samples, especially in the case of population

studies.

The rise of next-generation sequencing (NGS) meth-

ods has allowed simultaneous processing of several indi-

viduals/regions with high accuracy: sequencing of the same

region several times is possible, and the development of

various parameters has enabled quality assessment of the

generated sequences (Nielsen et al., 2011). This has led to

the proposal of many methods, such as emulsion PCR (e.g.,

454 – Roche, Ion Torrent – Life) and solid-phase amplifica-

tion (e.g., Solexa – Illumina) (Metzker, 2010; Vigliar et al.,

2015). Decline in sequencing costs has prompted numerous

collaborative projects for whole-genome sequencing like

the 1000 Genomes Project (The 1000 Genomes Project

Consortium, 2012). Such projects use distinct population

samples, thereby allowing the discovery of new variants

and elucidation of important evolutionary and demographic

details that shaped the human genome (Matullo et al.,

2013).

Phase 1 of the 1000 Genomes Project, which hap-

pened from 2008 to 2010, included a series of research cen-

ters that worked together to sequence 1,092 complete geno-

mes from 14 populations. The high cost and genome size

meant that these first results consisted mainly of low-cove-

rage whole-genome sequencing, high-coverage exome se-

quencing, and high-density SNP Array panels. Data treat-

ment and analysis helped to place each genotype into

biallelic categories for each sample and each site. By means
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of an imputation process, linkage disequilibrium analysis

of the data aided confirmation/inference or even correction

of the variants obtained from low-coverage non-exome

data. The retrieved data thus present flaws and bias, such as

the lack of some polymorphisms due to limitations of the

genotype calling methods available at the time. In addition,

the method used to infer genotypes and haplotypes did not

enable differentiation of triallelic SNPs and considered

them to be biallelic, which decreased the informativity of

various loci (Castelli et al., 2014). The last phase (Phase 3),

released in October 2014, encompassed 2,504 complete

genomes and provided multiallelic data for the first time

(Sudmant et al., 2015; The 1000 Genomes Project Consor-

tium, 2015). Because many rare variants located within

known linkage disequilibrium blocks exist (Howie et al.,

2011), studies like the 1000 Genomes Project can serve as

basis to infer undetected variants. Low-frequency variants

may have 60-90% precision on imputation, even in ad-

mixed populations (The 1000 Genomes Project Consor-

tium, 2012). Despite the many improvements achieved on

mapping, imputation, and genotype calling, the current

NGS technologies still have error rates of, at least, 10-4 per

nucleotide, which culminates in high rate of false positives

(around 5%) when low-coverage sequencing is employed

(Matullo et al., 2013).

Several studies have addressed this data analysis is-

sue by using in silico methods to identify and correct data

for any bias, which may result in mismapping and/or geno-

type calling errors (Castelli et al., 2014; Gilissen et al.,

2012; Nagasaki et al., 2013). In addition, these studies have

highlighted the importance of validating the obtained re-

sults by using other established and validated methodolo-

gies; e.g., Sanger sequencing, for regions of interest.

Researchers have developed new scripts and pipelines to

detect genotype and haplotype from raw data of the 1000

Genomes Project accurately, which also enabled retrieval

of unreleased data from variants overlooked by the Consor-

tium. Different HLA-G gene analyses concerning Phase 1

data have validated such scripts, demonstrating higher ac-

curacy of genotype calling in studies of individual genes or

delimited chromosome regions (Castelli et al., 2014). Ge-

notype calling accuracy of Phase 3 data has not been ap-

proached yet.

