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Abstract: Marcucci (1985) proposed a chi square goodness of fit statistic based generalized p-chart 
for multinomial process monitoring. A chi square distribution quantile was considered as a control 
chart limit. A weighted chi square goodness of fit statistic-based control chart is proposed for 
multinomial process monitoring in this paper, where more important weights are advocated to poor 
quality categories. The statistic distribution is approximated by a well-known linear combination of 
chi squares distribution. The approximation is assessed through a simulation, an extreme percentile 
of the approximated distribution is used as an upper control chart limit and a comparison is carried 
out with a chi square goodness of fit statistic-based control chart. The average run length is used as 
a benchmark and the comparison is performed using simulations considering two process shifts 
scenarios. Under some restrictions, the weighted statistic-based control chart allows an earlier 
detection of process shift in case of deterioration and postpones out of control signals in case of 
improvement. This benefit is clearer when the process is improved by a decrease in the poor quality 
probability category and an increase in the best quality category probability. 

Keywords: Multinomial Process; Generalized p-Chart; Distribution Approximation; Simulation. 

Resumo: Marcucci (1985) propôs um gráfico generalizado baseado na estatística de bondade de 
ajuste do qui-quadrado para monitoramento de processos multinominais. Um quantil de distribuição 
do qui quadrado foi considerado como limite do gráfico de controle. Um gráfico de controle baseado 
em estatística de qualidade de ajuste chi-quadrado ponderado é proposto para monitoramento de 
processo multinominal neste artigo, onde pesos mais importantes são defendidos para categorias 
de baixa qualidade. A distribuição estatística é aproximada por uma combinação linear bem 
conhecida de distribuição de qui-quadrados. A aproximação é avaliada por meio de uma simulação, 
um percentil extremo da distribuição aproximada é usado como um limite superior do gráfico de 
controle e uma comparação é realizada com um gráfico de controle baseado na estatística de 
qualidade do qui quadrado do ajuste. O comprimento médio de execução é usado como referência 
e a comparação é realizada por meio de simulações considerando dois cenários de deslocamento 
de processo. Sob algumas restrições, o gráfico de controle baseado em estatística ponderada 
permite uma detecção precoce de mudança de processo em caso de deterioração e adia sinais fora 
de controle em caso de melhoria. Esse benefício fica mais claro quando o processo é aprimorado 
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por uma diminuição na categoria de probabilidade de qualidade ruim e um aumento na probabilidade 
da categoria de melhor qualidade. 

Palavras-chave: Processo Multinominal; Gráfico generalizado; Aproximação de distribuição; 
Simulação. 

1 Introduction 

Control charts for attributes are used when focus is on the classification of product 
units into categories rather than quality characteristic measurements. The inspected units 
are generally classified into conforming or nonconforming units; however, different criteria 
of nonconforming classification could be used following defect seriousness. Such 
processes are called multinomial processes. 

Raz & Wang (1990) and Taleb & Limam (2002) have introduced and discussed the 
construction of univariate control charts for multinomial process monitoring using both 
probability and fuzzy theory. Moreover, (Taleb et al., 2006) discussed methods based on 
multivariate fuzzy multinomial control charts. A review of multinomial and multi attribute 
quality control charts is given by (Topalidou & Psarakis, 2009). 

A probabilistic approach is considered in this paper as no classification ambiguity is 
considered. It is based on the work of (Duncan, 1950) who developed a chi square chart 
for controlling a set of percentages and (Marcucci, 1985) who introduced a one-sided 
generalized p-chart for multinomial process monitoring. (Cozzucoli, 2009) used an overall 
defectiveness index based two-sided multivariate p-chart to distinguish between process 
improvement and process deterioration by points less than LCL and greater than UCL, 
respectively. The overall defectiveness index is a weighted proportions of defects statistic 
where weights are between 0 and 1. It was noticed that the proposed control chart 
performance depends on weight values. (Yashchin, 2012) derived changepoint detection 
schemes based on generalized likelihood ratio tests. The considered schemes are based 
on predefined acceptable and unacceptable regions for the monitored parameters. 
(Li et al., 2014a) considered that the ordinal attribute levels of a categorical variable are 
formed by some thresholds of the latent continuous variable. An example where flash on 
the head of toothbrush is classified into four categories according to its length is 
considered. A simple ordinal categorical control chart to detect location shift in factor’s 
latent continuous variable distribution was then proposed. (Li et al., 2014b) proposed a 
multivariate binomial and multinomial control chart. An EWMA-type control chart is 
implemented using log-linear models for characterizing the relationship among categorical 
factors. (Weiss, 2018) proposed a control chart for serially dependent categorical 
processes monitoring. (Perry, 2019) used an EWMA control chart for categorical 
processes where weighted category counts were used as a control chart statistic. The 
weight assigned to each category is the inverse of its expected count. (Marcucci, 1985) 
control chart statistic depends already on the inverse of the expected count. The aim of 
this work is to propose an improved (Marcucci, 1985) generalized p-chart rather than 
improvement detection. The proposed control chart is based on a weighted chi-square 
goodness of fit statistic and aims at earlier detection of process deterioration and delay 
improvement detection. A weighted goodness of fit statistic called Q statistic is presented 
in section 2, as the distribution of the Q statistic is unknown, the distribution approximation 
issue is discussed in section 3 and the approximated distribution is assessed in section 4. 
The Q statistic control chart is presented through an illustrative example in section 5, 
finally its performance is compared to Marcucci (1985) control chart in section 6. 
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2 The Weighted Goodness of Fit Statistic 

