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Abstract

Comprehensive protein-protein interaction (PPI) maps are critical for understanding the functional organization of the 
proteome, but challenging to produce experimentally. Here, we developed a computational method for predicting PPIs 
based on protein docking. Evaluation of performance on benchmark sets demonstrated the ability of the docking-based 
method to accurately identify PPIs using predicted protein structures. By employing the docking-based method, we 
constructed a structurally resolved PPI network consisting of 24,653 interactions between 2,131 proteins, which greatly 
extends the current knowledge on the rice protein-protein interactome. Moreover, we mapped the trait-associated 
single nucleotide polymorphisms (SNPs) to the structural interactome, and computationally identified 14 SNPs that 
had significant consequences on PPI network. The protein structural interactome map provided a resource to facilitate 
functional investigation of PPI-perturbing alleles associated with agronomically important traits in rice.
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Introduction
Protein-protein interactions (PPIs) are involved in 

a wide range of biological processes, including signal 
transduction, stress responses, plant defense, and organ 
formation. Comprehensive mapping of PPI networks can 
provide crucial insights into the control of biological processes 
in plants. Advances in yeast two-hybrid and affinity purification 
mass spectrometry have increased the capability to detect 
PPIs in the model plants (Arabidopsis Interactome Mapping 
Consortium, 2011; Jones et al., 2014; Altmann et al., 2020; 
Wierbowski et al., 2020). However, the current available 
experimental PPI data are still far from a comprehensive map 
of plant PPI networks. 

Computational approaches offer another means by 
which to identify plant PPIs via integrating various biological 
information (Cui et al., 2008; Lin et al., 2011; Zhu et al., 2016). 
Recently, structural information has been used to improve PPI 
prediction in plants (Zhang et al., 2016; Liu et al., 2017). There 
are two typical methods for structure-based PPI predictions: 
one method based on structural matching with known complex 
structures and another method based on protein docking. The 
template-based method predicts PPIs on structural similarity 
of proteins to complex structures, which is highly dependent 
on the available structural templates in the database. The 
docking-based method does not require a priori structural 
templates, and it can identify new PPIs that have different 
structures from those of known complexes. 

Docking algorithms are primarily designed to analyze 
the structural characteristics of individual known protein 
interactions. Identifying large-scale PPIs using docking 
techniques is computationally expensive. However, progress 
in computer science has facilitated the application of protein 
docking to large-scale PPI prediction (Mosca et al., 2009; Wass 
et al., 2011; Vakser, 2014). Since only a fraction of protein 
structures have been determined experimentally, the docking-
based methods have recently been shifted to rely on protein 
models instead of on higher resolution experimentally resolved 
structures (Singh et al., 2020). Low-resolution docking on 
protein models is especially important in proteome-wide 
prediction of PPI networks for sequenced organisms in which 
the available experimental structures are lagging far behind 
from known protein sequences.

Rice (Oryza sativa) is a model plant for studying the 
biology of cereal crops. Although its complete genome sequence 
has been available for two decades, the known PPIs are still 
limited. Currently, there are only a few hundred experimentally 
determined rice PPIs deposited in the public database (Oughtred 
et al., 2021). This large gap indicates that there is still a long 
way to go in elucidating the protein-protein interactome in 
rice. In this study, we present a docking-based method that 
can be used to identify PPIs using predicted protein structures 
that is comparable in performance to the other computational 
methods. By using the docking-based method, we constructed 
a structurally resolved PPI interactome consisting of 24,653 
interactions, greatly expending the knowledge on the rice 
protein-protein interactome. Moreover, we mapped the trait-
associated single nucleotide polymorphisms (SNPs) to the 
rice structural interactome, and computationally identified 14 
nonsynonymous SNPs that had significant consequences on 
the PPI network. Our study provides a resource to facilitate 
prioritization and further characterization of PPI-perturbing 
alleles associated with agronomically important traits in rice.
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Material and Methods
Computational modeling of rice proteome

The rice protein sequences were retrieved from the 
Nipponbare reference genome release 7.0 (http://rice.uga.
edu/index.shtml) (Kawahara et al., 2013). After filtering 
transposable element (TE)-related genes, we obtained 38,864 
non-TE-related protein sequences for structure modeling. 