Despite the existing errors, data obtained by next-

generation sequencing during the 1000 Genomes Project

can be valuable for population and evolutionary studies of

specific genes. However, the 1000 Genomes dataset is not

suitable for the identification of mosaicism or somatic mu-

tations that could be involved in diseases such as cancer,

since most of the regions are characterized by low coverage

(The 1000 Genomes Project Consortium, 2015), and only

blood rather than tissue samples are available. Nonetheless,

this data set can help to address one of the major problems

related to human evolutionary biology, that is, explaining

how pigmentation variation evolved in different popula-

tions. Genes involved in melanogenesis are one of the ma-

jor targets of natural selection, as verified by the correlation

between pigmentation diversity and variation in ultraviolet

(UV) incidence. Indeed, phenotypes distribution is clearly

associated with latitude. Some theories have addressed nat-

ural selection and sexual dimorphism as possible explana-

tions for this diversity (Aoki, 2002; Jablonski and Chaplin,

2014a). The most accepted evolutionary explanation con-

cerning this pigmentation diversity refers to protection

against UV radiation, particularly in skin areas that are

highly exposed to sun. One of the differences between hu-

man beings and other primates, as well as many mammals,

is that humans have lost most of the body hair. This fur loss

should constitute an evolutionary advantage, such as the ca-

pacity to sweat more efficiently, which would help to regu-

late body temperature. However, the absence of this

protective layer might have created the need for another

type of protection against ultraviolet (UV) radiation (Rees,

2003). Dark skin pigmentation contains high levels of mel-

anin, which can protect humans against UV damage

(Jablonski and Chaplin, 2014b).

Alleles from many SNPs in the MC1R coding se-

quence (Arg151Cys, Arg160Trp, and Asp294His) have al-

ready been associated with red hair, fair skin, and freckling

in Europeans (Harding et al., 2000; Sturm, 2006). Other

studies have also identified several MC1R coding variants

related to melanoma susceptibility (Ghiorzo et al., 2012;

Pellegrini et al., 2012). Understanding the expression and

activity regulation of this receptor is essential to compre-

hend how it affects melanogenesis and the risk of develop-

ing melanoma (Swope et al., 2012). Because natural

selection shapes the global genetic diversity of regions with

functional impact on the expression of genes and their

products, understanding worldwide MC1R genetic diver-

sity patterns is a first step to understand its expression and

activity regulation.

Considering the limitations exposed here, we have

employed a locally developed pipeline to obtain genotype

and haplotype data from the raw sequencing data provided

by the 1000 Genomes FTP site. We have also compared

these data to Phase 3 VCF, which consists in the final re-

lease of a Variant Call File composed of about 80 million

variant sites spread across the human genome, aiming to

evaluate the quality of Phase 3 VCF and eventually dis-

cover any polymorphic sites that VCF may have over-

looked.

Subjects and Methods

This study used two different datasets maintained

by the 1000 Genomes Project Consortium (Sudmant et

al., 2015; The 1000 Genomes Project Consortium,

2015).

The first dataset consisted of a VCF file obtained at

the official website (http://browser.1000genomes.org/)

from Phase 3 Release, which included 2,504 samples from
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26 populations. The MC1R regions evaluated here

(chr16:89981286-89987385) encompassed 1 kb from its 5’

Upstream Regulatory Region (5’URR), as well as its single

exon composed of a 5’ Untranslated Region (5’UTR), a

Coding Sequence (CDS), and a 3’ Untranslated Region

(3’UTR).

The second dataset consisted of SAM files directly

obtained from the 1000 Genomes server (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp). Our group had pre-

viously validated the methodology used in this article

(Castelli et al., 2014). First, by using Samtools (Li et al.,

2009) subroutine view, we downloaded slices of the SAM

(sequence alignment/map) files containing the 1000

Genomes data for the MC1R gene region mentioned

above. We performed the download for all the 2,537 sam-

ples available in Phase 3 and included data from both

low-coverage whole-genome and high-coverage exome

sequencing when available. This process generated up to

two SAM files per individual. We merged these two files

into a single file and converted the resulting file into a

BAM (binary alignment/map) file. We then converted

each BAM file into a Fastq format file, which retrieved all

reads previously mapped to the MC1R region, by means of

Bamtools (https://github.com/pezmaster31/bamtools/)

and Perl scripts (locally developed). Additional tools fil-

tered out duplicated reads and classified the reads as

paired or unpaired.

We then re-mapped both paired and unpaired Fastq

files to a masked chromosome 16 (hg19), in which only the

MC1R region was available; the rest of the chromosome

was masked with “N” to preserve nucleotide positions re-

garding hg19. Picard-tools

(http://broadinstitute.github.io/picard/) helped to join the

BAM files resulting from the re-mapped reads, from both

paired-end and unpaired sequences. The Bamtools soft-

ware aided removal of reads mapped with low mapping

quality (MQ) scores (MQ < 40). We used the GATK rou-

tines UnifiedGenotyper and HaplotypeCaller independ-

ently to infer genotypes and generate VCF (variant call

format) files.