Multinomial process output is classified into q categories. Let p1, p2, ..., pq be the 
probabilities of classification into the exhaustive and mutually exclusive categories with 
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=∑  and pj known ∀j = 1, ..., q, where conform units are classified into the first 

category and worst quality units are classified into the qth category. Xj is the observed 
number of output units classified into the jth category. If m samples are selected randomly 
without replacement, then Xij is the observed number of output units in the ith sample and 
classified into the jth category with i = 1, ..., m and let ni be the sample sizes, it is common 
to suppose that all samples have the same sample size n. 

Marcucci (1985) proposed to use the following chi square (Equation 1) goodness of fit 
statistic for multinomial process monitoring: 
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where nipj is the expected count at the ith sample and jth category. The proposed statistic 
is a measure of overall deviations from expected counts and has a known distribution, 
hence, a quantile of the distribution is used as an upper control limit for the χ2 control 
chart. Moreover, the goodness of fit statistic does not take into consideration whether poor 
quality categories expected count decrease or increase and all deviations have similar 
impact. The control chart statistic does not distinguish between quality improvement and 
quality deterioration. 

For that purpose, different weights are attributed to the categories considering that 
deviations from expected counts in categories with poor process output quality have 
negative impact on the overall process output quality. Then, more important weights are 
advocated to poor quality categories. Let w1, w2, ..., wq be the categories constant weights. 
The overall deviations from expected counts assessment is given by the following Q 
statistic (Equation 2): 
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if several samples are considered, then the Q statistic for the ith sample is given by 
Equation 3: 
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3 Q Statistic distribution approximation 

Qi is considered as the control chart positive statistic and a one-sided control chart is 
the appropriate choice. in what follows, Qi distribution is approximated by a linear 
combination of chi squares as the exact distribution is not known (Equation 4) 
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Applications of linear combination of chi squares are presented in (Jensen & Solomon, 
1972) and in (Mathai & Provost, 1992). (Kotz et al., 1967) used power series expansion 
to determine the approximated Q statistic distribution. (Davis, 1977) tried to solve the slow 
convergence of the power series for large values of the linear combination of chi squares 
using differential equations and assuming positive coefficients for a useful range of 
parameters. (Oman & Zacks, 1981) noticed that all available methods suffer of lengthy 
computations or are insufficiently accurate. However, the work of (Feiveson & Delaney, 
1968) was not considered. (Moschopoulos & Canada, 1984) presented an easily 
programmed method for the distribution computation and better or at least as accurate as 
(Oman & Zacks, 1981) method, they noticed that their moment generating function-based 
method has equivalent results than (Imhof, 1961) method. Moreover, (Davies, 1980) 
presented an algorithm to compute the distribution function of linear combination of non-
central chi square variables and (Castano-Martinez & Lopez-Blazquez, 2005) derived 
Laguerre expansions for the density and distribution functions for a sum of positive 
weighted noncentral chi square variables. (Bodenham & Adams, 2016) compared 
different approximations for weighted sum of chi squared random variables in the case of 
streaming data and noticed that Imhof’s method is essentially exact, however, it is not 
suitable for a streaming data scenario. (Moschopoulos & Canada, 1984) point out that the 
linear combination of independent central chi-square random variables distribution 
function is given by Equation 5: 
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where 𝑄𝑄𝑖𝑖 is expressed as in Equation 4, gj(t) is the p.d.f. of the Gamma distribution with a 
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(Moschopoulos & Canada, 1984) provided some percentiles corresponding to different 

wj and different degrees of freedom, they recommend using 40 terms in Equation 5 to 
determine numerically upper percentiles of the linear combination of chi squares. 
However, it is noticed that for extreme quantiles and large weight values, result 
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convergence needs more than 85 terms. Notice that if wj = 1, ∀j = 1, ..., q then Qi ∼ χ2(q) 
this property is used as a benchmark for program code validation. Figures 1,2 and 3 
compare the approximated Q distribution to different chi square distributions and it is 
noticed that the approximated Q distribution depends on the category number and is 
different from a chi square distribution. Approximated Q quantiles are given in Table 1 for 
different values of q and different weights where α is the quantile order. (Feiveson & 
Delaney, 1968) approximated the linear combination of chi-squares distribution by a 

gamma distribution with a rate parameter 1 
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 and pointed out that large standard deviation of weights overestimate the true 

functional value in the right tail of the distribution. 

