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Abstract

The estimation of evolutionary parameters provides essential information for designing public health policies. In 
short time intervals, however, nucleotide substitutions are ineffective to record all complexities of virus population 
dynamics. In this sense, the current SARS-CoV-2 pandemic poses a challenge for evolutionary analysis. We used 
computer simulation to evolve populations in scenarios of varying temporal intervals to evaluate the impact of the 
age of an epidemic on estimates of time and geography. Before estimating virus timescales, the shape of tree 
topologies can be used as a proxy to assess the effectiveness of the virus phylogeny in providing accurate estimates 
of evolutionary parameters. In short timescales, estimates have larger uncertainty. We compared the predictions 
from simulations with empirical data. The tree shape of SARS-CoV-2 was closer to shorter timescales scenarios, 
which yielded parametric estimates with larger uncertainty, suggesting that estimates from these datasets should 
be evaluated cautiously. To increase the accuracy of the estimates of virus transmission times between populations, 
the uncertainties associated with the age estimates of both the crown and stem nodes should be communicated. We 
place the age of the common ancestor of the current SARS-CoV-2 pandemic in late September 2019, corroborating 
an earlier emergence of the virus. 
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Introduction
The evolutionary analysis of virus genomes frequently 

relies on molecular phylogenies, which illustrate the ancestry 
of lineages in tree graphs (Holmes, 2008). When trees are 
rooted, a time direction, implying ancestor-to-descendent 
relationship, is incorporated into phylogenies. Although 
rooted topologies are time-oriented, branch lengths are not 
necessarily proportional to absolute time units (Felsenstein, 
2004). In order to fully incorporate the temporal dimension 
onto trees, divergence times of nodes must be estimated. When 
genetic divergences between genomes are linearly related to 
the age in which genomes shared a common ancestor, this 
task is straightforward (Kumar, 2005). By employing some 
calibration information, a direct linear transformation may 
be readily applied. This is the standard molecular clock, 
in which sequence substitution rates are constant along 
branches and across lineages. However, since the 1970s, 
rate constancy was found to be the exception rather than the 
rule (Langley and Fitch, 1974; Gillespie and Langley, 1979). 
Alternatively, timescales may be inferred by accommodating 
rate variation among lineages (Gillespie, 1991; Kishino et al., 
2001; Bromham et al., 2018). 

Different approaches were proposed to handle rate 
heterogeneity in order to carry out molecular dating of 
sequence divergences.  They can be roughly categorized 
into smoothing methods and methods that employ explicit 

models of substitution rate evolution in a Bayesian framework 
(Thorne et al., 1998; Sanderson, 2002; Drummond et al., 2005; 
Drummond et al., 2006; Smith and O’Meara, 2012). Bayesian 
methods require that probability density distributions are used 
as priors for calculating posterior distribution of parameters. 
For intraspecific population-level virus diversity, node ages 
of phylogenies are probabilistically described by the expected 
waiting times of the coalescent process (Kingman, 1982; Biek 
et al., 2015). Given the extent of the premises adopted, it is 
not surprising that dating of virus timescales is impacted by 
numerous factors (Stadler, 2009; Stadler and Yang, 2013).

