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Abstract

The genetic architecture of complex diseases affecting populations with Indigenous American ancestries is poorly 
understood due to their underrepresentation in genomics studies. While most of the genetic diversity associated 
with disease trait variation is shared among worldwide populations, a fraction of this component is expected to be 
unique to each continental group, including Indigenous Americans. Here, I describe the current state of knowledge 
from genome-wide association studies on Indigenous populations, as well as non-Indigenous populations with 
partial Indigenous ancestries from the American continent, focusing on disease susceptibility and anthropometric 
traits. While some studies identified risk alleles unique to Indigenous populations, their effects on trait variation are 
mostly small. I suggest that the associations rendered by many inter-population studies are probably inflated due to 
the absence of socio-cultural-economic covariates in the association models. I encourage the inclusion of admixed 
individuals in future GWAS studies to control for inter-ancestry differences in environmental factors. I suggest that 
some complex diseases might have arisen as trade-off costs of adaptations to past evolutionary selective pressures. 
Finally, I discuss how expanding panels with Indigenous ancestries in GWAS studies is key to accurately assess 
genetic risk in populations from the American continent, thus decreasing global health disparities. 
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Preliminary statement
In this review I describe associations between 

global ancestry proportions and disease traits, as well 
as genome-wide associations with anthropometric traits 
and complex diseases of diverse categories. Even though 
environmental factors contribute an enormous extent to 
complex diseases, this review focuses on genetic diversity 
and its association with disease; thus, I do not discuss 
environmental causes of disease risk in depth. However, I 
do emphasize socio-economic factors affecting disease risk 
when applicable. Also, I focus on associations reported to 
be unique to populations with Indigenous American genetic 
ancestries, regardless of their effect sizes on disease traits.  
For simplicity, in most cases I refer to genetic ancestries as 
ancestries and to significant association as association. It is 
noteworthy that the overrepresentation of certain Indigenous 
populations in medical genomic studies can create the false 
impression that these populations are particularly prone to 
disease.

Populations with Indigenous American ancestries are 
a broad group that can be roughly divided into two groups: 
Indigenous and non-Indigenous populations. Indigenous 
groups self-identify as Indigenous and in general derive all 
or most of their genetic diversity from ancient North, Central, 
and South American populations. Non-Indigenous populations 
in general inhabit the same regions do not self-identify as 

Indigenous, but derive part of their ancestry from ancient 
Indigenous populations. For simplicity, I refer to these groups 
as Indigenous and admixed non-Indigenous populations, 
respectively. Although imperfect, these terms are more suitable 
than US-centric labels such as Latin Americans or Hispanics, 
which are used by several studies cited in this review.

Genetic risk for complex diseases
Heritable genetic variation in humans comprises at least 

125 million single nucleotide variants and ~173 thousand 
structural variants across diverse populations around the world 
(Byrska-Bishop et al., 2022). However, only ~1 million single 
nucleotide variants and an undefined number of structural 
variants have predicted functional consequences (Byrska-
Bishop et al., 2022), suggesting that they constitute the main 
substrate for the heritable component of diseases.

In contrast to classic Mendelian monogenic diseases, 
which are caused by a single locus, complex diseases are 
impacted by the sum of many small-effect loci across the 
genome. The number of these loci, together with their 
frequencies and effect sizes, constitute the genetic architecture 
of complex diseases (Simons et al., 2018). The genetic 
architecture of a disease is estimated from its polygenic score, 
a quantity that summarizes the estimated effect of many genetic 
variants on an individual’s trait. These effects are obtained 
from genome-wide association studies (GWAS), namely, 
statistical associations between genetic variants across the 
genome and a trait of interest in a given population. 

GWAS studies have identified hundreds of thousands 
of genetic variants involved in the genetic architecture of 
common complex traits and diseases (Welter et al., 2014). 
Thanks to GWAS studies, we know that most genetic variation 
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associated with disease susceptibility is broadly shared among 
human populations around the world (Bergström et al., 2020). 
However, genetic drift (i.e., random changes in allele frequency 
over time) driven by demographic processes, as well as natural 
selection and other evolutionary forces, shift allele frequencies 
in specific populations (Prohaska et al., 2019). Consequently, 
some risk alleles are common (allele frequency > 0.01) in 
understudied populations, but rare (allele frequency ⩽ 0.01) 
in global datasets (Auton et al., 2015; Martin et al., 2017). In 
addition, there are numerous rare risk alleles that are unique 
to single or related populations (Auton et al., 2015). 

Despite individuals of European ancestries constituting 
only 14% of the world population (United Nations Report, 
2022), two-thirds of GWAS studies have focused on populations 
with European ancestries (Ju et al., 2022), thus limiting the 
portability of polygenic scores to other continental populations. 
For example, polygenic risk scores for schizophrenia derived 
from Eurocentric data were 50% less accurate in predicting risk 
for African and East Asian populations (Vilhjálmsson et al., 
2015). This underrepresentation has led to health disparities 
(Martin et al., 2019), inaccuracies in genetic risk assessment, 
and biased medical recommendations for individuals with 
non-European ancestries (Wojcik et al., 2019). 