Table 1. Linear Combination Percentiles for Different Weights and q Values. 

w1, …, wq α = 0.99 α = 
0.975 α = 0.95 α = 0.9 α = 0.1 α = 0.05 α = 0.025 α = 0.01 

0.10,0.40,0.50 0.0313 0.0593 0.0976 0.1643 2.1873 2.8175 3.4503 4.2908 
1.00,1.00,1.00 0.1148 0.2157 0.3518 0.5843 6.2513 7.8147 9.3484 11.3448 
1.00,4.00,5.00 0.3139 0.5936 0.9760 1.6438 21.8738 28.1754 34.5032 42.9080 
0.40,0.50,5.00 0.1163 0.2212 0.3667 0.6273 14.1921 15.0605 15.2203 15.2930 
0.20,0.30,10.0 0.1000 0.1936 0.3294 0.5922 7.4066 7.4389 7.4448 7.4516 
0.10,0.20,0.40 0.0230 0.0434 0.0712 0.1191 1.5171 1.9716 2.4398 3.0766 
0.20,0.30,0.50 0.0357 0.0672 0.1098 0.183 2.1214 2.7075 3.3021 4.1022 
0.40,0.60,1.80 0.0871 0.1644 0.2696 0.4519 6.1697 8.182 10.2868 13.1681 
0.05,0.10,0.40 0.0145 0.0276 0.0455 0.0769 1.262 1.7119 1.9708 2.0150 

1
2
qj

e
 − − 
   

0.0702 0.1329 0.2189 0.3698 5.5635 7.4118 8.8541 9.1435 

0.05,0.10,0.20,0.30 0.0396 0.0651 0.0964 0.1465 1.3374 1.6958 2.0582 2.5438 
0.05,0.15,0.30,0.40 0.0524 0.0866 0.1289 0.1972 1.8617 2.3563 2.8533 3.5223 
0.05,0.10,0.20,0.40 0.0427 0.0703 0.1044 0.1593 1.5717 2.0260 2.4940 3.1316 
0.05,0.10,0.20,0.50 0.0452 0.0747 0.1112 0.1703 1.8141 2.3745 2.9585 3.7887 
0.05,0.10,0.25,0.30 0.0419 0.0690 0.1024 0.1559 1.4461 1.8302 2.2152 2.7256 
0.05,0.10,0.15,0.30 0.0367 0.0604 0.0893 0.1355 1.2335 1.5744 1.9249 2.4015 
1.00,2.00,3.00,5.00 0.7018 1.1510 1.7007 2.5729 22.3576 28.2192 34.1631 42.1611 
0.50,1.00,3.00,5.00 0.5030 0.8321 1.2422 1.9096 20.2029 26.0361 32.0016 40.8856 
1.00,3.00,5.00,10.0 1.0618 1.7539 2.6133 4.0032 39.7681 51.1285 62.8500 80.0873 
1.00,1.00,1.00,1.00 0.2971 0.4844 0.7107 1.0636 7.7794 9.4877 11.1432 13.2767 
2.00,5.00,10.0,20.0 2.0285 3.3504 4.9922 7.6501 78.0008 100.7196 124.1711 158.3079 

1
2
qj

e
 − − 
   

0.1869 0.3118 0.4702 0.7338 9.3129 12.3603 15.5398 19.9112 

1.00,1.00,1.00,1.00,1.00 0.5542 0.8312 1.1454 1.6103 9.2363 11.0704 12.8325 15.0862 
0.05,0.10,0.20,0.30,0.50 0.0981 0.1494 0.2093 0.3012 2.2890 2.8753 3.4764 4.4908 
0.05,0.10,0.15,0.20,0.50 0.0849 0.1289 0.1801 0.2583 2.0067 2.5652 3.1473 3.9988 
0.05,0.10,0.25,0.40,0.50 0.1094 0.1669 0.2346 0.3390 2.5866 3.2273 3.9065 4.7318 
0.05,0.10,0.20,0.40,0.50 0.1044 0.1592 0.2235 0.3227 2.5004 3.1330 3.7664 4.6068 
0.50,1.00,3.00,4.00,5.00 1.1371 1.7369 2.4427 3.5340 26.7899 33.2844 39.7262 48.2125 
0.50,2.00,2.50,3.00,5.00 1.1809 1.7967 2.5147 3.6110 25.2738 31.2622 37.2654 45.2826 
0.05,0.10,0.20,0.40,1.20 0.1267 0.1950 0.2769 0.4066 4.1783 5.5218 6.9284 9.6310 
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Figure 1. Approximated Three Categories Q Distribution with Weights i
q

 Against Chi Square Distributions. 

 

Figure 2. Approximated Four Categories Q Distribution with Weights i
q

 Against Chi Square Distributions. 

 

Figure 3. Approximated Five Categories Q Distribution with Weights i
q

 Against Chi Square Distributions 
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Figure 4. Approximated Three Categories Q Distribution with different weights against the gamma 

distribution. 

4 Approximations assessment 

Using (Moschopoulos & Canada, 1984) approximation the Q statistic 
approximated cumulative distribution is represented graphically against some chi 
square distributions. The considered weights are j

jw
q

=  with j = 1, ..., q. The Q 
statistic approximated cumulative distribution could be then compared graphically 
to ( )2 1qχ −  distribution. It becomes obvious that the upper control chart limit value 
based on linear combination of chi squares distribution approximation with j

jw
q

=  is 
less than the upper limit determined from the chi square distribution as 
wj  ≤  1,  ∀j  =  1...q. Moreover, Figure 4 shows that the linear combination of chi 
squares distribution is more likely to be a gamma distribution rather than a chi 
square distribution and that it is sensitive to weight change. However, the Q statistic 
is a weighted chi square goodness of fit statistic, it would be interesting to compare 
graphically the linear combination of chi squares distribution and the weighted chi 
square goodness of fit statistic empirical distribution. In order to represent 
graphically the empirical distribution different multinomial distribution parameters 
were considered, 100000 samples were generated from each multinomial 
distribution and the Q statistic was computed for each sample of each multinomial 
distribution. Figure 5 illustrates both distributions where the empirical distribution is 
obtained for several category probabilities combinations and for huge sample size 
n=20000. It becomes obvious that the empirical distribution is sensitive to category 
probabilities changes and that the closest distribution to the approximation 
distribution is the empirical distribution with the lowest poor quality category 
classification probability. 