One of such factors is the age that the virus population 
is circulating in the host species after the initial infection. 
Although frequently ignored, the age of the circulating virus 
population will affect the sampling strategy required for 
accurate inference of evolutionary parameters. Depending on 
the mutation rate, virus populations that successfully infected 
a new host species may not accumulate enough substitutions 
to allow for phylogenetic inference within a few generations 
after the initial transmission, resulting in branch lengths 
close to zero, and an large number of duplicated sequences 
(Boskova and Stadler, 2020). In a longer timescale, nucleotide 
substitutions shared by allelic lineages arise and the tree-like 
hierarchical relationship between sequences also emerges. 
The absence of the tree-like structure between sequences is a 
consequence of both the mutation rate and the time duration 
of internal branches and not of the coalescent process that 
model virus genealogies, i.e., the lines of descent (Figure 1). 
For instance, an interval between coalescent events of 10 
generations is equivalent to a branch length close to zero 
substitutions/site in reconstructed phylogenies, even assuming 
the elevated mutation rates of RNA viruses.
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Another factor impacting the estimation of virus 
timescales is the mismatch between the virus transmission 
history between populations and the genealogy of virus 
genomes. When transmission events along geographic 
areas take place, the sampling of the genetic diversity of the 
donor virus population is often incomplete and, because of 
the stochasticity of the coalescent process, both the ages of 
common ancestors of genomes and the monophyly of the virus 
genetic diversity in geographic areas is affected (Figure 1). 
This probability of mismatch between both trees (population 
history and gene genealogy) is increased if the time interval 
between transmission events is short and the level of genetic 
diversity is high (Tajima, 1983; Pamilo and Nei, 1988). This 
problem is equivalent to the mismatch between the species 
phylogeny and the gene tree in molecular phylogenetics, which 
is modeled by the multispecies coalescent (Liu et al., 2009; 
Degnan and Rosenberg, 2009), and will impact the estimates 
of the age of the epidemic as well as the recovery of the true 
pattern of the virus spread in space.

The current SARS-CoV-2 pandemic is an example of 
a recent zoonotic transmission, and an increasing number of 
studies has addressed the evolutionary dynamics of the novel 
coronavirus (Boni et al., 2020; Zhou et al., 2020). Despite the 
efforts, the age of the common ancestor of SARS-CoV-2, as 
well as the age of the split between the novel coronavirus and 
its sister lineage, is uncertain. For instance, Boni et al. (2020) 
used alignments free of recombining regions and employed an 
evolutionary rate prior based on MERS-CoV and HCoV-OC43 
substitution rates. The divergence time between SARS-CoV-2 
and RaTG13, its closest sister lineage sequenced so far, was 

estimated at years 1969, 1982, and 1948, depending on the 
genomic region analyzed. However, confidence intervals 
between these inferences were large. Most studies so far places 
the time to the most recent common ancestor (TMRCA) of 
circulating SARS-CoV-2 in November or December 2019, 
although confidence intervals extends from late September 
to late December 2019 (Biggerstaff et al., 2020). Lai et al., 
(2020), compared the performance of strict versus relaxed 
molecular clocks to estimate the age of the common ancestor 
of 52 SARS-CoV-2 sequences, and obtained 18 Nov. of 2019, 
with 95% credibility interval ranging from 10 Sept. 2019 to 28 
Dec. 2019, as the most likely date. Candido et al. (2020) also 
estimated the TMRCA of SARS-CoV-2 in mid-November. Li 
et al. (2020), by analyzing 313 genomes, dated the emergence 
of SARS-CoV-2 in 11 Dec. 2019 (21 Nov. 2019 – 24 Dec. 
2019), which is closer to the estimate of Zhang et al. (2020) 
obtained from 24 genomes (05 Dec 2019 to 23 Dec 2019). 
Moreover, the estimates of the rate of evolution also varied 
between studies, from 7.8 x 10−4 substitutions/site/year (s/s/y) 
(Boni et al., 2020; Lai et al., 2020) to 1.69 x 10−3 (Boni et al., 
2020) and 2.24 x 10−3 s/s/y (Li et al., 2020).

We investigated the extent to which the age of the 
of the virus epidemic affects the inference of evolutionary 
parameters, in order to elucidate whether the discrepancies 
between estimates of SARS-CoV-2 timescales may be caused 
by the stochasticity of coalescent process and the reduced 
genetic diversity in narrow timescales. For the sake of 
comparison and validation of our methodological approach, 
we also investigated empirical data from other viruses that 
circulate in human populations along different timescales. 