Given the low coverage nature of the 1000

Genomes data, some genotype callings are rather uncer-

tain, mainly in situations in which a homozygous geno-

type is inferred when that position presents low depth

coverage. In addition, given the polymorphic nature of

MC1R, some level of mismapped reads is expected and

might bias genotype inference. To circumvent this am-

plification bias issue, we treated both VCF files gener-

ated by UnifiedGenotyper and HaplotypeCaller with

VCFx (http://www.castelli-lab.net/apps/apps_vcfx.php)

a locally developed Perl script. This script uses the num-

ber of different reads detected for each allele at a given

position (provided by both the GATK routines men-

tioned above upon generation of the VCF files) and ap-

plied the rules described below.

• Homozygosity was only inferred when a minimal

coverage of seven reads was achieved; otherwise, a

missing allele was introduced in this genotype. Ac-

cording to a binomial distribution and to different

sets of simulations performed (data not shown),

this procedure ensures (p > 0.99) that a homozy-

gous genotype is called because of lack of variance

at that position and not because the second allele

was not sampled.

• Genotypes, in which one allele is extremely under-

represented (proportion of reads under 5%), are

considered homozygous for the most represented

allele. This procedure minimizes the influence of

mismapped reads and the high level of sequencing

errors that characterizes NGS data. Such correction

is applied only in situations characterized by high

depth of coverage (20 or more reads available for

the evaluated position).

• For genotypes in which one allele is mildly under-

represented (with a proportion of reads between 5

and 20%), a missing allele is introduced represent-

ing this underrepresented allele. This procedure is

particularly helpful in situations characterized by

low depth of coverage (less than 20 reads available

for the evaluated position), in which a single read

may indicate the existence of an alternative allele.

Such a read may be a mismapped read (false posi-

tive variant) or may represent a true unbalanced

heterozygous genotype (true positive variant).

Therefore, the definitive status of this kind of geno-

type (homozygous or heterozygous) was inferred

during a final imputation step.

• Genotypes in which the proportion of reads for the

less represented allele is higher than 20% are con-

sidered heterozygous. This procedure ensures that

only high-quality heterozygous genotypes are

passed forward to the imputation procedure.

It should be emphasized that the VCFx strategy is

aimed to counteract amplification bias (Rehm et al., 2013)

and could be used in any NGS-derived VCF file. However,

the rules described above would compromise the identifi-

cation of somatic mutations or mosaicism, since these

events would probably lead to unbalanced availability of

reads incorporating alternative alleles, resembling PCR

amplification bias

Using the VCFtools package (Danecek et al., 2011),

we removed SNVs that were no longer variable or that were

represented just once in the dataset (i.e., singletons). The

missing alleles were imputed and MC1R haplotypes were

inferred by using fastPHASE (Scheet and Stephens, 2006).

A subset of the differences in genotype calling between the

two approaches (UnifiedGenotyper and HaplotypeCaller)

were visually inspected by checking the BAM files align-

ment by using the Integrative Genomics Viewer (IGV) 2.3

software (Robinson et al., 2011).
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Statistical Analysis

The phased VCF file was converted into complete

MC1R sequences using the hg19 reference sequence as a

draft and replacing the correct nucleotide in each position,

two sequences per samples, by applying VCFx function

fasta (http://www.castelli-lab.net/apps/apps_vcfx.php).

Observed (HO) and expected (HS) heterozygosity val-

ues, as well as the adherences of genotypic proportions to

expectations under Hardy-Weinberg equilibrium were esti-

mated by the ARLEQUIN version 3.5 program (Excoffier

and Lischer, 2010). The MC1R sequence variation was as-

sessed using �W, an estimate of the expected per-site hetero-

zygosity, and � (nucleotide diversity), which is the average

number of nucleotide differences per site between two se-

quences (Nei and Kumar, 2000).