A simulation is implemented to assess the Q statistic distribution approximation by 
linear combination of chi squares. As the approximated quantile with order 0.0027 would 
be used as the control chart upper control limit, then, first, the quantile x0.0027 is determined 
for q = 3,4,5 using (5), then 5000 samples are generated from a multinomial distribution, 
different sample sizes will be used, finally the Q statistic is computed for each sample and 
the number of Q statistic values beyond the x0.0027 are counted. These steps are repeated 
5000 times, hence, the average count of Q statistic values beyond the x0.0027 is determined 
and divided by 5000 in order to determine the proportion α of Q statistic values beyond 
the x0.0027. The approximation is satisfactory if the determined proportions are close and 
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converge to the targeted value α = 0.0027 when the sample size is increased. Simulation 
results are in Tables 2, 3 and 4. 

The remarkable fact is that α does not converge exactly to the targeted value 
0.0027 for all considered multinomial distributions, however, it is noticed 
computationally and graphically that the approximation is more efficient when 
pq  ≤  0.01. The quantile x0.0027 could be used as an upper control limit for a Q control 
chart especially when pq ≤ 0.01. As in Figure 4 it was noticed that linear combination 
of chi squares distribution is more likely to be the gamma distribution, then, in what 
follows (Feiveson & Delaney, 1968) approximation is assessed for the Q distribution 
x0.0027 quantile using the same steps explained previously. Results are in 
Tables  5,  6 and 7 where no approximation improvements are observed. Since 
Imhof’s method the essentially exact and that (Moschopoulos & Canada, 1984) 
method is in fact the Imhof’s method equivalent, then, only (Moschopoulos & 
Canada, 1984) approximation will be used for the control chart performance 
assessment where the A.R.L. is used as a benchmark. 

 
Figure 5. Q Statistic approximated cumulative distribution against empirical distributions. 

5 Q Statistic Control Chart 

Multinomial processes with q categories are considered. Quality levels are ordered 
and let the first category has the best quality level, the qth category has the worst quality 
level. Let p1, p2, ..., pq be the probabilities to classify a given product unit into one of the q 

categories with  
1

1
q

j
j

p
=

=∑ . Different weights w1 ≤ w2 ≤ ... ≤ wq are assigned to the 

considered categories. For a given taken randomly sample and including n product units, 
let Xj be the count of product units in the jth category. The Q statistic is computed for the 
considered sample as Equation 2 and if several samples are considered, then the Q 
statistic for the ith sample is given by Equation 3, where ni is the size of the ith sample and 
Xij is the observed count of product units in the ith sample and classified into the jth 
category. 
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Table 2. α for different sample sizes and q = 3. 

p1, p2, p3 n=3000 n=1000 n=500 n=300 n=200 
0.8000,0.1600,0.0400 0.0018 0.0018 0.0019 0.0021 0.0024 
0.6600,0.3000,0.0400 0.0016 0.0017 0.0019 0.0020 0.0023 
0.8500,0.1000,0.0500 0.0018 0.0019 0.0019 0.0021 0.0022 
0.7400,0.2000,0.0600 0.0016 0.0018 0.0018 0.0019 0.0020 
0.5500,0.3800,0.0700 0.0014 0.0015 0.0016 0.0017 0.0019 
0.8000,0.1300,0.0700 0.0016 0.0017 0.0018 0.0019 0.0021 
0.9000,0.0700,0.0300 0.0020 0.0022 0.0023 0.0028 0.0037 
0.7000,0.2700,0.0300 0.0017 0.0019 0.0021 0.0025 0.0034 
0.9425,0.0500,0.0075 0.0025 0.0029 0.0043 0.0047 0.0053 
0.5500,0.4425,0.0075 0.0022 0.0024 0.0036 0.0040 0.0047 
0.9600,0.0300,0.0100 0.0024 0.0027 0.0033 0.0045 0.0056 
0.6500,0.3400,0.0100 0.0021 0.0023 0.0028 0.0040 0.0047 
0.9300,0.0500,0.0200 0.0021 0.0023 0.0026 0.0039 0.0038 
0.5000,0.4800,0.0200 0.0017 0.0019 0.0021 0.0035 0.0029 
0.9725,0.0200,0.0075 0.0026 0.0030 0.0045 0.0046 0.0060 
0.9835,0.0100,0.0065 0.0027 0.0038 0.0050 0.0052 0.0095 
0.9750,0.0200,0.0050 0.0026 0.0033 0.0049 0.0057 0.0054 
0.9775,0.0175,0.0050 0.0027 0.0033 0.0050 0.0056 0.0059 
0.9700,0.0200,0.0100 0.0024 0.0027 0.0033 0.0047 0.0059 
0.9675,0.0200,0.0125 0.0022 0.0030 0.0034 0.0043 0.0058 

