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Abstract

Lung cancer has one of the highest mortality rates of malignant neoplasms. Lung adenocarcinoma (LUAD) is one of
the most common types of lung cancer. DNA methylation is more stable than gene expression and could be used as
a biomarker for early tumor diagnosis. This study is aimed to screen potential DNA methylation signatures to facilitate
the diagnosis and prognosis of LUAD and integrate gene expression and DNA methylation data of LUAD to identify
functional epigenetic modules. We systematically integrated gene expression and DNA methylation data from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), bioinformatic models and algorithms were
implemented to identify signatures and functional modules for LUAD. Three promising diagnostic and five potential
prognostic signatures for LUAD were screened by rigorous filtration, and our tumor-normal classifier and prognostic
model were validated in two separate data sets. Additionally, we identified functional epigenetic modules in the
TCGA LUAD dataset and GEO independent validation data set. Interestingly, the MUC1 module was identified in
both datasets. The potential biomarkers for the diagnosis and prognosis of LUAD are expected to be further verified
in clinical practice to aid in the diagnosis and treatment of LUAD.
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Introduction

Lung cancer has one of the highest incidence and mor-

tality rates of neoplasms and can be classified into small cell

lung cancer and non-small cell lung cancer (NSCLC),

NSCLC consists of adenocarcinoma, squamous cell carci-

noma, large cell carcinoma and other types (Travis, 2011).

Among them, adenocarcinoma is the most common subtype

(Liu et al., 2000). Despite treatment with surgery followed

by radiotherapy or chemotherapy, many patients still have

poor clinical outcomes (Perez et al., 2014; Ramnath et al.,

2013; Verdecchia et al., 2007). Hence, early diagnosis and

treatment are the key to reducing the mortality of lung can-

cer. To date, no widely used DNA methylation markers have

been identified for the early diagnosis and prognosis of lung

adenocarcinoma (LUAD).

According to a previous study, alterations in DNA

methylation (DNAm) appear to mark preneoplastic normal

cells that later transform and become enriched in tumors

(Teschendorff et al., 2016), which indicates that DNAm

could act as biomarkers for the diagnosis of early cancer.

Studies on DNAm in lung cancer strongly suggest that the

analyses of DNA methylation profiles will be of great utility

both for understanding the molecular basis of lung cancer

development (Toyooka et al., 2001, 2003, 2004; Virmani et

al., 2002), and for developing epigenetic signatures for lung

cancer (Shi et al., 2017; Walter et al., 2018). Recently, some

studies have developed new biomarker screening algorithms

for cancer diagnosis and prognosis (Wei et al., 2015; Hao et

al., 2017), and algorithms to integrate DNA methylation and

gene expression data to better understand tumor biology

(Jiao et al., 2014).

In this study, the gene expression and DNA methyl-

ation data of LUAD patients were systematically integrated

and analyzed. We screened three potential DNA methylation

signatures for early diagnosis and five prognostic gene ex-

pression signatures for LUAD. The tumor-normal classifica-

tion model and prognostic model were validated in two

separate data-sets. In addition, we also identified functional

epigenetic modules (FEMs) in The Cancer Genome Atlas

(TCGA) LUAD data set and Gene Expression Omnibus

(GEO) independent validation data set. The MUC1 module

was identified in both data-sets. The potential biomarkers

identified in this study are expected to be further validated

and may aid decision for diagnosis and treatment of LUAD.
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Material and Methods

Dataset

Gene expression data analysis

We downloaded the RNA-seqV2 sequencing data (le-

vel 3, normalized count) and the corresponding clinical data

of LUAD patients from the UCSC Xena database

(http://xena.ucsc.edu), including 553 gene expression sam-

ples (tumor: 495, normal: 58). The screening criteria for sig-

nificantly differentially expressed genes were as follows:

1.5-fold change and corrected P-value < 0.05 (independent

t-test and p-value was adjusted by Benjamini/Hochberg cor-

rection method.