Departure from selective neutrality was tested by four

different methods. The first one was the Ewens-Watterson

test (Ewens, 1972; Watterson, 1978; Slatkin, 1994). This

test, based on Ewens’ sampling theory and infinite allele

model, compares the observed homozygosity under

Hardy-Weinberg proportions with the expected homozy-

gosity computed by simulation under the hypothesis of

neutrality/equilibrium expectations, for the same sample

size and number of alleles. This permits to test alternative

hypotheses of either directional (observed homozygosity

greater than expected homozygosity) or balancing selection

(observed homozygosity lower than expected homozy-

gosity). The second method was the Tajima’s D test (Taji-

ma, 1989), which examines the relationship between the

number of segregating sites and nucleotide diversity, by

comparing the sequence diversity statistics �W and �. Under

the standard neutral model, the expectations of �W and � are

equal, and therefore the expected value of Tajima’s D is

zero under neutrality. A positive Tajima’s D value evi-

dences heterozygous advantage and a negative value points

to selection of one specific allele over alternate alleles (Nei

and Kumar, 2000). Like Tajima’s D, the third test, Fu’s FS

test (Fu, 1997) is based on the infinite-site model without

recombination. It evaluates the probability of observing a

random neutral sample with a number of alleles similar or

smaller than the observed value given the observed number

of pairwise differences, taken as an estimator of �. Con-

sidered less conservative than Tajima’s D, Fu’s FS is more

sensitive to the presence of singletons. The significance of

the Tajima’s D and Fu’s FS statistics were tested by gener-

ating 99,999 random samples under the hypothesis of selec-

tive neutrality and population equilibrium, using a coales-

cent simulation algorithm. These three neutrality tests were

carried out using the ARLEQUIN version 3.5 program

(Excoffier and Lischer, 2010). The fourth method consisted

of the synonymous and non-synonymous nucleotide substi-

tution test, which evaluates the relative abundance of syn-

onymous substitutions (that do not result in amino acid

change) and non-synonymous substitutions (that result in

amino acid change) which occurred in the gene sequences.

For data sets containing more than two sequences, this is

done by first estimating the average number of synony-

mous substitutions per synonymous site (dS) and the num-

ber of non-synonymous substitutions per non-synonymous

site (dN), and their variances. Then, the null hypothesis of

neutrality (dN = dS) can be evaluated against the alternative

hypothesis of either positive or purifying selection. This

test was carried out using the Nei-Gojobori method (Nei

and Gojobori, 1986) implemented in MEGA version 7.0.21

(Kumar et al., 2016).

Results

After the steps that converted the raw data of the 1000

Genomes Project to the phased haplotypes of MC1R for all

individuals, the process that used the GATK routine

UnifiedGenotyper resulted in complete data for 201 loci for

2,537 individuals, which represented 596 distinct haplo-

types. Of these 201 loci, 24, 54, 89 and 34 belonged to

5’URR (Upstream Regulatory Region), 5’UTR (Untrans-

lated Region), CDS (Coding Sequence), and 3’UTR, re-

spectively. As the data obtained directly from the 1000

Genomes Project VCF had 178 loci (174 SNVs and 4

InDels) that were common to the same 2,504 individuals,

we removed the 23 loci (11 singletons) and 33 individuals

that were incompatible between the two datasets, which al-

lowed equivalence in comparisons.

After this initial filtering, we compared genotypes for

each locus among individuals to verify whether incompati-

bilities existed. An initial analysis considering the total

number of loci (178) and individuals (2,504) revealed that

445,712 possible genotype comparisons could be per-

formed between the results of the UnifiedGenotyper analy-

sis and the 1000 Genomes browser data. From this total,

there were only 585 incompatibilities in terms of genotype

calling (0.1313% of the total).

For all the analyzed loci, the two datasets provided

identical genotype data for 87.58% of the sample (2,193 in-

dividuals). The remaining 311 subjects had at least one lo-

cus with an incompatible genotype, and this error rate

reached a maximum of 13 incompatible loci in a single in-

dividual (Figure 1). According to the two approaches, indi-

vidual analysis of each locus showed that 102 of the loci

were compatible for all the individuals. Among the 76 dis-

cordant loci, some condensed most of the discrepancies: 13

of these loci accounted for almost 80% of all the mis-

matches throughout the study, and one of them (rs885479)

led to 87 mismatches (14.87% of total) (Figure 2).