Populations with Indigenous ancestries are particularly 
underrepresented in GWAS studies (Ju et al., 2022; Kang 
and Ruderfer, 2020). As of 2021, the estimated number of 
Indigenous individuals from countries other than the United 
States and Canada was 57.7 million, that is, 9.8% of the 589.2 
million inhabitants of these countries (CRS Report, 2023). In 
addition, the estimated number of Indigenous individuals in 
the United States and Canada in 2021 was 4.3 million (US 
Census Bureau, 2022) and 1.8 million (Canada Census, 2021), 
respectively. Indigenous and admixed non-Indigenous people 
represent roughly 0.81% and 7.5% of the world population 
(United Nations Report, 2022), respectively. However, only 
0.03% and 3.85% of GWAS studies have been performed on 
these populations, respectively (Ju et al., 2022). Moreover, 
to my knowledge there are only a few GWAS performed on 
Indigenous populations from the United States (Malhotra et 
al., 2011; Hanson et al., 2014; Brown et al., 2017; Peng et 
al., 2019; Ramirez-Luzuriaga et al., 2024) and none from 
Canada. In conclusion, the inclusion of Indigenous and 
admixed non-Indigenous populations in large-scale GWAS 
holds significant potential to uncover risk variants specific to 
Indigenous populations that can impact hundreds of millions of 
people. Figure 1 depicts the geographic location of populations 
whose Indigenous genetic diversity has been associated with 
complex diseases. Table 1 summarizes the genetic factors 
associated with complex diseases and traits.

Regarding the genetic risk of particular ancestry groups, 
including populations with Indigenous ancestries, our current 
understanding is derived from GWAS studies following three 
general cohort designs: (i) within-population analyses on 
a particular ancestry group; (ii) cross-population analyses 

involving different ancestry groups, whereby variant effect 
sizes are estimated separately in each group; and (iii) analyses 
on admixed populations with ancestry from two or more 
groups, where global (i.e., individual) and in some cases 
local (i.e., per variant-wise) genetic ancestries are modeled 
as covariates. In addition, independent association studies 
based on one or more of the aforementioned designs can be 
aggregated in large-scale meta-analyses.

Categories of complex diseases

Infectious diseases

On the American continent, infectious diseases such 
as tuberculosis, influenza and COVID-19 are usually more 
prevalent in Indigenous groups compared to other ancestries 
(Rojas, 2007; Tollefson et al., 2013; Soto-Cabezas et al., 
2022; Freitas Vaz et al., 2024), largely due to socio-economic 
disparities (Lee et al., 2023). The role of genetic ancestry 
in infectious disease risk is unclear, as socio-economic 
and environmental factors are often unassessed in genetic 
studies and correlate with genetic ancestry among Indigenous 
descendants. However, a few studies have found ancestry 
effects by accounting for socio-demographic factors. For 
example, among Peruvians from Lima, who in average have 
a proportion of 80% of Indigenous ancestries, there was a 
threefold increase in tuberculosis (TB) risk between individuals 
with the most and least Indigenous ancestries (Asgari et al., 
2022). This effect was mostly driven by gene expression 
regulation, as revealed by ~800 Indigenous-specific expression 
quantitative trait loci (eQTLs) for TB immune response 
(Supplementary Table 2 from Asgari et al., 2022). Another 
study from the same group identified a single locus within 
an enhancer region that possibly alters monocyte function 
through the action of ATP1B3 gene (Luo et al., 2019). 

If higher proportions of some Indigenous ancestries 
have an effect on susceptibility for TB, it is possible that 
genetic diversity at key immune loci could play a role. 
For example, human leukocyte antigen (HLA) and killer-
cell immunoglobulin-like receptors (KIR) genes have the 
lowest genetic diversity among Amazonian Indigenous 
populations compared to many worldwide populations (de 
Brito Vargas et al., 2022), which could translate in a less 
diverse immune repertoire. Arguably, this low genetic diversity 
might have resulted from lower effective population sizes 
among Indigenous groups compared to the other continental 
populations (Wang et al., 2007). 

Overall, additional studies with proper sample sizes and 
which account for socio-economic status are needed to attest 
whether or not genetic ancestry has an effect on susceptibility 
to some infectious diseases. These studies would also be 
important to identify more infectious disease-associated loci, 
as well as the distribution of their effects and phenotypic 
consequences.
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Figure 1 - Complex diseases affecting present-day populations with Indigenous ancestries. Map showing diseases or medical conditions (represented by 
icons) affecting Indigenous and admixed non-Indigenous populations throughout the American continent.
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Population Region Disease/Trait Gene(s)/Ancestry Reference

Indigenous American continent Lower LDL cholesterol Indigenous ancestries Acuña-Alonzo et al. (2010) 
Sohail et al. (2023)

Admixed USA, Mexico, Peru, Chile, 
Argentina

Systemic lupus 
erythematosus

IRF5/TNPO3 Alarcón-Riquelme et al. (2016)
Langefeld et al. (2017)

Tsimshian Canada (British Columbia) Smallpox HLA-DQA1 Lindo et al. (2016)

Indigenous USA (Arizona) Pubertal traits NUDT3, PACSIN1 Ramirez-Luzuriaga et al. 
(2024)

Indigenous USA (California) Alcohol use disorders PRKG2, FSTL5 Peng et al. (2019)

Pima USA Type 2 diabetes DNER Hanson et al. (2014)

Pima USA Chronic renal disease BCL2L11 Brown et al. (2017)

Admixed USA Chronic renal disease BCL2L11 Brown et al. (2017)

Admixed USA (California) Acute lymphoblastic 
leukemia

PDE4B, Indigenous 
ancestries

Yang et al. (2011)

Admixed USA Mexicans USA Short stature Indigenous ancestries Spear et al. (2020)

Admixed USA Mexicans USA High triglyceride & glucose 
levels (metabolic disorders)

Indigenous ancestries Spear et al. (2020)
Ko et al. (2014)

Admixed USA Mexicans USA Type 2 diabetes in obese 
women

Indigenous ancestries Hu et al. (2015)

Indigenous Mexico Lung function Indigenous subancestry 
(West-East cline)

Moreno-Estrada et al. (2014)

Indigenous Mexico Neuromyelitis optica HLA Romero-Hidalgo et al. (2020)