Figure 1 – Evolutionary history of four populations (gray areas) and virus genealogies under the coalescent process (solid lines of descent). Grey areas 
delimit each population (A-D), exhibiting their historical relationship and transmission times – population in area B was founded from a single genome 
sampled from area A; populations from areas C and D were founded from genomes sampled from area B at different times. Although spatial relationship 
between populations were the same for all simulated scenarios (10Y, 2Y, 6M, and 1M), sampling times, as well as the age of the root node, i.e., the 
common ancestor, varied accordingly. Within the population tree, a virus genealogy, modeled by the coalescent process depicts the transmission of 
genomes between areas (gene flow), and highlights the difference between the coalescent events of within-population genetic diversity (crown node), 
and between-populations genetic diversity (stem node).
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Our approach compared the predictions from simulations 
with empirical data sets. We simulated sequences under 
different epidemic timescales to provide parametric values 
to be compared with the results from empirical virus datasets 
that exemplify both long-term and short-term epidemic scales. 
Comparisons were carried out using tree shape, as measured by 
the spectral density of tree topologies, which were calculated 
directly from undated maximum likelihood trees.

Material and Methods

Simulation to evaluate the effects of ILS and range of 
sampling time

To demonstrate the impact of the range of sampling 
times on the estimates of evolutionary parameters, we 
evolved sequences under varying evolutionary timescales. 
We incorporated two dimensions in our simulation – time 
and space – by allowing transmissions of lineages into new 
areas (Figure 1). Three parameters were investigated: the age 
of the epidemic (the root node), the ages of the transmission 
events, and geographical association, which are the main 
parameters inferred by most studies of virus evolution, with 
consequences for designing health policies. Our simulations 
were implemented using R scripts and consisted of populations 
that evolved under the standard neutral model, using Wright-
Fisher sampling of haploid individual genes of 1500 bp; this 
sequence length has been shown sufficient to control for the 
effects of nucleotide sampling errors (Yang and Rannala, 
2006). At each generation, which was equal to one day in our 
simulation, sites were mutated at a rate of 3 x 10-8 substitutions/
site under the Jukes-Cantor model. This rate is equivalent 
to a per year rate of 1 x 10-5 s/s, which is the average rate 
for RNA viruses. The effective population sizes were set to 
1000 individuals. Although this value is arguably smaller 
than empirical virus population sizes, it is appropriate for the 
computational demands of forward-time simulations that aim 
to generate tree topology shapes from short-term evolutionary 
dynamics.

All simulations started with a single population at area 
A. After a predetermined number of generations, which varied 
according to the time range in each scenario, a transmission 
event took place and a single allele was transmitted to area 
B. From area B, transmissions events also occurred to areas 
C and D. All transmissions consisted of unique events and 
no recurrent contact between areas were allowed (Figure 1).

This simple simulation allowed the investigation of 
the evolutionary parameters in different epidemiological 
timescales. Four scenarios were investigated by varying the 
total temporal extent of the epidemy, which equaled the age 
of the population from area A. In the first scenario, henceforth 
referred to 10Y, the age of the common ancestor (tmrca) of the 
population from area A was 10 years. The transmission event 
to area B took place 8 years ago, while transmissions from B 
to areas C and D occurred at 6 and one year ago, respectively. 
In the second scenario, 2Y, the common ancestor of population 
A was 2 years old, and the transmission to area B occurred 5 
months later. From population B, transmissions to areas B and 
C took place at 1 year and 6 months ago, respectively. In the 
remaining two scenarios, we simulated the rapid geographic 

spread of a virus within less than one year. In scenario 6M, 
the age of population of A was 6 months, the transmission to 
B occurred three months later, and transmissions from B to 
C and D occurred at 3 and 1 month ago respectively. Finally, 
in scenario 1M, all transmissions took place within a single 
month (age of A): from A to B at 20 days ago; from B to C 
and D at 10 and 5 days ago respectively. For each scenario, 
we evolved 300 independent replicates. In each replicate, 
sequences were sampled serially along time intervals to yield 
approximately 28 sequences. This number was chosen to 
speed up computational time while ensuring the robustness 
of the results.