Analysis of the allele frequencies for each evaluated

locus demonstrated that the two approaches did not differ

significantly despite the mentioned mismatches. In the end,

even locus rs885479, which presented the largest amount of

mismatches, provided an irrelevant difference of 1.22% for

the reference allele frequency determined by the VCF and

by the data processed via our scripts.
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Based on these results, we checked the BAM files

alignment by using IGV software to explore the mis-

matches between the two approaches manually. From the

original 585 genotype differences, we evaluated 40 random

mismatches for locus rs885479 and 60 mismatches ran-

domly chosen among the remaining loci (Table 1). From

the 40 mismatches evaluated for locus rs885479, 39 had

seven reads or less and, therefore, resulted in the introduc-

tion of a missing allele by the script, which made data com-

parison uninformative. The other mismatch apparently

occurred due to some genotype calling error in our pipeline

(it was wrongly considered homozygous). The pipeline in-

troduced missing alleles in 33 of the 60 random mismatches

either because the read number was low or because the al-

ternative allele was underrepresented, which made data

comparison uninformative. Other 22 mismatches were due

to errors made by our pipeline (the pipeline should have re-

garded six and 12 cases as homozygous and heterozygous,

respectively; the four remaining cases were considered ho-

mozygous for the reference allele while they should have

been considered homozygous for the alternative allele), and

in five cases the VCF made erroneous genotype calling.

Surprisingly, the 178 loci in the 2,504 individuals,

which resulted in 207 distinct haplotypes for the VCF data,

ended up resulting in 491 different haplotypes in the data

generated by our UnifiedGenotyper pipeline. Not all 207

haplotypes obtained from VCF were among those obtained

by the scripts. From the total, 52 haplotypes were not

among the 490 haplotypes inferred by our pipeline. Com-

paring the haplotype pairs obtained for each individual, of

the 5,008 generated haplotypes, 2,442 haplotype compari-

sons were identical and 2,566 included some inconsisten-

cies. This result became even more astonishing when

considering that the two datasets gave identical genotype

data for all the analyzed loci for 87.58% of the sample

(2,193 individuals), but only 1,147 individuals (52.3%) had

identical haplotype reconstructions.

The GATK routine HaplotypeCaller afforded data for

163 loci in 2,537 individuals. Because some incompatibili-

ties also existed between this dataset and the 1000 Geno-

mes VCF, we removed 33 individuals and 28 loci to allow

equivalence in comparisons. This second approach resulted

in 375,600 possible genotype comparisons (150 loci x

2,504 individuals). This comparison resulted in 1,637 ge-

notype calling incompatibilities (0.4358% of the total).

For all the analyzed loci, the two datasets revealed

identical genotype data for 64.54% of the sample (1,616 in-

dividuals). At least one incompatible locus existed in the re-

maining 811 individuals, and this error rate reached a

maximum of eight incompatible loci in a single individual

(Figure 1). Considering each locus individually, the two ap-

proaches revealed compatibility for 54 of the loci for all the

individuals. Some of the 103 discordant loci condensed

most of the discrepancies: 13 loci accounted for almost

85% of all mismatches throughout the study, and one locus

(position chr16:89985177) led to 184 mismatches (11.93%

of the total) (Figure 2).

Considering the allele frequencies for each locus, we

again observed no significant differences in this second

analysis despite the mismatches (maximum of 0.48% per

locus). Even for locus chr16:89985177, which comprised

most mismatches, VCF and data processed by Haplo-

typeCaller differed by only 0.02% in allele frequencies.

We also checked the BAM files alignment manually

to better understand these mismatches. As in the case of the

first comparison (UnifiedGenotyper vs VCF), we evaluated

40 random mismatches for locus chr16:89985177 and 60

random mismatches among the remaining loci (Table 1).

Of the 40 mismatches evaluated for locus chr16:89985177,

only one mismatch had more than seven and less than 20

reads, with an underrepresented alternate allele (ratio be-

tween 5-20%), which resulted in the introduction of a miss-

ing allele. The HaplotypeCaller pipeline considered

534 Next-gen sequencing data evaluation

Figure 2 - Percentage of mismatches observed for data generated by our

pipelines (UnifiedGenotyper in gray and HaplotypeCaller in black) as

compared to data obtained directly from the VCF concerning 178

(UnifiedGenotyper) or 150 (HaplotypeCaller) loci analyzed by the 1000

Genomes Project.