Mayan, Tojolabal Mexico Shorter stature than 
Northern Mexico

Indigenous subancestry Sohail et al. (2023)

Mayan, Tojolabal Mexico Higher triglyceride 
& glucose levels than 

Northern Mexico

Indigenous subancestry Sohail et al. (2023)

Mazateco Mexico Systemic lupus 
erythematosus

IRF5 Reddy et al. (2007)

Admixed Mexico Lower HDL cholesterol ABC1*C230, Indigenous 
ancestries

Spear et al. (2020) Sohail et 
al. (2023)

Admixed Mexico, USA Type 2 diabetes SLC16A11 Williams et al. (2014)
Romero-Hidalgo et al. (2020)

Admixed Puerto Rico Lung function SLIT3, Indigenous 
ancestries

Lee et al. (2020)

Admixed Central America (El 
Salvador, Guatemala, 
Honduras, Nicaragua)

Type 2 diabetes EPHB1, KY; Indigenous 
ancestries

Horimoto et al. (2022)

Admixed Peru (Lima) Pulmonary Tuberculosis ATP1B3, Indigenous 
ancestries; eQTLs

Luo et al. (2019)
Asgari et al. (2022)
Nathan et al. (2022)

Admixed Peru (Lima) Short stature FBN1 Asgari et al. (2020)

Aymara-Quechua-Uro Peru (Puno) Preeclampsia PROZ, F7, F10 Nieves-Colón et al. (2022)

Admixed Chile Newborn death due to 
pregnancy disorders

Indigenous subancestry 
(Aymara-Quechua)

Koenigstein et al. (2021)

Admixed Chile Gallbladder disease ACBG8, Indigenous 
subancestry (Mapuche)

Bustos et al. (2019)

Admixed Chile Gallbladder, stomach & 
esophagus cancers

Indigenous subancestry 
(Mapuche)

Lorenzo-Bermejo et al. (2017)

Admixed Chile Early pubertal onset Indigenous subancestry 
(Mapuche)

Vicuña et al. (2021)
Vicuña et al. (2023)

Admixed Chile Pulmonary diseases Indigenous subancestry 
(Mapuche)

Lorenzo-Bermejo et al. (2017)

Admixed Chile, Peru, Brazil, 
Colombia, Mexico

Nose morphology EDAR, PAX3, DCHS2, 
SUPT3H/RUNX2, GLI3, 

PAX1; Mapuche subancestry 
relative to Central Andean 

subancestry

Adhikari et al. (2016) 
Bonfante et al. (2021)

Chacón-Duque et al. (2018)

Table 1 - Genetic factors affecting diseases and traits in populations with Indigenous ancestries. Populations are sorted from north to south along the 
American continent. 
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Autoimmune diseases

Systemic lupus erythematosus (SLE) is an autoimmune 
disease with a high heritability (~66%), according to a twin 
study (Lawrence et al., 1987). Compared with European 
ancestries, increases in the proportion of Indigenous ancestries 
correlate with an earlier SLE onset. However, as SLE morbidity 
has been shown to correlate with lower socio-economic status, 
it cannot be ruled out that socio-economic factors also affect 
SLE onset (Sánchez et al., 2012). Differences in genetic 
susceptibility for SLE between populations with Indigenous 
and European ancestries might be explained at least in part 
by differing allele frequencies at genes involved in SLE risk. 
One example pertains to IRF5, a transcription factor with key 
roles in the innate immune response (Reddy et al., 2007). A 
case–control association study on the IRF5 gene found the 
strongest association with SLE at the risk allele rs2070197-C. 
This variant allele has a substantially higher frequency in the 
Indigenous Mazateco from Mexico than in admixed Mexicans, 
and it is also higher in the latter group than in populations 
with European ancestries (Reddy et al., 2007). Similarly, a 
GWAS performed on a multi-national cohort with enriched 
Indigenous ancestries from Argentina, Chile, Peru, Mexico, 
and the United States captured the strongest hit at a region 
mapping IRF5 and its neighboring gene TNPO3 (Alarcón-
Riquelme et al., 2016). Importantly, a large-scale transancestry 
GWAS replicated the IRF5/TNPO3 signal as the top hit for 
admixed non-Indigenous individuals, but not for individuals 
with European nor African ancestries; in these ancestries 
the top associations were HLA variants (Langefeld et al., 
2017). These findings further support the hypothesis that 
inter-population differences in SLE genetic risk are partially 
due to differences in allele frequencies.

Another autoimmune disease that has been linked to 
Indigenous ancestries is neuromyelitis optica, a disease of the 
central nervous system that affects the optic nerve and spinal 
cord. A case–control GWAS study on admixed Mexicans 
showed that affected individuals had a higher proportion of 
Indigenous ancestries than healthy controls. Specifically, HLA 
variants comprised the strongest associated GWAS loci, all 
of which had increased means of local Indigenous ancestries 
(Romero-Hidalgo et al., 2020). These observations contribute 
to the idea that among Indigenous descendants, genetic 
diversity of the HLA region contributes to the development 
of the disease.