DNA methylation data analysis

We downloaded the methylation data (level 3, Methyl-

ation 450K) and the corresponding clinical data of LUAD

patients from Xena (http://xena.ucsc.edu), including 492

samples (tumor: 460, normal 32) for methylation data analy-

sis. The methylation level of each gene was calculated by de-

fining the average methylation level of probes within gene

promoter area (TSS1500, 1stExon, TSS200, 5` UTR), as the

methylation level of the gene (TSS 1500 and TSS 200 repre-

sents 1500 bp and 200 bp downstream from the transcription

start site, 1stExon represents the first exon). The screening

criteria for significantly differentially methylated genes

were as follows: delta Beta > 0.2 and corrected P-value <

0.05(independent t-test plus Benjamini/Hochberg method).

Validation dataset

DNA methylation 450K chip data (series_matrix.txt)

and gene expression data were downloaded from the NCBI-

GEO database (http: // www. ncbi. nlm. Nih. Gov/geo/), in-

cluding GSE39279 (Sandoval et al., 2013), GSE52401 (Shi

et al., 2014), GSE66836 (Bjaanaes et al., 2016), GSE75037

(Girard et al., 2016), GSE56044 (Karlsson et al., 2014),

GSE50081 (Der et al., 2014) and GSE42127 (Tang et al.,

2013).

Construction of diagnostic classifier

First, the recursive features elimination method was

used to screen diagnostic probes from those 24,116 differen-

tially methylated CpG sites. Then, probes were used to build

the logistic regression function in the Python Sklearn pack-

age (version 0.19, http://scikit-learn.org/stable/index.html).

The parameters were all default parameters, and the model

was trained with the TCGA data. Cox proportional hazards

model was built based on the screened genes and survival

analysis was performed for all patients (Python lifeline

0.11.1 (http:/ /lifelines.readthedocs.io/en/latest/in-

dex.html)), and validated in a separate data-set.

Construction of prognostic model

We first preprocessed the GSE50081 and GSE42127

datasets downloaded from GEO. The expression of each

gene was the average expression level of the corresponding

probes. Then genes from the 469 differentially expressed

genes were selected with cox regression analysis and log-

rank test (the criterion was as follows: false discovery rate

(FDR) of cox regression � 0.05 and FDR of log-rank test �

0.05). Then, the cox proportional hazards model was con-

structed with five selected genes, and survival analysis was

performed for all patients.

Gene enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment analyses

were performed using a web-based gene annotation tool,

DAVID (Huang et al., 2009ab).

FEMs analysis

The FEM algorithm (Jiao et al., 2014) is a functional

supervised algorithm that uses a network of relations be-

tween genes (in our case a protein-protein interaction (PPI)

network) to identify subnetworks where a significant num-

ber of genes are differentially methylated and differentially

expressed. The association is measured at both the DNA

methylation and gene expression levels. The algorithm thus

consists of two main parts: (i) construction of an integrated

network in which the associations with the phenotype are en-

capsulated as weights on the network edges, and (ii) infer-

ence of the FEMs as heavy subgraphs on this weighted

network.

We first constructed a PPI network by integrating the

InBio (Li et al., 2017) and BioPlex (Huttlin et al., 2015) da-

tabases. Then, we conducted FEM with the FEM algorithm

by integrating the gene expression and DNA methylated data

from both the TCGA and GEO datasets.
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Results

Analysis of differentially expressed genes and
differentially methylated genes

A total of 2469 differentially expressed genes were ob-

tained, including 1457 upregulated and 1012 downregulated

genes (Figure 1a). Principal component analysis (PCA) (Fig-

ure 1b) indicated that 1324 differentially expressed genes

could effectively distinguish tumor samples from normal

samples. A total of 24,116 differentially methylated CpGs

retained, mapping to 981 genes, including 472 hyper-

methylated genes and 509 hypomethylated genes (Figure

1c). PCA indicated that the 981 differentially methylated

genes could significantly separate the normal samples from

the tumor samples (Figure 1d).