The three-dimensional (3D) structures of proteins were 
predicted using the batch processing facility of ModPipe 
(Webb and Sali, 2021). The homology model with the highest 
ModPipe quality score was selected for each protein according 
to previously described criteria (Zhang et al., 2016; Liu et al., 
2017). To determine the quality of the protein model, the 
sequence identity and alignment coverage were calculated by 
aligning the protein with the structural template. A homology 
model was considered to be of high quality if it exhibited a 
sequence identity > 50% and an alignment coverage > 80% 
with the corresponding structural template (Dong et al., 2019).

PPI prediction based on docking 

Protein-protein docking for all possible binary 
combinations was performed using the ZDOCK program 
(version 3.0.2) (Pierce et al., 2011). The standardized score 
(z score) was calculated by comparing the docking score of 
the top prediction to the distribution of 2000 high-ranked 
decoys, which was used to assess the possible interaction 
between the given protein pairs.

Evaluation of docking performance

The set of 1,122 benchmark interactions was obtained 
from the Dockground docking benchmark set 4 (http://
dockground.compbio.ku.edu) and the GWIDD database 
(Genome-WIde Docking Database, http://gwidd.compbio.
ku.edu). To make the benchmark sets consistent and 
homogeneous, a homology model was generated for each 
protein from the benchmark complexes. To avoid self-hits, 
each model had to have < 95% sequence identity with the 
template. The negative set of 1,122 pairs of experimental 
structures and 588 pairs of homology models were generated 
by randomly shuffling the benchmark interactions.

The test set of 30 rice binary complex structures was 
collected from the PDB database (Rose et al., 2021). The 
predicted protein structure was also generated for each chain. 
We assessed the possible interaction for each pair in all-to-all 
combinations. Two proteins from each complex were defined 
as the positive pair, and all shuffled protein pairs were defined 
as the negative set.

The accuracy of the prediction regarding whether the 
given members of a protein pair could interact with each 
other or not was evaluated as true positive (TP), false positive 
(FP), true negative (TN), and false negative (FN). The overall 
performance of the docking-based method was assessed 
by the true positive rate (TPR) or recall (TP/(TP+FN)), 
the false positive rate (FPR) (FP/(FP+TN)), the precision 
(TP/(TP+FP)) and the F-measure ((2*Precision*Recall)/
(Precision+Recall)). The receiver operating characteristic 
curve (ROC) and area under the curve (AUC) were also used 
to measure the performance of the docking-based method in 
distinguishing the true interactions from random protein pairs. 

Interolog-based PPI prediction 

The orthologs of rice proteins in six organisms, 
Arabidopsis thaliana, Saccharomyces cerevisiae, 
Caenorhabditis elegans, Drosophila melanogaster, Mus 
musculus and Homo sapiens, were identified using InParanoid 
with default settings (Sonnhammer and Östlund, 2015). The 
experimentally determined PPI sets were retrieved from the 
public databases BioGRID (Oughtred et al., 2021), IntAct 
(Orchard et al., 2014) and Mentha (Calderone et al., 2013). 
Two rice proteins were predicted to interact with each other 
if their orthologs interacted in at least one of the six reference 
organisms.

Gene coexpression analysis 

The coexpression data of rice genes was downloaded 
from ATTED-II v11 database (https://atted.jp/download/). 
The standardized coexpression value (coexpression z-score) 
was constructed using integrative analysis of both RNA-seq 
and microarray data (Obayashi et al., 2022). 

Subcellular localization analysis

The subcellular localization information of rice 
proteins was obtained from the prediction of WoLF PSORT 
(Horton et al., 2007). If there was more than one subcellular 
compartment associated with a protein, the winner-takes-all 
strategy was used to annotate a subcellular location for each 
protein (Geisler-Lee et al., 2007). Enrichment analysis for the 
interacting proteins with respect to the subcellular localization 
were performed based on hypergeometric test. 

Annotation of trait-associated SNPs

The set of 14,424 rice SNPs associated with agronomically 
important traits was downloaded from the GWAS Atlas 
(https://ngdc.cncb.ac.cn/gwas/downloads) (Tian et al., 2020). 
The effect of each trait-associated SNP was annotated using 
SnpEff based on the Nipponbare reference genome release 
7.0 (Cingolani et al., 2012). A total of 1,915 nonsynonymous 
SNPs were identified in the coding regions of 1,361 annotated 
genes in rice. 

Assessment of SNPs on protein-protein interaction

The interfaces of docked protein structures were 
predicted by the Prodigy program (https://bianca.science.
uu.nl/prodigy/) (Jiménez-García et al., 2019). The changes 
in protein-protein binding affinity caused by nonsynonymous 
SNPs were estimated using mCSM-PPI2 software (http://
biosig.unimelb.edu.au/mcsm_ppi2/) (Rodrigues et al., 2019). 
The change in binding affinity (ΔΔG) from each allele was 
defined as the difference between these two binding energies. 