Figure 1 - Percentage of mismatches observed for data generated by our

pipelines (UnifiedGenotyper in gray and HaplotypeCaller in black) as

compared to data obtained directly from the VCF concerning 2,504 indi-

viduals analyzed by the 1000 Genomes Project.



another 37 mismatches as missing alleles, which made data

comparison uninformative. Two mismatches probably oc-

curred due to some genotype calling error in our pipeline

(both should have been considered as heterozygous), but

VCF did not result in any wrong genotype calling. Evalua-

tion of 60 random mismatches showed that 56 of them had

low coverage (less than seven reads): the pipeline considered

54 of these mismatches as missing alleles and wrongly con-

sidered the other two as homozygous. As for the remaining

four mismatches, two were considered as missing alleles,

one was wrongly mapped as heterozygous by the pipeline,

and one was considered as heterozygous by the VCF.

Comparison between the 1000 Genomes browser and

the HaplotypeCaller approach (150 loci in 2,504 individu-

als) showed 181 unique haplotypes for the VCF data and a

surprisingly higher number of 727 distinct haplotypes for

our HaplotypeCaller pipeline. Forty-five of the haplotypes

inferred by 1000 Genomes were not present in our pipeline

results. Comparison of the individual haplotype pairs re-

vealed a similar number of incompatibilities (2,444 identi-

cal comparisons out of 5,008).

Finally, in order to evaluate the population genetics

applicability of the 1000 Genomes dataset, characterized

by low coverage sequencing, basic population genetics pa-

rameters and four different neutrality tests were applied to

all four population groups composed of autochthonous

populations (Tables 2 and 3).

Discussion

It is well established that low-coverage next-gene-

ration sequencing assays are deeply affected by PCR am-

plification and sequencing biases. According to Rehm et al.

(2013), low coverage associated with amplification bias in-

creases the risks of missing variants and assigning incorrect

genotypes. It also decreases the ability to effectively filter

out sequencing artifacts, leading to false-positives. The

three platforms used by the 1000 Genomes Consortium

(454, Illumina and SOLiD) display systematic biases and

unevenness (Aird et al., 2011). According to Meynert et al.

(2014), data generated by the 1000 Genomes Project pres-

ent a bad performance related to detection of heterozygous

SNPs, which could be due to short read lengths or high se-

quencing error rates, requiring a coverage of at least 13X to

reach 95% sensitivity. Therefore, many called homozy-

gotes are actual heterozygotes, as well as amplification and

sequencing artifacts may lead to false-positives (Rehm et

al., 2013). One way to deal with this issue is by introducing

protocol modifications (Aird et al., 2011). Since this is not
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Table 1 - Comparison between the 1000 Genomes Project Phase 3 VCF with data processed by the pipelines that include either UnifiedGenotyper or

HaplotypeCaller. For this purpose, 40 callings were retrieved from the locus that presented the higher levels of inconsistencies (rs885479 for

UnifiedGenotyper and chr16:89985177 for HaplotypeCaller) and 60 were randomly chosen among the remaining loci.

UnifiedGenotyper approach HaplotypeCaller approach

Mismatches Locus rs885479 Random sites chr16:89985177 Random sites

Missing Alleles 39 33 38 56

VCF error 0 5 0 1

Pipeline error 1 22 2 3

Table 2 - Observed (HO) and expected (HS) heterozygosities, Hardy-Weinberg Equilibrium (HWE) probability values and Ewens-Watterson neutrality

test results regarding the promoter and coding regions of MC1R in four population groups composed of autochthonous populations from the 1000

Genomes project. Significant p-values are marked in boldface.

Ewens-Watterson neutrality test

2n HO HS HWE p-value Fobserved Fexpected p-value a

Promoter region

AFR 1008 0.881 0.883 0.537 0.118 0.049 1.000

EAS 1008 0.639 0.625 0.617 0.376 0.104 1.000

EUR 1006 0.692 0.689 0.499 0.312 0.123 1.000

SAS 978 0.847 0.839 0.613 0.162 0.062 1.000

Coding region

AFR 1008 0.669 0.666 0.494 0.334 0.130 1.000

EAS 1008 0.587 0.565 0.546 0.436 0.169 1.000

EUR 1006 0.638 0.668 0.584 0.333 0.200 0.959

SAS 978 0.481 0.491 0.425 0.510 0.184 1.000

a A p-value was computed by the comparison of the estimated statistic to a distribution of estimates computed for 99,999 random samples of the same

number of alleles and sample size as the observed data, and represents the proportion of samples having a probability smaller or equal to the observed

sample. Due to the nature of the test, large p-values (i.e., p > 0.95) are still significant.
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a possibility when dealing with data as the already obtained

by the 1000 Genomes Project, designing methods to inter-

rogate and enhance genotype calling accuracy is of para-

mount importance.