Metabolic diseases

Increases in proportions of Indigenous ancestries seem to 
correlate with higher levels of lipid-related traits and diseases, 
at least in Mexicans (Acuña-Alonzo et al., 2010; Ko et al., 
2014; Hu et al., 2015; Huerta-Chagoya et al., 2020; Spear et 
al., 2020; Sohail et al., 2023). However, as mentioned before, 
genetic ancestry usually covaries with environmental factors, 
such as socio-economic status (Sohail et al., 2023), making 
the genetic component difficult to disentangle—occasionally, 
genetic and environmental factors act in opposite directions, 
obscuring disease associations altogether. Among admixed 
Mexicans, higher proportions of Indigenous ancestries associate 
with higher waist to hip ratio, triglyceride levels, glucose 
levels (Spear et al., 2020), and risk for type 2 diabetes (T2D) 

among obese women (Hu et al., 2015), but also with lower 
LDL cholesterol levels (colloquially called bad cholesterol) 
(Sohail et al., 2023). However, a case–control GWAS for T2D 
performed in Mexicans and in an admixed non-Indigenous 
cohort from the United States identified an association for 
the solute carrier gene SLC16A11, at a variant that increases 
intracellular triglyceride levels. Interestingly, the risk allele 
has a frequency of 0.5 in Indigenous populations, at least five 
times higher than in other continental ancestries (Williams et 
al., 2014). Further, higher Indigenous ancestries are associated 
with lower HDL cholesterol in 80% of Indigenous populations 
from the American continent (Acuña-Alonzo et al., 2010), 
thus increasing their collective risk of cardiovascular disease. 
HDL, usually referred to as good cholesterol, is the lipoprotein 
that removes cholesterol from the blood and transports it back 
to the liver. This association may be partially explained by 
a variant in the ABCA1 transporter gene, which has a key 
function in the biosynthesis of HDL. The ABC1*C230 allele 
is found exclusively in Indigenous groups and shows the 
strongest association with low HDL among Pima from North 
America’s Southwest and Mayans from Central America 
(Acuña-Alonzo et al., 2010; Hünemeier et al., 2012). However, 
when all these Indigenous groups are considered together and 
environmental covariates like socio-cultural factors and diet 
are included, the genetic association with low HDL does not 
reach the genome-wide association threshold (Sohail et al., 
2023). This suggests that the aforementioned environmental 
factors, and/or possibly an ancient selection event acting at 
this locus (Hünemeier et al., 2012), are responsible for the 
lack of significant associations. We see a similar interplay 
between genetics and environment with BMI among admixed 
Mexicans. Runs of homozygosity, which correlate with lower 
genetic diversity and are more frequent in Indigenous groups, 
including those from Mexico, are associated with lower 
BMI (Sohail et al., 2023). However, urban environments are 
associated with higher BMI in admixed Mexicans. We see the 
same correlation for Indigenous people from Mexico, but only 
when they live in urban environments (Sohail et al., 2023). 
These findings suggest that if there are genetic risk variants of 
metabolic diseases among Indigenous groups from Mexico, 
these variants need to interact with the urban environment 
(e.g. diet, sedentarism) for obesity to be triggered (Sohail et 
al., 2023). Taken together, these studies suggest that while 
genetic factors might contribute to disease risk, environmental 
factors have a profound effect on cardiovascular disease in 
Indigenous populations. 

In addition to lipid dysregulation, T2D is a significant 
concern among many Indigenous populations. While modern 
Western dietary trends likely have a significant influence on 
the wide-spread development of T2D, recent studies have also 
uncovered genetic factors unique to Indigenous populations 
that may contribute to susceptibility. In a cohort of Central 
American heritage (El Salvador, Guatemala, Honduras, 
Nicaragua) from the United States, an admixture mapping study 
—associations between a trait and the per SNP-wise mean 
local ancestry along the genome— identified an haplotype 
block harboring the multifunctional KY and EPHB1 genes, 
where Indigenous ancestries conferred increased risk for T2D, 
after accounting for socio-demographic variables (Horimoto 
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et al., 2022). The Indigenous Pima have one of the highest 
incidences of T2D in the world (Schulz and Chaudhari, 
2015), and part of this risk might be affected by genetic loci, 
as suggested by a GWAS study, which identified a DNER 
gene risk variant associated with T2D. DNER encodes a 
growth factor that mediates signaling in the insulin-secreting 
pancreatic ß-cells (Hanson et al., 2014). A related GWAS for 
BMI on the same population identified several associations, 
but none reached the genome-wide significance threshold 
(Malhotra et al., 2011). These two GWAS were not adjusted 
for socio-economic factors. Thus, while the results suggest that 
Indigenous populations may be more genetically susceptible to 
the negative effects of the modern Western diet on metabolic 
function, this hypothesis needs to be tested by rigorously 
assessing the contribution of environmental factors. 

Cancer

Increased proportions of Indigenous ancestries have been 
associated with an increased incidence of certain cancers. A 
genome-wide study performed in a cohort from California, 
showed that higher individual proportions of Indigenous 
ancestries, as well as a higher mean of local Indigenous 
ancestries at PDE4B variants, were associated with higher 
recurrence of acute lymphoblastic leukemia. However, as noted 
by the authors, the effect of environmental, socio-economic, 
and dietary factors in these associations cannot be ruled out 
(Yang et al., 2011).

Indigenous subancestries might have opposite effects 
on some kinds of cancers. A genetic epidemiology study 
based on aggregated data, performed associations between 
regional proportions of Indigenous subancestries in admixed 
Chileans and their mortality rates due to several cancers, 
adjusting for individual socio-economic variables (Lorenzo-
Bermejo et al., 2017). The most striking finding was the strong 
positive association between Mapuche subancestry (Northern 
Patagonia lowlands) and mortality risk for gallbladder cancer; 
specifically, a 3.7% increased mortality per 1% increase in 
Mapuche subancestry. Nevertheless, hitherto no variant has 
achieved a genome-wide association with gallbladder cancer 
among Mapuche ancestry-bearing populations. However, 
in admixed Chileans a ACBG8 gene variant is associated 
with gallbladder disease, which is the main risk factor for 
gallbladder cancer (Bustos et al., 2019). The same study from 
Lorenzo-Bermejo et al. (2017) reported that while Mapuche 
subancestry is associated with increased mortality rates due to 
esophagus and stomach cancer, Aymara subancestry (Central 
Andes highlands) has a protective effect for these cancer 
types. In addition, the mortality rate due to skin, bladder, 
larynx, bronchus, and lung cancers decreases with augmented 
Mapuche subancestry proportions. While the findings on 
subancestry differences in mortality rates are promising for 
health policies targeting particular ethnic groups, they need to 
be validated using individual paired genetic-phenotypic data.