Diagnostic classifier effectively distinguishes tumor
samples

After feature selection with recursive feature elimina-

tion (see Material and Methods), three probes (cg20568402,
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cg11302791 and cg01302240, see Table 1) remained. The

logistic regression model constructed with these three

probes performed well in the TCGA training dataset (Figure

2a, area under the curve (AUC) > 0.99). The unsupervised

cluster map of the DNA methylation level of these 3 probes

could clearly distinguish tumor samples from normal sam-

ples (Figure 2b), indicating that the selected three probes can

be used as potential biomarkers for the diagnosis of LUAD.

To further verify the repeatability of our feature selec-

tion method and classifier, we verified our model with GEO

datasets (GSE39279, GSE52401 and GSE66836). As shown

in Figure 2c and d, the results from the independent valida-

tion datasets are also very good (AUC > 0.92), which further

indicated the reliability and accuracy of our method and

model. In conclusion, our identified potential signatures may

be helpful in distinguishing LUAD samples from normal

samples, although further verification is needed.

Prognostic model significantly predicts the outcome
of LUAD

We first screened five genes from all of the differen-

tially expressed genes (see Material and Methods). A cox

proportional hazards model was constructed with the five se-

lected genes (COL6A6, WFIKKN2, PLA2G1B, UMODL1

and CNGA3, see Table S1) from the TCGA LUAD dataset.

Of these genes, PLA2G1B was reported to be associated

with smoking-related lung adenocarcinoma (Liu et al.,

2016), and UMODL1 may drive lung adenocarcinoma me-

tastasis by involving the G-protein coupled receptor protein

signaling pathway (Tan et al., 2016). Then, survival analysis

was performed for all patients. Finally, the tumor patients

were divided into high-risk and low-risk groups, which were
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Figure 1 - Differential expression and differential methylation analyses. (a) Volcano plot of differentially expressed genes. (b) PCA of differentially ex-

pressed genes. (c) Volcano plot of differentially methylated genes. (d) PCA of differentially methylated genes.

Table 1 - Detailed information of three methylation markers (probes) for

LUAD diagnosis.

Probe GeneID Gene Symbol Relation To Island Group

cg20568402 55208 DCUN1D2 OpenSea Body

cg11302791 54984 PINX1 OpenSea Body

cg01302240 5998 RGS3 OpenSea TSS200;

Body



verified in the independent data-sets GSE50081 and

GSE42127. A summary of the patients in the training and

validation datasets for the five-gene-based classifier is listed

in Table 2.

As shown in Figure 3, whether in the TCGA training

dataset (Figure 3a) or independent validation datasets (Fig-

ure 3b-d), the five genes can significantly divide patients

into high-risk and low-risk groups (P-value < 0.05), and the

prognosis of patients in the high-risk group is significantly

worse than that of patients in the low-risk group. In addition,

the five potential prognostic markers screened from the

LUAD can also significantly divide all NSCLC samples (in-

cluding lung squamous carcinoma) into high- and low-risk

groups (P-value < 0.01, Figure 3d), which further illustrates

the repeatability of our classifier. We further performed sur-

vival analysis with regard to the five-gene-based classifier in

subsets of patients with different clinical variables in the

TCGA LUAD dataset. When stratified by clinical variables

(sex, age, and pathologic stage), the five-gene-based classi-

fier was still a statistically significant prognostic model (Fig-

ure S1).

The FEM MUC1 was identified in LUAD

We implemented the FEM algorithm (Jiao et al., 2014)

to integrate gene expression and DNA methylation data to

perform FEM analysis, and four different functional mod-
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Figure 2 - Screening of methylation markers for lung adenocarcinoma and the construction and validation of the diagnostic classifier. (a) The ROC curve

of the logistic regression model. (b) Unsupervised clustering map of the methylation profile for the three DNA methylation markers. (c, d) ROC curves in

the independent validation datasets.
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Table 2 - Characteristics of patients by the five-gene-based classifier assessment set.