Most of the evaluated mismatches found for the

datasets originated from the high level of missing alleles

(72% for UnifiedGenotyper and 94% for HaplotypeCaller,

Table 1), which resulted mainly from the low coverage (be-

low seven or 20 reads) of the analyzed polymorphic sites.

This led us to include imputation steps in our pipeline.

Hence, the high inconsistency ratio between the VCF file

and the genotypes obtained by both pipelines probably re-

flected the differences concerning the imputation methods

used in each approach and cannot be straightforwardly con-

sidered as error. At the moment, empirically stating which

imputation method is more prone to error is not possible in

such extremely low-coverage situations.

Genotype imputation can be extremely useful by al-

lowing missing data from low-density chips to be filled,

which should reduce costs (Jimenez-Montero et al., 2013),

merge datasets with non-overlapping genotypes generated

by different platforms (Khankhanian et al., 2015), or even

predict complex traits (Felipe et al., 2014). The accuracy of

imputed genotypes, in cases where an appropriate reference

population is used, resembles the accuracy obtained from

high-density SNP panels (Weigel et al., 2010). However,

imputation benefits rely deeply on the accuracy of the im-

putation procedure, which is directly related to the popula-

tion structure of the samples used and to the composition of

the evaluated target gene (Felipe et al., 2014).

Although low coverage is a recurrent problem regard-

ing NGS of whole genomes, another important issue is the

read mapping bias. This is because highly polymorphic re-

gions will generate reads consisting of many alternate al-

leles. Some of these greatly diverse reads will not align to a

single position in the reference genome and, hence, will be

discarded during analysis. Therefore, it would be interest-

ing to have multiple haplotypes from a given target as refer-

ence for several alignment steps in order to improve

genotype calling for these polymorphic regions (Brandt et

al., 2015).

Most studies that use genotype imputation for

whole-genome sequencing data regard only linear predic-

tion models such as ridge regression, Bayesian LASSO

(least absolute selection and shrinkage operator), or

GBLUP (genomic best linear unbiased prediction) ap-

proaches. These approaches are more suitable for additive

genetic models but do not detect so accurately non-additive

effects, such as dominance and epistasis (Weigel et al.,

2010; Felipe et al., 2014).

However, even different imputation models can pres-

ent bias in specific cases. Examples of such cases are high

heterogeneity that culminates in underestimation of derived

alleles, presence of the alternative allele in small genetic

windows that are not spanned by enough SNPs to make im-

putation effective, and rare frequency of the alternative al-

lele. Although the imputation process can lead to more

powerful datasets and new association in case-control or

population studies, the inherent bias can lead to data defi-

ciency or type I error, which could counteract the results

from these datasets by missing or underestimating geno-

type associations (Khankhanian et al., 2015).

Therefore, it is essential to evaluate the genetic struc-

ture of the data accurately, in order to choose the best fitting

and most reliable imputation method for the investigated

genes or genomic regions. It is crucial not only to choose

the most suitable imputation method for the presented data,

but also to use a validation regression method to examine

the results, search for artifacts, and ensure method validity

(Hoffmann et al., 2015), or use other established and vali-

dated methodologies, such as Sanger sequencing.

Finally, compared to the 1000 Genomes browser

VCF data, UnifiedGenotyper (0.1313%) and Haplo-

typeCaller (0.4358%) led to a very small number of incon-

sistencies. Although HaplotypeCaller afforded a higher

rate of inconsistencies, 94% of the inconsistencies were re-

lated with interrogation of low coverage genotypes rather

than with VCF (1%) or pipeline (5%) errors used for geno-

type calling. In turn, UnifiedGenotyper was associated with

higher levels of VCF (5%) or pipeline (23%) errors, such as

detection of homozygotes as heterozygotes and vice versa.