Pulmonary diseases

As with cancer, Indigenous subancestries also seem 
to have contrasting effects on pulmonary disease outcomes. 
While Mapuche subancestry among admixed Chileans is 
associated with increased mortality due to asthma, pneumonia, 

and chronic lower respiratory diseases, Aymara subancestry 
appears to have a protective effect (Lorenzo-Bermejo et al., 
2017). It is possible that positive selection among the Aymara 
for physiological traits enabling life at the high altitudes of 
the Andes Mountains, such as hypoxia and cardiovascular 
function (Crawford et al., 2017), might have contributed to 
these differences. Among Mexicans, Indigenous subancestry 
from the western states of the country (e.g., Sonora) associates 
with a 7% change in lung function (i.e., severity of obstructive 
lung diseases) compared with the eastern states (e.g., Yucatán) 
(Moreno-Estrada et al., 2014). In a cohort of ~5,500 admixed 
individuals with African, European, and Indigenous ancestries 
recruited in the United States, Indigenous ancestries associated 
with lower odds of asthma, after adjusting for early life 
exposures, air pollution and socioeconomic status (Pino-
Yanes et al., 2015). An admixture mapping study performed 
on admixed Puerto Ricans identified a chromosomal region 
where each Indigenous allele was associated with an increase 
in lung function. The lead SNP mapped the tumor suppression 
SLIT3 gene (Lee et al., 2020). It remains to be determined 
which genetic and non-genetic variables contribute the most to 
such fine-scale differences in lung function among Indigenous 
subancestries.

Renal diseases

Chronic kidney disease (CKD) is a serious condition 
characterized by kidney damage and impaired ability to 
filter waste from the blood. In Central American countries 
with high Indigenous heritage like Nicaragua, Costa Rica, El 
Salvador, and Guatemala, CKD is highly prevalent (Horimoto 
et al., 2022). Also, in the United States the prevalence of 
CKD among Indigenous populations is double that of other 
ethnic groups. An admixture mapping study of albuminuria—
increased albumin excretion, which is a sign of kidney 
damage—performed on ~12,000 admixed individuals with 
sociodemographic assessment, identified two signals enriched 
in Indigenous ancestries associated with increased urine 
albumin excretion. One of them harbors a variant mapping the 
BCL2L11 gene, which has putative roles in kidney function 
and disease. Interestingly, the associated allele has a frequency 
higher than 0.5 among the Indigenous Pima but is non-existent 
in European and African populations (Brown et al., 2017). 
A similar admixture mapping study from the same group 
performed on a cohort of Central American origin identified a 
haplotype spanning the RGS6 gene, whereby the allele enriched 
in Indigenous ancestries has protective effects for albuminuria 
over the allele enriched in European ancestries (Horimoto et 
al., 2022). These results suggest that at least part of the genetic 
diversity of Indigenous populations underlies specific effects 
on susceptibility or protection to kidney diseases.

Neuropsychiatric disorders

Indigenous ancestries appear to confer a reduced risk of 
developing Alzheimer’s disease, as suggested by genetic studies 
in admixed Brazilians (Benedet et al., 2012), Colombians 
(Moreno et al., 2017), and admixed Caribbean individuals 
(Horimoto et al., 2021). An admixture mapping study in the 
latter population found that an excess of Indigenous ancestries 
at a region harboring five protein-coding genes, associated with 
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a protective effect against Alzheimer’s disease risk. Within 
that region, one variant allele mapping the DUBR gene was 
associated with a reduced risk for Alzheimer’s disease in 
individuals with European ancestries (Horimoto et al., 2021). 
DUBR encodes a long noncoding RNA (lncRNA) implicated 
in brain development and function (Huang et al., 2022). 

Alcohol dependence has a relevant genetic component, 
with an estimated heritability of 50%, according to twin and 
adoption studies (Verhulst et al., 2015). Epidemiological 
data suggests that some Indigenous groups are more prone 
to alcohol use disorders than other populations (Ehlers and 
Gizer, 2013). As of 2005, alcohol dependence rates were 
5-6 times higher among Indigenous people from the United 
States compared to other United States ethnic populations 
(Ehlers and Wilhelmsen 2005). To (partially) explain these 
observations, Ehlers and Gizer (2013), hypothesized a scenario 
of gene-by-environment interaction, whereby the disorder’s 
morbidity is increased by the exposure of genetic risk variants 
to certain environments, such as low socio-economic status and 
historical trauma, that are more common among Indigenous 
populations than in other populations. 

A GWAS study for alcohol dependence performed 
on an Indigenous cohort from California, as well as on a 
cohort of European ancestries revealed a few associations. 
While common variants in the uncharacterized FSTL5 gene, 
associated with alcohol consumption in the population with 
European ancestries, rare variants in FSTL5 and PRKG2 genes 
associated with alcohol-related life events and with affective 
symptoms when cutting down alcohol only in the Indigenous 
group (Peng et al., 2019). Interestingly, PRKG2 has been 
associated with obesity-related traits in diverse worldwide 
populations (Peng et al., 2019), suggesting that variants that 
favor food intake might favor alcohol consumption as well 
(Ehlers and Gizer, 2013). While these results are promising, 
the effect of specific variants need to be formally tested in 
an admixed cohort, controlling for environmental differences 
between ancestries.