ΔΔG = ΔGREF – ΔGALT

Results

Structure modeling of rice proteome

There are currently only 225 experimental structures 
for rice proteins in the Protein Data Bank. To fill the gap 
between rice protein sequences and 3D structures, we used 
homology modeling to predict protein structures, which led 
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to 32,170 models covering 82.8% of the rice proteome. The 
average alignment identity and coverage were 34% and 64% 
between the protein models and their corresponding structural 
templates, respectively (Figure 1A). Protein models with > 
50% sequence identity and > 80% alignment coverage were 
considered to be of high quality. As a result, we obtained a 
total of 2,083 high-quality protein models, which had on 
average 66% sequence identity and 92% alignment coverage 
with the templates (Figure 1B).

To assess the quality of the predicted protein structures, 
we used the TM-score to measure the topological similarity 
between the homology models and their corresponding 
structural templates (Zhang and Skolnick, 2005). Compared 
with the overall average TM-score of 0.71 (Figure 1C), a 
larger TM-score of 0.93 was found between the high-quality 
models and the templates. Of the high-quality models, 98.6% 
(2054/2083) had a TM-score larger than 0.5 (Figure 1D), 

indicating that these homology models had the correctly 
predicted topology (Xu and Zhang, 2010). In addition to 
the TM-score, we also used the root mean square deviation 
(RMSD) to measure structural similarity between the protein 
models and the structural templates. The average RMSD of 
high-quality models was 0.62 Å, with 94.5% (1968/2083) of 
models having an RMSD below 2 Å (Figure 1C, D), which 
indicates that the accuracy of the high-quality models was 
sufficient for docking analysis (Vakser, 2014).

Evaluation of docking performance using 
experimental and predicted structures

To evaluate the ability of a docking method to predict 
PPIs, we used the ZDOCK program to perform protein 
docking on 1,122 benchmark interactions using experimental 
structures (Table S1) (Pierce et al., 2011). The docking z score 
of the top prediction was then calculated for each protein pair. 

Figure 1 – Homology models of rice proteome. Scatter plots of the relationship between sequence identity and alignment coverage of all predicted protein 
structures (A) and the high-quality models (B). Scatter plots of the relationship between the TM-score and RMSD of all predicted protein structures (C) 
and the high-quality models (D).
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As shown in Figure 2A, the distribution of the benchmark 
interactions (mean z score = 10.0) is clearly shifted toward 
higher docking z scores compared to random protein pairs 
(mean z score = 5.8) using experimental structures. We 
also evaluated the performance of ZDOCK on 588 known 
interactions against predicted protein structures. Similarly, the 
docking z scores of interacting protein pairs (mean z score 
= 6.6) were higher than those of random pairs (mean z score 
= 5.9) (Figure 2B). The enrichment of interacting protein 
pairs toward the high end of the docking z score distribution 
indicated that the ZDOCK based method could distinguish true 
interactions from random pairs using experimental structures 
and homology models. Furthermore, we used the ROC curves 
to quantitatively assess the performance of the docking-based 
method. The area under curve (AUC) was 0.78 for benchmark 
interactions using experimental structures and 0.62 for known 
interactions using homology models (Figure 3A), indicating 
the better performance of the docking-based method over 
random chance. 

Considering the fact that interaction occurred very 
infrequently in random protein pairs, the effects on docking 
performance were evaluated against different ratios of 
benchmark interactions and random pairs using predicted 
protein structures. The F-measure values at various docking 
z score thresholds are shown in Figure 3B. On the balanced 
dataset, the z score threshold of 3.7 yielded the maximum 
F-measure value of 0.67 with a precision of 50% and an FPR 
of 100% (Table 1). However, the high FPR would result in 
a very large number of false positives in proteome-wide PPI 
prediction. By changing the ratio between true interactions and 
random pairs to 1:100, the FPR significantly decreased from 
100% to 0.3% at the higher z score threshold of 8.8. The low 
FPR was similar to the possibility of interactions occurring in 
random plant protein pairs (Arabidopsis Interactome Mapping 
Consortium, 2011). Therefore, the z score threshold of 8.8 was 
used for PPI decisions based on protein docking in this study.

To measure the performance of the docking-based 
method with the optimal z score threshold, all-to-all docking 

Figure 2 – Distribution of docking z scores for interacting proteins and random pairs using (A) experimental structures and (B) homology models. 