Table 3. α for different sample sizes and q = 4. 

p1, p2, p3, p4 n=3000 n=1000 n=500 n=300 n=200 
0.8000,0.1000,0.0600,0.0400 0.0019 0.0021 0.0023 0.0025 0.0027 
0.6000,0.2500,0.1100,0.0400 0.0018 0.0019 0.0021 0.0023 0.0024 
0.5500,0.2500,0.1500,0.0500 0.0017 0.0017 0.0018 0.0021 0.0021 
0.8500,0.0500,0.0500,0.0500 0.0019 0.0021 0.0022 0.0025 0.0027 
0.7000,0.1500,0.0900,0.0600 0.0017 0.0018 0.0019 0.0020 0.0022 
0.5000,0.2900,0.1500,0.0600 0.0016 0.0017 0.0017 0.0018 0.0020 
0.6000,0.3400,0.0525,0.0075 0.0023 0.0030 0.0036 0.0044 0.0055 
0.5400,0.2500,0.2025,0.0075 0.0020 0.0027 0.0032 0.0039 0.0051 
0.6000,0.3700,0.0200,0.0100 0.0022 0.0027 0.0035 0.0051 0.0058 
0.8000,0.1400,0.0500,0.0100 0.0023 0.0028 0.0034 0.0048 0.0054 
0.7000,0.1700,0.1100,0.0200 0.0020 0.0022 0.0025 0.0029 0.0035 
0.5500,0.3500,0.0800,0.0200 0.0020 0.0022 0.0025 0.0029 0.0036 
0.9450,0.0300,0.0150,0.0100 0.0025 0.0031 0.0039 0.0054 0.0064 
0.9700,0.0125,0.0100,0.0075 0.0027 0.0036 0.0047 0.0059 0.0070 
0.9650,0.0150,0.0100,0.0100 0.0026 0.0033 0.0042 0.0060 0.0069 
0.9675,0.0150,0.0100,0.0075 0.0027 0.0036 0.0046 0.0057 0.0069 
0.9430,0.0300,0.0150,0.0120 0.0024 0.0030 0.0037 0.0051 0.0055 
0.9425,0.0300,0.0150,0.0125 0.0024 0.0029 0.0038 0.0045 0.0061 
0.9350,0.0300,0.0200,0.0150 0.0024 0.0028 0.0035 0.0041 0.0054 
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Table 4. α for different sample sizes and q = 5. 

p1, p2, p3, p4, p5 n=3000 n=1000 n=500 n=300 n=200 

0.7400,0.10,0.070,0.050,0.0400 0.0020 0.0021 0.0023 0.0026 0.0029 
0.6500,0.13,0.100,0.080,0.0400 0.0019 0.0019 0.0021 0.0023 0.0026 
0.6400,0.12,0.100,0.080,0.0600 0.0017 0.0018 0.0019 0.0021 0.0022 
0.5500,0.20,0.100,0.080,0.0700 0.0017 0.0017 0.0018 0.0020 0.0021 
0.5500,0.20,0.120,0.080,0.0500 0.0018 0.0018 0.0020 0.0021 0.0024 
0.8000,0.05,0.050,0.050,0.0500 0.0019 0.0020 0.0022 0.0024 0.0028 
0.6000,0.25,0.070,0.050,0.0300 0.0020 0.0022 0.0024 0.0027 0.0031 
0.4000,0.27,0.200,0.100,0.0300 0.0018 0.0019 0.0021 0.0023 0.0026 
0.7000,0.20,0.050,0.030,0.0200 0.0022 0.0025 0.0029 0.0033 0.0043 
0.5000,0.23,0.150,0.100,0.0200 0.0019 0.0021 0.0025 0.0028 0.0035 
0.8000,0.10,0.050,0.040,0.0100 0.0023 0.0029 0.0036 0.0046 0.0059 
0.6000,0.15,0.140,0.100,0.0100 0.0021 0.0026 0.0032 0.0041 0.0053 
0.9100,0.05,0.020,0.010,0.0100 0.0026 0.0034 0.0044 0.0058 0.0073 
0.9105,0.05,0.020,0.010,0.0095 0.0027 0.0034 0.0044 0.0056 0.0067 
0.9425,0.03,0.010,0.010,0.0075 0.0027 0.0038 0.0048 0.0060 0.0078 
0.9250,0.04,0.020,0.010,0.0050 0.0029 0.0041 0.0059 0.0071 0.0073 
0.9200,0.05,0.015,0.010,0.0050 0.0029 0.0041 0.0059 0.0071 0.0075 
0.9000,0.05,0.020,0.015,0.0150 0.0024 0.0029 0.0037 0.0047 0.0058 
0.9080,0.05,0.020,0.010,0.0120 0.0026 0.0032 0.0040 0.0053 0.0065 
0.9060,0.05,0.020,0.012,0.0120 0.0025 0.0032 0.0039 0.0051 0.0062 
0.9030,0.05,0.020,0.010,0.0170 0.0025 0.0030 0.0038 0.0048 0.0057 

Table 5. α for different sample sizes and q = 3 using Gamma distribution x0.0027 quantile. 