Pregnancy disorders

Preeclampsia is a medical pregnancy condition that 
causes 40% of all premature births, and is characterized by 
high blood pressure as well as signs of liver or kidney damage. 
The risk for preeclampsia increases in high altitude regions for 
all ancestries. However, women from Puno—located ~3,800m 
above sea level in the Peruvian Andes and inhabited by 
Quechua, Aymara, and Uro Indigenous populations—exhibit 
one of the highest incidences of preeclampsia in the world, 
suggesting the susceptibility may have a genetic component 
in this population. A parent–offspring trio GWAS study among 
Puno residents found that common genetic variants mapping 
the clotting factor genes PROZ, F7, and F10 in the fetal 
genome increase susceptibility to preeclampsia among these 
women (Nieves-Colón et al., 2022). Future studies will help 
understand whether genetic diversity also underlies risk for 
preeclampsia in other high-altitude populations worldwide.

Indigenous populations show the lowest genetic diversity 
worldwide (Wang et al., 2007), and some of them exhibit large 
runs of homozygosity (Koenigstein et al., 2021), which may 
result in a higher incidence of birth defects and other diseases. 

A genetic epidemiology study performed on admixed Chileans, 
found that runs of homozygosity and Aymara subancestry are 
associated with increased risk of child mortality due to natural 
intracranial hemorrhage of fetuses and newborns as well as 
to related gestation disorders (Koenigstein et al., 2021), after 
correcting for several socio-economic/education variables. 
However, this study did not use paired genetic-phenotypic 
data. It remains to be determined whether or not these disease 
outcomes are similar in other worldwide populations with 
similar inbreeding levels.

Anthropometric traits
Stature is a polygenic trait explained by the contribution 

of thousands of variants (Yengo et al., 2022), each exerting 
small effect sizes. In the population of Lima, Peru, which as 
mentioned before has on average 80% Indigenous ancestry 
and is among the world’s shortest populations, 700 variants 
explain 7% of the variance in height (Asgari et al., 2020). 
However, in this population, a single missense variant allele 
in the FBN1 gene accounts for 1% of the total height. Hence, 
one person carrying a single copy of that allele is 2.2 cm 
shorter on average than people carrying the alternative allele 
(Asgari et al., 2020). FBN1 encodes an extracellular matrix 
protein fibrillin-1, which provides mechanical stability to 
tissues. While candidate genes were not sought, another 
study found the composition of Indigenous ancestries may 
have an effect on height: subancestry from Central America 
(Oaxaca, Maya) is associated with a shorter stature relative 
to subancestry from Northern Mexico (Huichol, Tarahumara) 
(Sohail et al., 2023). This is another case where quantitative 
genetics analyses can detect subtle effects of Indigenous 
subancestries over a phenotype.

When comparing the effect of ancestry on facial traits 
in admixed populations from Brazil, Chile, Colombia, 
Mexico, and Peru, the strongest correlation (opposite effects 
in Indigenous vs. European ancestries) was found for a measure 
of nose position (Bonfante et al., 2021). A related GWAS 
performed in the same cohort identified six SNPs associated 
with nose shape, mapping the genes EDAR, PAX3, DCHS2, 
SUPT3H/RUNX2, GLI3, and PAX1 to the trait (Adhikari et al., 
2016). In a further study on the same sample it was found that 
Mapuche subancestry strongly associates with a less protruded 
nose and broader nose-tip angle when contrasted with Central 
Andean ancestries (Quechua, Colla, and Aymara populations 
pooled together). Further, SNP alleles associated with these 
features show differences in their frequencies between these 
subancestries (Chacón-Duque et al., 2018).

Abnormal pubertal growth is associated with adult 
risk for cancer, diabetes and cardiometabolic disorders. 
Pubertal growth variability has a strong genetic component. 
In an Indigenous population from Arizona, it was found that 
the heritability of pubertal traits is between 25% and 71% 
(Ramirez-Luzuriaga et al., 2024). Also, genetic ancestry 
underlies variation in pubertal traits. Two studies based on 
the same admixed longitudinal pediatric cohort, quantified 
how growth traits differ in predicted individuals with 100% 
Mapuche versus 100% European ancestries. The first study 
(Vicuña et al., 2021) analyzed the peak height velocity, which 
is the period where maximum rate of growth occurs during 
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puberty. The authors predicted that the age at peak height 
velocity is 0.7 years earlier in adolescents with exclusively 
Mapuche ancestry versus exclusively European ancestries. 
However, the study did not correct for individual socio-
economic status. The second study, which did account for 
maternal education level, a proxy for socio-economic status, 
analyzed child growth, by focusing on longitudinal BMI 
(Vicuña et al., 2023). BMI was higher in children with 
exclusively Mapuche ancestry at all ages older than 6 years 
old when compared with children with exclusively European 
ancestries. Further, the age at adiposity rebound (Age-AR)—
the age when the minimal BMI is reached during childhood 
growth—was lower by 1.9 years, and the BMI at Age-AR was 
higher by 1.2 kg/m2 in children with exclusively Mapuche 
ancestry versus exclusively European ancestries. These results 
suggest that Mapuche children have an earlier pubertal onset 
than children with European ancestries, which can be explained 
in part by differences in genetic diversity. A recent GWAS 
study performed on an Indigenous population from Arizona, 
identified six variants associated with peak height velocity and 
two with the duration of growth spurt (Ramirez-Luzuriaga et 
al., 2024). The associated genes include NUDT3 and PACSIN1, 
whose role in puberty is unknown. However, since there are 
only a few longitudinal studies on puberty, it cannot be attested 
if these associations are specific to Indigenous populations. 