Figure 3 – Performance evaluation of the docking-based method. (A) ROC curves for the docking-based method in discriminating true interactions from 
random protein pairs using experimental structures and homology models. AUC values are reported in parentheses. (B) F-measure as a function of the 
z score threshold on different ratios of benchmark interactions and random protein pairs using homology models.
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was carried out on the proteins from the 30 rice binary 
complexes (Table S2). At the z score threshold of 8.8, the 
docking-based method predicted 16 PPIs with 8 positives and 
8 false positives using experimental structures (Figure 4A), 
while it identified one known interaction but no false positives 
using predicted protein structures (Figure 4B). These results 
indicated that the docking-based method could be used to 
identify rice PPIs using experimental structures and homology 
models.

Structure-based interactome in rice

A total of 2,132 rice proteins with experimental structures 
and high-quality models were collected for docking analysis. 
There were 2,271,646 possible binary interactions without 
self-interactions that could be formed from these collected 
rice proteins. We carried out ZDOCK docking on all 2.27 
million protein pairs and assessed the possible interaction for 
each pair using the docking z score. At a z score threshold of 
8.8, we generated a structurally resolved rice protein-protein 
interactome consisting of 24,653 interactions between 2,131 

proteins (Figure 5A; Table S3). The degree distribution 
indicated that one rice protein on average had 23 interacting 
partners, and approximately 70% of proteins had 10-30 
connections with others in the structural protein interactome 
(Figure 5B). 

To assess the accuracy of the docking-based method in 
predicting rice PPIs, we compared it with some computational 
methods on a set of 95 experimentally determined PPIs with 
3D structures (Liu et al., 2017; Szklarczyk et al., 2021). The 
docking-based method yielded comparable performance to 
the other three methods based on the F-measure (Table 2). 
Of the docking-inferred PPIs, 1,350 (5.5%) interactions were 
also detected by at least one of the three methods (Figure S1), 
which was significantly higher than the probability of random 
chance. We compared the docking-based method to the 
state-of-the-art deep learning based AlphaFold-Multimer 
(AF2-multimer) for PPI prediction (Evans et al., 2021). 
Of 25 randomly selected docking-inferred PPIs, 2 (8.0%) 
interactions were supported by the high-accuracy model of 
AF2-multimer with the ranking confidence > 0.70. We also 

Table 1 –  Effects on the docking performance of changing the ratios of positive and negative pairs using homology models. 

Ratio (positive:negative) Optimal z score 
threshold TPR FPR Precision F-measure

1:1 (588:588) 3.7 1.0000 1.0000 0.5000 0.6667

1:10 (588:5880) 7.2 0.2245 0.0803 0.2185 0.2215

1:100 (588:58800) 8.8 0.1003 0.0031 0.2458 0.1425

Figure 4 – Performance evaluation of the docking-based method on rice binary complexes using (A) experimental structures and (B) homology models. 
Green, red and purple cells represent true positives, false positives, and false negatives, respectively. 
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used coexpression data to validate the PPIs predicted by the 
docking-based method (Obayashi et al., 2022). The gene 
expression analysis exhibited a statistically significant trend 
of coexpression for the predicted PPIs when compared to 
random gene pairs (Figure S2). Furthermore, the subcellular 
localization analysis showed that the interacting proteins 
tended to be located in the same subcellular compartment such 
as cytosol and nucleus (Figure S3). These results indicated 
that the docking-based method could predict PPIs using only 
structural information, which provides another perspective in 
protein-protein interactome exploration in rice.

Network effects of trait-associated SNPs on 
interactome

Genome-wide association studies have identified 1,915 
trait-associated nonsynonymous SNPs within 1,361 protein-
coding genes in rice (Tian et al., 2020). Nevertheless, the 
functional consequences of these trait-associated SNPs remain 
largely unknown. We mapped these trait-associated SNPs 
to the structural protein-protein interactome, and identified 
34 nonsynonymous SNPs located at the predicted interfaces 
of 119 PPIs (Figure 6; Table S4). The prediction of binding 
affinity changes (ΔΔG) showed that these SNPs could affect 
the stability of PPIs (Table S5), including 8 SNPs significantly 

increasing the binding affinity of 13 PPIs (ΔΔG > 1 kcal⁄mol) 
and 7 SNPs having the opposite effect on 24 PPIs (ΔΔG < 
-1 kcal⁄mol) (Figure 7A). 