Therefore, the fraction of inconsistencies that represented

actual pipeline errors was estimated as 0.0302% and

0.0218% for HaplotypeCaller and Unifiedgenotyper, re-

spectively. The initially apparent worse performance of

HaplotypeCaller must indeed have been due to the fact it is

a conservative approach and therefore required higher-

quality raw data (i.e., characterized by higher coverage,

base quality, and mapping quality) to be reliable. Although

the inaccuracies of the pipelines deserve further investiga-

tion, the most plausible cause of such discrepancies could

be related to the fact that part of the reads aligned to a given

position, and when confirmed by visual inspection with

IGV did not present the quality requirements necessary for

consideration by GATK routines for calling. This could

also underlie the smaller number of variation sites identi-

fied by HaplotypeCaller (163) as compared to

UnifiedGenotyper (201) and to Phase 3 VCF (178). A total

of 150 variation sites were identified by the three methods.

Overall, HaplotypeCaller and UnifiedGenotyper identified

13 and 23 variants, respectively, that were previously over-

looked by the Consortium; seven of them were identified

by both algorithms, which increases the likelihood of being

real. Although these variants still demand confirmation,

their impact on most of the population genetic analyses is

negligible since most of them are singletons.

Data from next-generation sequencing should be

treated carefully if one wishes to obtain the most accurate

information. The present comparison evidenced a very low

incompatibility rate in terms of MC1R genotype calling

Marano et al. 537



(below 0.5%), and our preliminary analysis of the 1000

Genomes dataset has disclosed solid signatures of purify-

ing selection on African and positive selection on European

populations in both the promoter and the coding region of

MC1R. According to UV incidence data, AFR and SAS

populations are related with places of higher UV incidence

and higher melanin content (Jablonski and Chaplin 2000),

when compared to EUR and EAS, which may suggest dif-

ferent selective pressures on pigmentation genes. Reports

of natural selection shaping MC1R diversity already pro-

posed positive selection in Eurasia (Savage et al., 2008;

Hider et al., 2013). In the present dataset, the Ewens-

Watterson test revealed a significant deficiency of hetero-

zigosity in the promoter and coding regions of all four pop-

ulation groups composed of autochthonous populations

(Table 2), irrespective of the different demographic histo-

ries that characterize each population, which is consistent

with directional selection that may be either positive or pu-

rifying selection.

All Tajima’s D and Fu’s FS values for the MC1R cod-

ing region were more negative than the respective values

for the promoter region in all population groups (Table 3),

indicating an excess of rare variants, which is consistent

with either positive or purifying selection, particularly on

the coding region. AFR and SAS presented lower (more

negative) values than observed for EUR and EAS in both

tests. Although both positive and purifying selection may

result in similar signatures, the latter results in even reduced

levels of variability (Nielsen, 2005), which was observed in

AFR and SAS when compared with EUR and EAS when

nucleotide diversity of coding region is considered (Table

3). A good method to tell purifying apart from positive se-

lection, i.e, identify the directionality of selection, is to ap-

ply the synonymous and non-synonymous nucleotide

substitution test (dN - dS). However, as purifying selection

will tend to dominate in evolution, this becomes a very con-

servative tool and the amount of positive selection needed

to to be detectable is enormous (Nielsen, 2005). Although

far from reaching statistical significance, the test results

suggests that positive selection should be more appropriate

to explain the significant findings of directional selection

revealed by the other three tests in EUR.

The present MC1R study reveals that the 1000 Geno-

mes dataset is adequate to perform population genetic stud-

ies. The fact that it was not possible to retrieve any

multiallelic marker for the MC1R region calls for conduc-

tion of similar studies including multiallelic markers. Nev-

ertheless, the present comparison suggests that either the

VCF file or one of the presently described pipelines could

be used to obtain reliable and accurate genotype calling

during studies of individual genes or delimited chromo-

some regions from 1000 Genomes Phase 3 dataset. A nega-

tive issue that needs further examination is the significant

disagreement found for the haplotype inference procedure,

which may have resulted from underestimation of haplo-

types in the VCF file or from overestimation by

fastPHASE. Although low coverage can be a great problem

regarding this kind of analysis, imputation methods can be

useful to fill missing data gaps, as long as an accurate refer-

ence panel is chosen. Higher coverage could also improve

the precision of genotype calling, but the development of

new methods to identify and correct for bias could be the

only answer in cases where only low-coverage data is avail-

able.
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