Phylogenies of each simulated alignment was estimated 
in IQ-TREE 1.6 (Nguyen et al., 2014) under the maximum 
likelihood framework employing the substitution model chosen 
by the ModelFinder implementation available in the program. 
Inference of the timescales and evolutionary rates were carried 
out using the TreeDater R package (Volz and Frost, 2017), 
using the dater function. The position of the root node was 
also inferred in TreeDater. We measured both the age of the 
stem and crown nodes for areas C and D (Figure 1).

Analysis of the performance of evolutionary inference 
on the four scenarios was implemented by comparing features 
that are relevant for health policy evaluation and decision 
making: (1) the ages of the epidemic (the root node) and of the 
transmission events, and (2) the frequency in which the genetic 
diversity in areas C and D were recovered as monophyletic. 
Features (1) were retrieved from the TreeDater output. The 
frequency of the monophyly in areas C and D was measured 
using the built-in functions available in the ape R package.

To evaluate how the timescale of the epidemic affected 
the general shape of the tree topologies, we calculated 
measures of tree shape available in the RPANDA R package 
(Morlon et al., 2016), which estimates the spectral density of 
phylogenies from the normalized modified graph Laplacean 
(Lewitus and Morlon, 2016). The following shape metrics 
were computed from the spectral densities: the asymmetry, 
peakedness, principal eigenvalue and the modality (eigengap) – 
see Lewitus and Morlon (2016) for details. Distances between 
spectral densities of topologies were calculated using the 
Jensen-Shannon (J-S) distance metric using the JSDtree 
function in RPANDA. We used the spectral density metrics 
to arrange all the topologies simulated into k groups (clusters) 
using the k-means clustering analysis. The number of clusters 
was chosen using the gap statistic (Tibshirani et al., 2001). 
A total of four clusters were found to optimize within- to 
between-groups J-S distances. We thus assigned topologies 
to one of these k=4 classes.

Comparative analysis with SARS-CoV-2 and other 
epidemics

In order to investigate the effects of the timescale on 
evolutionary parameters inferred with empirical data, we 
compared our simulations with the 2019-2020 outbreak of 
SARS-CoV-2, which consists of the main pandemic of the 
21st century so far. By using metrics of topological shape, 
we evaluated SARS-CoV-2 phylogenetic trees in light of 
the scenarios simulated. We also compared SARS-CoV-2 
topologies with other recent viral outbreaks (SARS in 2003-
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2004; influenza H1N1 in 2009, and the 2014 Ebola virus 
outbreak), as well as long term circulating virus species (HIV-
1B, DENV-1, and the HCV-1a).

Sequences and alignments

We downloaded 358 SARS-CoV-2 genomes available 
in GenBank (Table S1). These genomes cover a broad 
geographical distribution and were sampled from December 
2019 to March 2020. The open reading frames were extracted 
from the genomes and were subsequently aligned individually. 
The following genomic regions were analyzed – structural 
proteins S, E, M, and N, and ORFs 1ab, 3a, 6, 7a and 8. 
Alignments were carried out on with the MUSCLE software 
(Edgar, 2004). For other virus lineages, we sampled timescales 
that covered both short- and long-term infections of human 
populations. This interval ranged from several months within a 
single year (SARS-CoV, H1N1, and EBOV) to several decades 
(HIV-1B). Genome sampling was conducted so as to obtain 
sequences with collection dates that were evenly spaced in 
time. Empirical datasets, with the exception of SARS-CoV-2, 
were downloaded from the Virus Pathogen Resource database 
(viprbrc.org). Accession numbers were provided in Table S2.