Of the 8 favorable variants, 6 in DnaK family 
genes (LOC_Os11g08445, LOC_Os11g08460 and LOC_
Os11g08470) were significantly associated with plant height. 
The LOC_Os11g08445 allele carrying p.Tyr525Asn and 
p.Glu529Lys substitutions were predicted to strengthen the 
interaction between LOC_Os11g08445 and LOC_Os07g11440 
(Figure 7B). The locus LOC_Os07g11440 encoded chalcone 
synthase, which is known to be involved in the biosynthesis of 
flavonoids and plant circadian rhythm. The relative thousand 
kernel weight associated variant p.Tyr322Cys in LOC_
Os02g56690 significantly decreased the binding affinity of 
15 PPIs, including the interaction between LOC_Os02g56690 
and LOC_Os12g41110 (calmodulin-like protein 5, CML5) 
(Figure 7C). The binding affinity between p.Tyr322Cys 
LOC_Os02g56690 and CML5 was predicted to change by 
-1.411 kcal⁄mol, suggesting that the strength of interaction 
with CML5 was perturbed by the p.Tyr322Cys substitution. 
These results indicated that the structurally resolved protein-
protein interactome could help facilitate prioritization of PPI-
perturbing alleles associated with agronomically important 
traits in rice. 

Table 2 – Performance comparison of computational methods on the experimental PPIs in rice.

Method Predicted PPIs with 
3D structure

Predicted PPIs verified by 
experiments Precision Recall F-measure

Interolog 91,372 9 0.00010 0.09474 0.0002

RicePPINet 33,732 4 0.00012 0.04211 0.0002

STRING (v11.5) 383 0 NA NA NA

Docking 24,653 1 0.00004 0.01053 0.0001

NA means not available.

Figure 5 – Predicted rice protein-protein interactome. (A) Overview of the predicted rice PPI network. (B) Degree distribution of the node proteins in 
the PPI network.
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Figure 7 – Predicted impact of nonsynonymous SNPs on the binding affinity of PPIs. (A) Distribution of the changes in binding affinity of PPIs caused 
by all 34 trait-associated nonsynonymous SNPs at the predicted interface. (B) Docked structure between LOC_Os11g08445 and LOC_Os07g11440. (C) 
Docked structure between LOC_Os02g56690 and LOC_Os12g41110. The nonsynonymous SNPs at the predicted interface are highlighted as red spheres.

Figure 6 – PPI subnetwork with trait-associated nonsynonymous SNPs at the predicted interface. 
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Discussion
Here, we present a computational approach for predicting 

PPIs based on protein docking. Our study demonstrated that 
the docking-based method could accurately distinguish PPIs 
from random protein pairs using only structural information. 
We found that the docking-based method performed better 
using experimental structures compared to homology models. 
However, docking experimental structures are challenging to 
use widely to predict the interactomes because only a fraction 
of protein structures are determined experimentally (Velankar 
et al., 2021). The technique of inferring PPIs from low-
resolution docking could be applied to interactome exploration 
for sequenced organisms lacking data from experimental 
structures (Dong et al., 2019).

Rice was the first crop to be fully sequenced, but 
information about its PPIs is still limited (Struk et al., 
2019). Although rice PPI networks have been constructed 
by computational approaches (Gu et al., 2011; Ho et al., 
2012; Liu et al., 2017), the docking-based method using 
only structural information provides another perspective in 
rice protein-protein interactome exploration. We applied the 
docking-based method to the interactome and constructed 
a structurally resolved PPI network consisting of 24,653 
interactions, which greatly expands our knowledge of the 
protein-protein interactome in rice. 

The identification of genetic variants associated with 
rice agronomic traits has been facilitated by high-throughput 
sequencing technologies, but functional characterization and 
molecular mechanism exploration of trait-associated variants 
remain major challenges (Huang et al., 2010; Wang et al., 
2018; Gupta et al., 2019). Structurally resolved protein-protein 
interactomes provide more detailed insights into the structural 
characteristics of PPIs, which have been used to facilitate 
investigation of the network effects of genetic variants at 
amino acid resolution (Ghadie and Xia, 2019; Cheng et al., 
2021). By mapping the trait-associated SNPs to the structural 
protein interactome, we identified 34 nonsynonymous SNPs 
that were located at the PPI interfaces, of which 14 SNPs 
were predicted to have significant consequences on the PPI 
network. The structurally resolved protein-protein interactome 
provides a resource to facilitate prioritization of PPI-perturbing 
alleles associated with agronomic traits and further functional 
characterization of genetic variants in rice. 
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