TCGA LUAD

(N=574)

GSE50081

(Adenocarcinoma N=127)

GSE42127

(Adenocarcinoma N=133)

GSE42127

(Squamous N=43)

Age (Years, mean � std) 65.52 � 9.91 68.73 � 9.71 65.76 � 10.29 68.11 � 7.76

Gender

MALE 238 62 65 18

FEMALE 272 65 68 25

Stage

I 5 0 0 0

IA 132 36 32 10

IB 134 56 57 13

II 1 0 0 0

IIA 50 7 6 3

IIB 70 28 16 7

IIIA 73 0 7 6

IIIB 11 0 13 4

IV 26 0 1 0

Survival status

Alive 317 76 90 22

Dead 181 51 43 21

Survival time (Months, mean � std) 30.41 � 30.04 42.39 � 27.66 49.67 � 31.70 53.53 � 34.45

N indicates the number of tumor samples.

Figure 3 - Screening of the prognostic markers for lung adenocarcinoma and the construction of the prognostic classifier. (a) K-M curve in the TCGA

training dataset. (b,c,d) K-M curve in the independent validation dataset.



ules were identified in the TCGA dataset: (MUC1) (Figure

4a), ADCY8, CAOLEC10 and WNT3A (Figure S2). Then,

in the validation data set (GSE75037 and GSE56044), three

modules were identified: MUC1 (Figure 4b), GSTMS and

OTX1 (Figure S2), of which, the MUC1 module was identi-

fied in both of the datasets. The MUC1 modules identified in

the two datasets were significantly overlapping (45 overlap-

ping genes, P-value < 0.01, hypergeometric test) (Figure 4

and Table S2).

The genes in the MUC1 module were enriched in the

ricin lectin domain structure and participated in biological

processes such as O polysaccharide processing, protein gly-

cosylation, keratin sulfate biosynthesis, mucin O polysac-

charide biosynthesis, and sheath sugar lipid biosynthesis as

well as metabolic signaling pathways (Figure 4).

Pro-oncogenic mucin MUC1 was reported to contribute to

smoking-induced lung cancers that are driven by inflamma-

tory signals from macrophages (Xu et al., 2014). A previous

study showed that overexpression of MUC1 induces epithe-

lial-mesenchymal transition and promotes the metastasis of

lung cancer cells (Xue et al., 2017). In addition, MUC1 was

reported to be useful in predicting prognosis in NSCLC pa-

tients (Zhu et al., 2014) and may contribute to the treatment

of patients with NSCLC resistant to EGFR kinase inhibitors
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Figure 4 - Functional epigenetic modules of lung adenocarcinoma. (a) MUC1 module identified in TCGA (left) and enrichment analysis results (right).

(b) MUC1 module identified in the GEO validation set (left) and enrichment analysis (right). The node color indicates the DNA methylation difference

(blue indicates high methylation, and yellow indicates low methylation), and the edge color indicates differentially expressed genes (red represents genes

with high expression level in tumors and green represents genes with low expression in tumors).



(Kharbanda et al., 2014), indicating that our identified func-

tional epigenetic module MUC1 may play an important role

in the development and prognosis of LUAD.

Discussion

LUAD is one of the most common neoplasms, and the

early diagnosis of LUAD has always been challenging.

DNA methylation changes have been reported to occur early

in carcinogenesis (Teschendorff et al., 2016), and DNA

methylation analysis seems to be a promising strategy in

cancer diagnosis. This study used the data of the TCGA

LUAD and GEO public datasets, performed an integrative

analysis of gene expression and DNA methylation data, and

selected three potential DNA methylation biomarkers for the

diagnosis of LUAD. All three CpGs are differentially vari-

able and differentially methylated CpGs (DVMCs) in the

TCGA LUAD dataset (Figure S3). DVMC was defined by

Teschendorff et al. (2016) and could be useful to identify

field defects. In addition, five potential prognostic gene ex-

pression signatures selected from the differentially expres-

sed genes could be used to predict the outcome of LUAD

patients. We also performed stratification analysis, in which,

different clinical variables (sex, age and stage) were evalu-

ated separately and our prognostic model could also divide

tumor patients into high-risk and low-risk groups with sig-

nificantly different outcomes. Finally, we identified the fun-

ctional epigenetic module MUC1, which plays a certain role

in LUAD, in both the TCGA and GEO datasets. The poten-

tial DNA methylation biomarkers identified in this study

may be used to design appropriate methylation targeted ther-

apies.
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