Phylogenetic inference and molecular dating

All tree topologies were inferred under the maximum 
likelihood (ML) framework implemented in the IQ-TREE 
software (Nguyen et al., 2014). Model choice was performed 
automatically in IQ-TREE using the ModelFinder method 
(Kalyaanamoorthy et al., 2017). Following ML tree 
reconstruction, node ages were estimated with the TreeDater 
R package (Volz and Frost, 2017) using the dater function, 
and allowing the root node to be inferred. 

Results

Simulation

Our simulation showed that the timescale of the 
epidemic significantly impacted the estimates of evolutionary 
parameters of epidemiological interest (Figure 2). The age of 
the transmission events between populations as well as the 
age of the most recent common ancestor of the pandemic (the 
age of the root) was most accurately estimated in the 10Y 
scenario, in which the errors associated with the estimates 
were <5% of the total duration of the epidemic (10 years) 
(Table 1). It is clear that the ages of the stem nodes were 
better approximations of the true ages of the transmission 
events than the ages of the crown nodes. Using the ages of 
the stem nodes, errors associated with the estimates ranged 
from 0.9% to 3.1% of the total time duration, whereas the 
crown node yielded 4.1% to 4.8%. Under this scenario, the 
age of the root was also estimated accurately (0.7% error). 
As the total duration of the epidemic narrowed, the age of 
the root became increasingly harder to estimate; the mean 
difference between the estimates and the true ages shifted 
from 0.9% (10Y) to 1157.2% (1M) of the root age (Table 1). 
In shorter timescales (6M and 1M), the best approximations 
of the ages of transmission events were inconsistent, because 

in four cases the ages of the crown nodes were closer to 
the true value, whereas the remaining two cases were best 
inferred by the ages of the stem nodes. In most cases, the 
true transmission ages lied between the estimated ages of the 
stem and crown nodes. The exception was the 1M scenario, 
in which the estimated stem and crown nodes did not bound 
the true value (Figure 2).

The frequency in which the reconstructed genealogy 
of alleles embedded in populations was monophyletic was 
also impacted by the timescale of the pandemic (Table 2). 
In both populations from areas C and D, shorter timescales 
resulted in lower frequency of monophyly, indicating that 
inferred ML gene genealogies would suggest incorrectly that 
these populations have multiple origins. While in the 10Y 
scenario, allelic diversity from areas C and D were recovered 
as monophyletic in >90% of the replicates, in the 1M scenario 
this figure dropped to 78.3% (area 3) and 89.7% (area D).

The metrics calculated from the spectral densities 
of tree topologies were also affected by the timescales of 
the epidemics. The asymmetries (skewness) of the density 
profiles were similar among the trees from the four scenarios 
investigated (Figure 3), whereas the shift of the profile 
(the principal eigenvalue) tended to decrease with shorter 
timescales. In the 1M scenario, this metric varied significantly 
between topologies (Figure 3). The two most informative 
topological metrics to differentiate the scenarios were the 
peakedness and the number of peaks (the eigen gap, or the 
number of modalities) of the density profiles (Figure 3). Similar 
to the shift metric, the peakedness of topologies tended to 
decrease in shorter timescales, and the variance of the metric 
was larger in both 10Y and 1M scenarios. The number of peaks 
(modes of evolution) was 1 in most topologies from the 10Y 
and 2Y datasets. In both 6M and 1M scenarios, the average 
number of peaks was 1.4, indicating incorrectly the existence 
of multiple modes of diversification in a single tree topology.