Evolutionary causes of genetic risk among 
Indigenous populations

The first Indigenous Americans entered the North 
American continent no earlier than 23,000 years ago (Raghavan 
et al., 2015). Within a few millennia they reached virtually all 
corners of North, South, and Central America (Figure 2A). 
During their journey, they experienced complex demographic 
events including founder events and population admixture. 
Also, since arriving in the American continent, the genomes 
of Indigenous populations have been shaped by their local 
environments. This began in the ancestors of all Indigenous 
people, leading to shared signatures of selection across the 
continent. For example, variant alleles of Denisovan origin in 
the immune-related MUC19 gene helped ancient Indigenous 
populations to adapt to local selective pressures (Villanea et al., 
2023). Populations then adapted to their local environments, 
including selection to high levels of inorganic arsenic in 
water among Andean populations from Argentina (Collas, 
Calchequíes) (Schlebusch et al., 2015); cardiovascular function 
among high-altitude Aymara from Bolivia (Crawford et al., 
2017); TB infection among Ecuadorian highland populations 
(Joseph et al., 2023); parasitic infections among Amazonian 
groups from Brazil (Couto-Silva et al., 2023); as well as 
changing diets among ancient Mesoamericans (Hünemeier 
et al., 2012). Selection continued in response to changing 
environmental conditions. For example, the introduction of 
European pathogens likely imposed strong selection across the 
American continent, causing genetic adaptation in Indigenous 
populations (Lindo et al., 2016) (Figure 2A). Moreover, 
assortative mating conditioned on ancestry-related traits 
left footprints in the genomes of admixed populations from 
the American continent (Mas-Sandoval et al., 2023). The 
cumulative effects of these selective events, genetic drift, as 

well as genetic forces such as mutation, recombination, and 
gene conversion, have led to broad differences in disease 
susceptibility across the American continent, as well as 
between Indigenous descendants and individuals from other 
parts of the world.

The precise evolutionary events leading to genetic risk 
are unknown for most diseases, including those affecting 
Indigenous populations. However, there are a few instances 
where these events have been inferred and contextualized, 
mostly as trade-offs between fitness advantages conferred 
by positive selection acting over target traits in ancestral 
groups, and fitness costs associated with increased genetic 
risk at causal, linked, and pleiotropic loci (i.e., loci affecting 
many traits simultaneously) (Figure 2B). 

For example, selection on the HLA locus appears to 
have favored HLA-DQA1 among the Indigenous Tsimshian 
from the Canadian Pacific Northwest before the encounter 
with Europeans. HLA-DQA1 alleles were fixed in pre-contact 
Tsimshian as a result of positive selection, most likely to 
pathogens endemic to that region. However, population 
genetics analyses showed that after the introduction of 
smallpox from Europe, some of these alleles drastically 
decreased in frequency (as low as 0.37) as a result of negative 
selection (Lindo et al., 2016). Thus, this example highlights 
how an increased genetic risk for infectious diseases among 
Indigenous populations might result from prior positive 
selection acting on immune variants during environmental 
(i.e., pathogenic) change (Figure 2B). 

Trade-off hypotheses posit adaptations to famine at 
genes involved in lipid metabolism among ancient Indigenous 
populations at the cost of increased risk for dyslipidemias in 
modern descendants (Ko et al., 2014) [see Neel’s thrifty gene 
hypothesis (Neel 1962)] (Figure 2B). Some Indigenous groups 
from North America seem to have a higher general risk to 
obesity and lipid-related disorders (i.e., dyslipidemias) than 
other populations (Breathett et al., 2020; Huerta-Chagoya et 
al., 2020). Interestingly, admixed Mexicans show Indigenous-
specific positive selection signals at a haplotype region 
harboring the salt-inducible kinase 3 (SIK3) gene (Ko et 
al., 2014). The selected SIK3 haplotype is associated with 
high triglyceride levels in Mexicans, but not in a European 
population, as suggested by an allele frequency of less than 
0.01 in the latter group. Similarly, evidence suggests that 
the Indigenous-specific ABC1*C230 allele, which favors the 
retention of intracellular cholesterol, experienced a selection 
event in an ancient Indigenous population (Acuña-Alonzo et 
al., 2010; Hünemeier et al., 2012).

There are other hypotheses of putative trade-offs 
involving food metabolism. A risk variant allele at the gene 
SLC16A11 that increases T2D risk in Indigenous populations, 
introgressed into modern humans via admixture with 
Neanderthals (SIGMA Type 2 Diabetes Consortium et al., 
2014). However, it is unknown whether that risk allele 
conferred selective advantages to the Neanderthal ancestors 
or human ancestors of present-day Indigenous populations. 
Another hypothesis posits a higher susceptibility for eating 
behavior among Indigenous populations, which would be 
pleiotropically linked with a higher genetic susceptibility to 
alcohol abuse disorders (Ehlers and Gizer, 2013). This effect 
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Figure 2 - Adaptations experienced by ancient Indigenous groups during the peopling of the American continent. A. Representative examples of adaptations 
experienced by some populations. Arrows represent approximate migration routes of ancient Indigenous populations and arrow colors represent different 
lineages. Adapted from Posth et al. (2018). B. Hypotheses for trade-offs between past adaptations leading to diseases in the present. Scales represent the 
trade-offs between present day diseases and past adaptations.
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would be mediated by variants involved in both traits, such as 
PRKG2 variants (see GWAS findings on PRKG2 mentioned 
above) (Peng et al., 2019). However, this hypothesis is only 
supported by indirect evidence.