p1, p2, p3 n=3000 n=1000 n=500 n=300 n=200 

0.8000,0.1600,0.0400 0.0022 0.0023 0.0024 0.0029 0.0036 
0.6600,0.3000,0.0400 0.0021 0.0021 0.0022 0.0028 0.0034 
0.8500,0.1000,0.0500 0.0022 0.0023 0.0026 0.0026 0.0029 
0.7400,0.2000,0.0600 0.0020 0.0020 0.0021 0.0022 0.0028 
0.5500,0.3800,0.0700 0.0018 0.0018 0.0019 0.0019 0.0023 
0.8000,0.1300,0.0700 0.0020 0.0020 0.0022 0.0022 0.0025 
0.9000,0.0700,0.0300 0.0024 0.0025 0.0028 0.0032 0.0039 
0.7000,0.2700,0.0300 0.0021 0.0022 0.0024 0.0027 0.0036 
0.9425,0.0500,0.0075 0.0029 0.0034 0.0058 0.0058 0.0056 
0.5500,0.4425,0.0075 0.0024 0.0028 0.0053 0.0056 0.0049 
0.9600,0.0300,0.0100 0.0028 0.0032 0.0041 0.0050 0.0056 
0.6500,0.3400,0.0100 0.0023 0.0028 0.0034 0.0041 0.0049 
0.9300,0.0500,0.0200 0.0026 0.0027 0.0032 0.0043 0.0039 
0.5000,0.4800,0.0200 0.0021 0.0022 0.0026 0.0036 0.0033 
0.9725,0.0200,0.0075 0.0030 0.0035 0.0060 0.0064 0.0062 
0.9835,0.0100,0.0065 0.0030 0.0042 0.0067 0.0065 0.0120 
0.9750,0.0200,0.0050 0.0030 0.0042 0.0056 0.0059 0.0074 
0.9775,0.0175,0.0050 0.0030 0.0042 0.0056 0.0060 0.0059 
0.9700,0.0200,0.0100 0.0027 0.0034 0.0042 0.0049 0.0062 
0.9675,0.0200,0.0125 0.0027 0.0034 0.0038 0.0060 0.0057 
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Table 6. α for different sample sizes and q = 4 using Gamma distribution x0.0027 quantile. 

p1, p2, p3, p4 n=3000 n=1000 n=500 n=300 n=200 
0.8000,0.1000,0.0600,0.0400 0.0024 0.0026 0.0028 0.0030 0.0033 
0.6000,0.2500,0.1100,0.0400 0.0022 0.0024 0.0025 0.0026 0.0029 
0.5500,0.2500,0.1500,0.0500 0.0024 0.0025 0.0027 0.0030 0.0032 
0.8500,0.0500,0.0500,0.0500 0.0021 0.0022 0.0022 0.0024 0.0025 
0.7000,0.1500,0.0900,0.0600 0.0022 0.0022 0.0023 0.0026 0.0026 
0.5000,0.2900,0.1500,0.0600 0.0020 0.0020 0.0022 0.0023 0.0024 
0.6000,0.3400,0.0525,0.0075 0.0028 0.0034 0.0044 0.0051 0.0060 
0.5400,0.2500,0.2025,0.0075 0.0025 0.0031 0.0040 0.0047 0.0054 
0.6000,0.3700,0.0200,0.0100 0.0028 0.0033 0.0040 0.0054 0.0065 
0.8000,0.1400,0.0500,0.0100 0.0025 0.0027 0.0030 0.0036 0.0039 
0.7000,0.1700,0.1100,0.0200 0.0024 0.0027 0.0030 0.0036 0.0040 
0.5500,0.3500,0.0800,0.0200 0.0024 0.0027 0.0030 0.0036 0.0040 
0.9450,0.0300,0.0150,0.0100 0.0030 0.0037 0.0046 0.0058 0.0068 
0.9700,0.0125,0.0100,0.0075 0.0033 0.0042 0.0055 0.0067 0.0076 
0.9650,0.0150,0.0100,0.0100 0.0032 0.0040 0.0050 0.0063 0.0076 
0.9675,0.0150,0.0100,0.0075 0.0033 0.0042 0.0056 0.0065 0.0077 
0.9430,0.0300,0.0150,0.0120 0.0031 0.0036 0.0046 0.0060 0.0063 
0.9425,0.0300,0.0150,0.0125 0.0030 0.0036 0.0043 0.0053 0.0067 
0.9350,0.0300,0.0200,0.0150 0.0029 0.0034 0.0040 0.0047 0.0059 