The gap statistic employed to identify the number 
of clusters to be used by the k-means algorithm was 4. 
When features measured from the spectral densities were 
used to cluster the topologies from the several scenarios an 
interesting picture emerged. The 10Y and the 2Y scenarios were 
distinguished from the shorter timescale scenarios (Figure 4). 
In 6M and 1M, the majority of topologies were assigned to the 
same cluster (cluster 2, green, Figure 4). A small amount of the 
2Y topologies were also assigned to this cluster, whereas near 
zero topologies from the 10Y scenario were assigned to cluster 2. 
On the other hand, most 10Y trees were assigned to cluster 1 
(salmon, Figure 4), which was almost exclusively found in 
10Y trees. Overall, 10Y and 2Y topologies generated distinct 
cluster assignment profiles that were also distinct from the 
6M and 1M profiles. The Jensen-Shannon distances between 
spectral densities of topologies corroborated the cluster profiles 
(Table 3). As timescales narrowed, J-S distances tended to 
increase when compared to the 10Y trees. Therefore, the mean 
distance between trees from the 10Y and 1M scenarios was 
the highest inter-scenarios distance. It is worth noting that 
the 10Y scenario was the case with the highest intra-scenario 
mean distance.

http://www.viprbrc.org
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Figure 2 – Distribution of the inferred ages of stem and crown nodes of each population (areas B-D), as well as the age of population in area A (root), 
for each simulated scenario. Horizontal lines are the true simulated ages; for B-D they represent the true transmission times.

Table 1 – Difference between the average age estimated and the true age for each population (A to D). Differences were normalized (in percent) by the 
true age of the root in each scenario.

Scenario area A (root) area B (stem) area B (crown) area C (stem) area C (crown) area D (stem) area D (crown)

10Y 0.7% 0.9% 4.8% 1.2% 4.1% 3.1% 4.6%

2Y 2.5% 1.8% 10.5% 6.3% 1.0% 3.2% 3.1%

6M 5.0% 11.6% 1.8% 3.3% 0.2% 7.9% 3.8%

1M 1157.2% 65.6% 23.8% 12.0% 14.4% 0.4% 2.4%
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Table 2 – Frequency in which the reconstructed genealogy of alleles from populations C and D was monophyletic.

Scenario area C area D

10Y 94.2% 97.6%

2Y 97.3% 93.9%

6M 81.9% 93.7%

1M 78.3% 89.7%

Figure 3 – Distribution of metrics of the spectral densities of tree topologies for each scenario.
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Figure 4  – Profiles of cluster assignments of topologies to each of the k=4 class in each scenario. Tree topologies from 10Y, 2Y, 6M, and 1M scenarios 
were assigned to four clusters (exhibited by colors salmon, green, blue, and gray) using the k-means algorithm. In each scenario, bars represent the 
frequency of topologies in each class.

Empirical comparative analysis

We estimated that SARS-CoV-2 genetic diversity 
coalesced in 20 September 2019, with 95% confidence interval 
ranging from 14 November 2018 to 16 January 2020. The 
genome-wide substitution rate was 1.24 x 10-4 subst./site/year 
(5.72 x 10-5 - 2.57 x 10-4). The inferred position of the root node 
separated a Chinese sample from the remaining SARS-CoV-2 
genomes. The comparison between the spectral densities of 
simulated trees with SARS-CoV-2 tree topologies estimated 
for both the entire genome and each ORF independently 
indicated that the topologies from the 1M scenario exhibited 
lower J-S distance for all SARS-CoV-2 genomic regions 

(Figure 5). SARS-CoV-2 trees were then closer to short-term 
epidemic scenarios.

When our simulations were evaluated against other 
virus epidemics, it was possible to differentiate long- and 
short-term circulating infections (Figure 6). The spectral 
densities of long-term circulating virus topologies (DENV-1, 
HCV-1a and HIV-1B) exhibited higher similarity to the 10Y 
and 2Y scenarios, whereas short-term circulating infections 
were closer to the 6M and 1M topologies (SARS-CoV, H1N1, 
and EBOV). Therefore, the shape of tree topologies contained 
information on the age of the epidemic.

Discussion
Our simulations brought forth a number of shortcomings 

that arise when analyzing the dynamics of virus epidemics 
within a short timescale. If the age of the circulating infection 
is young, the inference of evolutionary parameters will suffer 
from reduced accuracy and precision. For all parameters 
investigated (the age of the transmission events between 
geographic areas, the age of the root, and the frequency of 
monophyly), the scenarios of shorter timescales yielded 
estimates that deviated more from the true values.