Trade-offs might also exist between selective advantages 
provided by early pubertal onset and diseases occurring later in 
life (Figure 2B). In pygmy groups, early pubertal onset might 
be favored to achieve higher reproductive rates in conditions 
of short lifespans and resource availability (Migliano et al., 
2007), and positive selection favoring early pubertal onset 
might play a role here. Interestingly, the Indigenous Hiwi from 
northern South America are well known for their significantly 
higher pre-pubertal growth and earlier pubertal onset compared 
to other groups (Walker et al., 2006). Also, they exhibit short 
lifespans (e.g., as of 2006, life expectancy at age 15 was 
36 years). On the other hand, early puberty can exacerbate 
disease risk for several diseases in adulthood, including breast 
and endometrial cancer, T2D, cardiovascular diseases, and 
psychopathologies (Graber, 2013); (Day et al., 2015; 2017). 
Even though there is no epidemiological data comparing early 
puberty-triggered adulthood diseases between the Hiwi and 
other continental groups, there is evidence for such diseases 
in other Indigenous groups. For example, among Indigenous 
males from Arizona, an earlier and accelerated pubertal onset 
was associated with a higher risk for T2D (Ramirez-Luzuriaga 
et al., 2023). Also, two genetic studies mentioned earlier 
showed that Mapuche subancestry leads to an earlier pubertal 
onset compared to European ancestries (Vicuña et al., 2023, 
2021); however, it is not known whether this is the result of 
positive selection or drift, nor whether this phenomenon has 
been linked to adult diseases among them. In summary, it is 
possible that some diseases among Indigenous groups arise as 
a consequence of early puberty, resulting from an adaptation 
to short life spans; however, this hypothesis is speculative and 
would need to be tested.

Future directions
Many of the disease risk variants have been identified 

via GWAS based on relatively small cohorts genotyped on 
SNP arrays, which capture a modest fraction of the genetic 
architecture of complex diseases. Hence, bigger sample sizes 
and deeper sequence coverage are needed to estimate the 
effect of common variants, which should be independent of 
the population (Hou et al., 2023), as well as to capture the 
effect of rare variants unique to Indigenous populations. Some 
initiatives are addressing these gaps through the assembly 
of relatively large cohorts and/or biobanks, such as Maule 
Cohort in Chile (MAUCO) (Ferreccio et al., 2020), Estudo 
Longitudinal de Saúde do Adulto (ELSA) in Brazil (Schmidt 
et al., 2015), and the Mexican Biobank project (Sohail et 
al., 2023). Association studies in these populations promise 
to identify variants associated with disease in Indigenous 
populations. 

However, association studies are only one piece to 
identifying causal genetic variants involved in complex diseases 
that affect populations with Indigenous ancestries. Mapping 
of molecular quantitative trait loci (mQTLs) holds enormous 
potential for disentangling the functional architecture of these 
diseases. Thanks to QTL mapping we know that, in addition to 

~10% of GWAS hits mapping variants producing changes in 
amino acids (Hindorff et al., 2009), ~40% of GWAS hits are 
associated with the expression (eQTLs) and splicing (sQTLs) 
levels of particular genes (Mu et al., 2021). An additional 
~25% GWAS hits mediate epigenetic regulation through their 
effects on chromatin accessibility (caQTLs) (Zepeng Mu, 
unpublished data through personal communication), leaving 
25% of GWAS hits uncharacterized. 

Fully understanding the causal variants and biological 
pathways involved in complex diseases affecting Indigenous 
populations also requires in depth functional characterization 
using experimental models. For example, expression regulation 
of the FTO gene, a classic gene involved in obesity risk, was 
thoroughly characterized in adipocytes and brain neurons using 
functional genomics approaches, leading to key conclusions 
about pleiotropy in the context of obesity (Sobreira et al., 
2021). 

More generally, the implementation of high throughput 
methods, such as single-cell sequencing and genome editing, 
is key to identifying genetic variants likely to be functionally 
important, such as those underlying molecular QTLs. This is 
particularly relevant to capture inter-population differences in 
disease risk, given that most of these differences are expected 
to arise as a result of slight differences in gene regulation 
across multiple tissues (Watanabe et al., 2019). 

Finally, and maybe most importantly, genetic research 
involving Indigenous populations raises significant ethical 
considerations due to historical injustices, cultural sensitivities, 
and the potential for exploitation (Claw et al., 2018). Thus, 
fostering ethical partnerships and engagement with Indigenous 
communities is key to achieve a higher representation of 
Indigenous populations in genomic studies, which in turn has 
the potential to reduce the risk for certain diseases for which 
they are disproportionately susceptible (Claw et al., 2018). 

Conclusions
The genetic architecture of diseases is poorly understood 

in populations with Indigenous ancestries due to their 
underrepresentation in medical genomic studies. While most 
of the genetic architecture of complex diseases is expected 
to be shared among all human populations, a smaller but 
relevant fraction is expected to vary among continental 
populations, including Indigenous populations. Increases in 
Indigenous genetic ancestries are associated with higher or 
lower susceptibility for certain diseases. However, in some 
cases Indigenous subancestries might also have contrasting 
effects on particular diseases. Indigenous ancestries covary 
with environmental factors such as socio-economic status, 
frequently leading to wrong conclusions about genetic risk 
to complex diseases. The interaction of risk variants with 
an unfavorable environment (e.g., unhealthy diet) is key for 
triggering certain diseases (e.g., metabolic disorders) among 
Indigenous populations. Several findings on higher risk for 
complex diseases among Indigenous groups are based on 
cross-population comparisons, mostly with populations with 
European ancestries. However, it is likely that a substantial 
fraction of such inter-population risk differences is inflated 
because of uncontrolled environmental variables and 
differences in the exact phenotypes assessed across groups 
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(Hou et al., 2023). Future genetic association studies that 
compare effects across Indigenous and non-Indigenous local 
ancestries within admixed individuals are needed to reassess 
many GWAS findings. 
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