Table 7. α for different sample sizes and q = 5 using Gamma distribution x0.0027 quantile 

p1, p2, p3, p4, p5 n=3000 n=1000 n=500 n=300 n=200 
0.7400,0.10,0.070,0.050,0.0400 0.0025 0.0026 0.0028 0.0031 0.0034 
0.6500,0.13,0.100,0.080,0.0400 0.0024 0.0025 0.0026 0.0029 0.0031 
0.6400,0.12,0.100,0.080,0.0600 0.0022 0.0023 0.0024 0.0025 0.0027 
0.5500,0.20,0.100,0.080,0.0700 0.0021 0.0022 0.0023 0.0024 0.0026 
0.5500,0.20,0.120,0.080,0.0500 0.0023 0.0023 0.0024 0.0026 0.0029 
0.8000,0.05,0.050,0.050,0.0500 0.0025 0.0026 0.0028 0.0030 0.0033 
0.6000,0.25,0.070,0.050,0.0300 0.0025 0.0027 0.0030 0.0033 0.0037 
0.4000,0.27,0.200,0.100,0.0300 0.0022 0.0024 0.0026 0.0029 0.0032 
0.7000,0.20,0.050,0.030,0.0200 0.0028 0.0030 0.0035 0.0040 0.0049 
0.5000,0.23,0.150,0.100,0.0200 0.0024 0.0026 0.0030 0.0033 0.0040 
0.8000,0.10,0.050,0.040,0.0100 0.0029 0.0035 0.0041 0.0055 0.0064 
0.6000,0.15,0.140,0.100,0.0100 0.0026 0.0031 0.0037 0.0049 0.0057 
0.9100,0.05,0.020,0.010,0.0100 0.0033 0.0041 0.0050 0.0068 0.0081 
0.9105,0.05,0.020,0.010,0.0095 0.0033 0.0041 0.0052 0.0063 0.0075 
0.9425,0.03,0.010,0.010,0.0075 0.0034 0.0045 0.0056 0.0070 0.0086 
0.9250,0.04,0.020,0.010,0.0050 0.0035 0.0047 0.0068 0.0077 0.0082 
0.9200,0.05,0.015,0.010,0.0050 0.0035 0.0047 0.0068 0.0078 0.0083 
0.9000,0.05,0.020,0.015,0.0150 0.0031 0.0036 0.0045 0.0053 0.0067 
0.9080,0.05,0.020,0.010,0.0120 0.0032 0.0039 0.0048 0.0062 0.0071 
0.9060,0.05,0.020,0.012,0.0120 0.0031 0.0038 0.0047 0.0061 0.0069 
0.9030,0.05,0.020,0.010,0.0170 0.0031 0.0037 0.0044 0.0056 0.0065 

Higher weight values are assigned to categories with poor quality in order to detect earlier 
process deterioration and delay process improvement detection. It is proposed that j

jw
q

= . 
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The Q statistic is a weighted distance between the observed counts and theoretical counts 
computed under the hypothesis that count occurrence in different categories are independent. 
In order to control the Q statistic values, a one-sided control chart is considered where the Q 
statistic distribution quantile of order α is the upper control limit, where α is the targeted false 
alarm rate. Since the Q statistic distribution is unknown, the α quantile is approximated by a 
quantile of the distribution in Equation 5 as explained previously. Q statistic control chart is 
illustrated through the following example. The example of (Marcucci, 1985) is reconsidered, 
where in brick manufacturing, a brick could be classified as suitable for all uses (standard), or 
(chipped-face) if sound but not suitable for all uses or unacceptable for use (cull). Classification 
probabilities are 95%, 3%, 2% respectively and the 95th percentile of the χ2(2) distribution is used 
as the upper control limit for the Yi2 statistic defined in Equation 1. In the same way the 95th 
percentile of the approximated distribution of the Q statistic is used as the upper control limit for 
Q statistic control chart where j

jw
q

=  with j=1,2,3 in this case. Hence, 5.99 and 5.47 are the 
control limits for the χ2 chart and the Q chart respectively. Table 8 gives the control charts 
statistics computation. Both charts behave identically and show that samples 5, 10, 11 and 14 
are out of control. 

Table 8. Control Charts Statistics Computation. 

Brick Classification 
Chipped 

Time Standard Face Cull Total 2
iY  iQ  

1 242 8 4 254 0.25 0.24 
2 199 5 3 207 0.58 0.48 
3 228 10 5 243 1.05 0.69 
4 193 5 3 201 1.78 0.38 
5 214 15 3 232 10.05 6.83 
6 132 4 2 138 0.22 0.21 
7 206 7 5 218 0.13 0.12 
8 146 5 4 155 0.30 0.28 
9 207 7 7 221 1.57 1.53 
10 174 24 8 206 57.44 38.71 
11 223 12 10 245 8.66 7.40 
12 204 12 5 221 4.59 3.03 
13 196 8 8 212 3.76 3.66 
14 225 10 10 245 6.52 6.03 
15 225 7 5 237 0.16 0.01 
16 141 2 5 148 2.75 2.30 

6 Control Charts Comparison 

A simulation is implemented in order to compare between the (Marcucci, 1985) χ2 
control chart and the Q statistic-based control chart with a UCL approximated by a linear 
combination of independent chi squares distribution quantile. The upper control limits for 
the Q chart are 10.6475, 11.5732 and 12.4866 for q = 3, q = 4 and q = 5 respectively. A 
multinomial distribution is used as an in-control situation, large number of samples are 
generated and the order of the first out of control statistic value is determined. These steps 
are repeated 5000 times and the inverse of the average order is considered as the A.R.L. 
when the process is in control. Two scenarios are then considered to represent out of 
control situations. The A.R.L. is computed in the case of process improvement and in the 
case of process deterioration. 
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Table 9. Average Run Length for q = 3. 