Table 3 - Mean Jensen-Shannon distances between spectral densities of 
tree topologies from the modified Laplacean graph. Main diagonal values 
in bold indicate the mean J-S distance within each population.

10Y 2Y 6M 1M

10Y 1.31 0.87 0.89 1.19

2Y 0.87 0.33 0.34 0.78

6M 0.89 0.34 0.33 0.77

1M 1.19 0.78 0.77 0.56
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Figure 5 – Comparison between the spectral density of SARS-CoV-2 phylogeny for each genomic ORF with the spectral densities of topologies simulated 
in each scenario. Comparisons were carried out using the Jensen-Shannon (J-S) distance.
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Figure 6 – Comparisons between the spectral densities of phylogenies from several virus epidemics with the spectral densities of topologies simulated 
in each scenario. Comparisons were carried out using the Jensen-Shannon (J-S) distance. DENV01, HCV-1a, and HIV-1B are examples of long-term 
circulating infections, whereas SARS-CoV (2003), H1N1 (2009), and EBOV (2014) illustrate short-term infections.



Schrago and Barzilai10

When inferring the ages of transmission events, a simple 
strategy that improves the success rate of recovering the 
true age is to employ a bracketing approach, in which both 
the ages of the crown and stem nodes are communicated. 
However, when the genetic diversity of the epidemic finds 
its common ancestor within few generations ago, the interval 
between the ages of the crown and stem nodes might fail to 
encompass the true ages. In fact, in such scenarios, the age 
of the common ancestor of the epidemic (root node) is also 
harder to estimate, as well as the dynamics of viruses in space. 
In long-term epidemic scenarios, however, the age of the 
stem node is the best approximation of the true transmission 
times, although the age of crown node is frequently used as 
an estimate of this parameter.

We enumerate two major factors that explain the poor 
performance of molecular dating methods in short-term 
epidemic scenarios. Firstly, the low genetic diversity of recent 
epidemics. If mutations accumulate randomly at a fixed rate, 
which was the assumption employed to simulate our sequences, 
then at short time intervals the probability of observing new 
mutations is lower. The intervals between coalescence events, 
which define the internal branch lengths, will likely have zero 
length when measured in units of substitutions/site. Therefore, 
the structure of the virus phylogeny will be largely random, 
because sequences lack information on the evolutionary history 
of virus populations. Such problem could be alleviated by 
sampling more sites of the virus genome. Assuming that 
mutation rate is homogeneous across sites, sampling more sites 
will increase the probability of finding substitutions shared 
by more than two sequences (internal branches). However, 
because virus genomes are limited in length, this may not 
be feasible.

Another factor affecting the inference of evolutionary 
parameters is the variance of the coalescent process. Because 
the tree topology of the genealogy of genomes may be different 
from the phylogeny of virus populations containing the 
transmission dynamics – the well documented species tree/
gene trees discordance  (Maddison, 1997; Edwards, 2009) 
(Figure 1) – parameters associated with transmission times and 
spatial dynamics may be biased even when sampling an infinite 
number of nucleotide sites. The finding that monophyly of 
the genetic diversity within populations may not be recovered 
even with a single founder virus genome exemplifies how hard 
it is to infer the spatial dynamics of a recent pandemic. The 
difficulty in estimating evolutionary parameters will obviously 
increase in more complex epidemiological scenarios, such 
as recurrent gene flow between areas (multiple transmission 
events) and differential selection along the genome (Leaché 
et al., 2014; Solís-Lemus et al., 2016). Ideally, the variance 
of the serially-sampled coalescent should be incorporated 
when estimating epidemiologic parameters, in way similar 
to the modeling of gene trees in species tree accomplished 
by multispecies coalescent (Drummond et al., 2003; Biek 
et al., 2015).  