In Control Process 
n=3000 n=1000 n=500 n=300 n=200 

X2 Q X2 Q X2 Q X2 Q X2 Q 
0.9725,0.02,0.0075 316.87 370.13 246.70 332.84 210.47 222.92 188.27 216.04 127.96 167.82 

Process Improvement           
0.9835,0.0100,0.0065 1.23 1.68 14.13 61.17 172.15 405.29 366.79 350.37 302.48 302.79 
0.9750,0.0200,0.0050 52.42 41.43 425.85 1179.14 407.01 1505.66 439.29 957.015 292.88 628.05 
0.9775,0.0175,0.0050 23.30 26.26 485.46 1602.78 1297.15 3544.37 1166.94 1784.83 620.21 1050.71 
Process Deterioration           
0.9425,0.05,0.0075 1.00 1.00 1.01 1.03 1.19 1.39 1.69 2.15 2.34 3.24 
0.9700,0.02,0.0100 12.68 10.44 30.79 31.11 48.10 38.92 56.80 53.74 46.44 51.44 
0.9675,0.02,0.0125 2.16 1.96 6.88 6.79 14.15 11.52 21.15 19.30 20.64 21.50 
0.6500,0.34,0.0100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Simulation results are in Tables 9, 10 and 11. It is noticed that Q control chart produces less false 
alarms than the χ2 control chart and that both are appropriate for large samples n ≥ 300. The Q 
chart has a higher A.R.L. than the goodness of fit control chart in case of process improvement 
and a smaller A.R.L. in case of process deterioration. The Q control chart shows less points in 
average beyond the control chart limit in case of process improvement and allows earlier 
detection in case of process deterioration, however, these main benefits are observed specifically 
when the process improvement and process deterioration concern only extreme categories, for 
q = 4 and q = 5 and only when the UCL for the Q chart is efficiently approximated. 

Table 10. Average Run Length for q = 4. 

In Control Process 
n=3000 n=1000 n=500 n=300 n=200 

X2 Q X2 Q X2 Q X2 Q X2 Q 
0.9450,0.030,0.015,0.0100 325.38 396.67 276.96 313.40 222.44 257.66 184.64 185.12 144.78 154.62 

Process Improvement           
0.9700,0.0125,0.01,0.0075 1.00 1.00 1.83 6.13 15.2 160.15 299.03 852.26 733.43 738.50 
0.9650,0.0150,0.01,0.0100 1.01 1.11 3.44 15.84 29.86 116.25 161.11 176.65 220.72 184.93 
0.9675,0.0150,0.01,0.0075 1.01 1.07 3.00 11.77 32.64 300.08 490.02 993.93 870.21 806.19 

Process Deterioration           
0.9430,0.030,0.015,0.0120 40.21 30.46 79.43 62.24 90.47 77.39 95.81 72.61 87.45 72.47 
0.9125,0.030,0.015,0.0125 23.81 17.03 59.08 45.64 72.56 60.15 78.59 58.14 74.97 59.59 
0.9350,0.030,0.020,0.0150 1.84 1.77 6.93 6.39 13.21 12.25 19.22 16.77 23.28 20.28 

Table 11. Average Run Length for q = 5. 

In Control Process 
n=3000 n=1000 n=500 n=300 n=200 

X2 Q X2 Q X2 Q X2 Q X2 Q 
0.91,0.05,0.02,0.01,0.01 324.3 380.0 276.5 297.1 214.2 231.8 173.9 170.7 134.8 147.2 
Process Improvement           

0.9425,0.03,0.010,0.01,0.0075 1.0 1.0 1.8 6.7 10.6 92.7 59.8 227.9 180.9 243.9 
0.9250,0.04,0.020,0.01,0.0050 1.8 2.3 25.6 62.3 123.9 301.7 224.1 375.2 232.6 345.4 
0.9105,0.05,0.02,0.01,0.0095 350.6 478.9 309.5 403.5 247.33 297.7 192.6 211.3 164.6 161.6 

Process Deterioration           
0.900,0.05,0.02,0.015,0.015 1.6 1.5 5.9 5.1 11.9 10.0 17.2 14.0 22.1 17.6 
0.908,0.05,0.02,0.010,0.010 49.6 32.9 91.9 65.1 98.9 75.3 95.8 73.0 94.3 67.9 
0.906,0.05,0.02,0.012,0.012 19.7 16.3 48.2 40.1 60.1 52.1 62.1 53.0 64.1 51.6 
0.903,0.05,0.02,0.010,0.017 1.8 1.5 6.7 4.7 13.2 9.4 19.9 13.4 24.9 15.7 
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7 Conclusion 
A weighted goodness of fit statistic is proposed to improve the (Marcucci, 1985) one-sided 

control chart performance in the case of multinomial process monitoring. As the proposed 
statistic distribution is not known, the control limit is approximated by a linear combination of 
independent chi squares distribution quantile. Performance assessment through simulation was 
performed for the cases were the UCL is well approximated and considering process 
improvement and process deterioration scenarios. Main benefits of earlier deterioration detection 
and postponing improvement detection are observed specifically for processes with less than 
1% of product units into the worst quality category. Moreover, control chart performance 
improvement is clearer for q = 4 and q = 5. As the linear combination of chi squares offers 
poor approximation for the weighted chi squares statistic distribution, better performance 
is expected with the exact distribution of the control chart statistic.                                                                                                                              
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