Our results demonstrated that the shape of serially-
sampled virus phylogenies, as approximated by the spectral 
density of the tree, provides information on the temporal 
dimension – long- and short-term epidemics yielded distinct 
spectral density profiles. This observation, attained with 

simulated datasets, was replicated with empirical data. Samples 
from long-term circulating viruses were similar to long-term 
simulated datasets as well. We showed that SARS-CoV-2 was 
most closely related to 1M trees. This suggests that the SARS-
CoV-2 dataset may be as challenging as the 1M simulation 
scenario to estimate evolutionary parameters. 

Our estimated age of the common ancestor of the 
new coronavirus pandemic, 20 Sept. 2019, lies within the 
uncertainty region defined by the confidence and credibility 
intervals of previous studies. For instance, although Lai et al. 
(2020) estimated the SARS-CoV-2 TMRCA at 18 Nov. 2019, 
and Li et al. (2020) at 11 Dec. 2019, if confidence intervals 
are accounted for, one cannot rule out the hypothesis that 
these estimates are statistically equivalent. The same applies 
to the evolutionary rate of SARS-CoV-2. As shown in our 
simulations, this higher uncertainty is expected in short-term 
epidemic scenarios. Our estimate, 1.24 x 10-4 subst./site/year, 
is in agreement with the values calculated for RNA virus along 
the last decades (Peck and Lauring, 2018), suggesting that 
SARS-CoV-2 evolutionary rate is not unique. Unfortunately, 
the bracketing approach for establishing transmission times 
is not applicable to the origin of the SARS-CoV-2 pandemic, 
because its closest known sister lineage, the RaTG13 sequence 
is evolutionarily distant, artificially increasing the lower bound 
for the age of the common ancestor (stem node) (Boni et al., 
2020). However, the strategy can be used to evaluate the age 
of transmission events along SARS-CoV-2 diversification. 
Recently, Candido et al. (2020) inferred the age of the common 
ancestor of the earliest among the largest of the Brazilian 
clade at 22 Feb 2020 (crown node). Following the rationale 
developed here, we argue that the uncertainty of this estimate 
should also include the age of the stem node, which would 
push the entry time of the ancestor of this clade into Brazil 
to early February. 

The fact that tree shape can distinguish between temporal 
duration of epidemics is useful as an auxiliary analytical tool. 
Although the effect of the temporal scale in tree topologies 
is ultimately dictated by the evolutionary rate, the impact on 
the estimation of evolutionary parameters may be evaluated 
directly with ML trees by using metrics of tree shape, no 
molecular dating is required. The correlation between tree shape 
and the efficiency in inferring timescales and geographical 
structure is also useful for conducting sophisticated statistical 
learning analyses (Sheehan and Song, 2016). For instance, 
by measuring simple tree shape metrics from the spectral 
density, we can calculate the probability that the timescale 
will be recovered correctly. 

In conclusion, we demonstrated that the age of epidemic 
significantly impacted the inference of evolutionary parameters 
that are relevant to decision making by health agencies, such 
as the timescale of virus evolution and the spatial dynamics 
of the virus populations. In short-term virus epidemics, the 
probability of recovering the true history of virus populations, 
as displayed in fully dichotomic tree topologies, is reduced. 
Metrics of tree topology shape are thus a useful proxy for 
evaluating the probability that evolutionary parameters were 
accurately inferred. We showed that short-term epidemics 
(SARS-CoV-2, SARS 2003, H1N1 2009, EVOV 2014) could 
be distinguished from long-term circulating viruses (HIV-1B, 
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HCV-1a and DENV-1). Metrics of SARS-CoV-2 phylogeny 
were similar to simulated scenarios of very recent population 
dynamics, which resulted in parametric estimates with large 
uncertainty. Health policies drawn from SARS-CoV-2 
evolutionary estimates should thus be designed cautiously. 
In this sense, simple strategies may be useful, as accounting 
for both the ages of stem and crown nodes to approximate 
transmission times.  
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