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scenarios. This procedure leads to a highly combinatorial 
analysis, especially when dealing with a high number of 
components under complex systems. Consequently, there 
is a lack of understanding about how different magnitudes 
of failure probabilities affect the system reliability.

The present work addresses this problem by iden-
tifying mathematical patterns presented by simple 
structures (series and parallel systems). Equations for 
reliability estimation are first developed for a small 
number of components and thereafter expanded to 
systems with a larger number of components. The 
effect of different open and short failure probabilities 
over the reliability profiles is then discussed as the 
number of components is increased. In addition, this 
study presents a nonlinear optimization programming 
model aimed at allocating non-identical components 
in scenarios facing budget constraints and limited 
number of components.

The remaining of this paper is organized as follows. 
Section 2 gives a basic description of reliability litera-
ture focused on three-state component systems, while 
Section  3 presents the proposed approach. Section 4 
depicts the numerical examples, followed by a brief 
conclusion in Section 5.

1	Introduction

Reliability is part of everyone’s life, but when some 
component fails then its role is felt the most. These 
failures can either happen in situations that do not 
result in serious problems (when a TV set fails) or in 
scenarios where a failure leads to severe results, as 
for instance airplane accidents or bridge collapses. 
In order to better understand how these failures take 
place and to prevent such occurrences, several reliabi-
lity studies have been performed in different areas to 
project, develop and maintain components to perform 
satisfactorily during a defined period of time. Among 
these reliability issues, the one known as Multi-state 
System Reliability has received considerable attention. 
Multi-state systems consist of units that present one 
working state and two or more failed states with diffe-
rent failure modes. In the case of two failure modes 
(called three-state system), these are usually defined 
as open and short modes.

Systems composed of three-state components with 
identical probabilities of failure can be easily analyzed 
in terms of reliability and optimization. However, this is 
not the case for three-state systems with different proba-
bilities of open and short failure modes; these require 
the description of all of the system’s possible failure 
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state systems can be found in Levitin (2007), Levitin and 
Amari (2008), and Hausken and Levitin (2009).

The second major area of work has to do with the opti-
mization problem. Optimization procedures become vital 
in scenarios where a required reliability level has to be 
achieved under certain constraints, usually related to cost 
or physical issues. The optimization of series-parallel 
systems of identical components was studied by Page and 
Perry (1988) through the development of an open-mode 
reliability polynomial, which tests several alternative confi-
gurations for equivalence and identifies the best structure 
to be adopted. However, such approach is not applicable to 
systems composed of non-identical components.

Levitin and Lisnianski (2001) proposed a method to 
optimize multi-state systems based on the combination 
of a universal generating function (UGF) and a genetic 
algorithm (GA). This methodology intends to efficiently 
estimate the reliability of series-parallel systems with 
different failure probabilities and can be used in several 
types of optimization related problems (e.g., structure 
optimization, optimal expansion of an existing system and 
maintenance optimization). Also using GA techniques, 
Levitin (2002a) has suggested an algorithm to identify 
the optimal structure of systems composed of different 
open and short failure probability devices; the approach 
followed a series-parallel configuration. In addition, an 
optimization heuristic for maximizing the reliability of 
multi-state weighted voting systems based on a defined 
number of components with known reliability properties 
was suggested in Ramirez-Marquez (2008).

Focused on systems where the use of redundancy is 
required, Levetin et al. (1998) proposed an optimization 
approach based on the integration of UGF and GA; the 
first tool provides a fast multi-state system reliability 
assessment, while the second one is used as an optimiza-
tion tool. The redundancy in multi-state systems, however, 
does not strictly follow the traditional rule of adding 
several components in parallel until the desired level of 
reliability is obtained. In fact, there is an ideal number of 
redundant components that leads to maximum reliability, 
and the addition of extra units is worthless. Expressions 
for estimating the ideal number of identical redundant 
components for different structures can be obtained in 
Elsayed (2006). An interesting heuristic for redundancy 
allocation of multi-state components under a series-pa-
rallel structure was also proposed by Ramirez-Marquez 
and Coit (2004b), while Tian et al. (2008) presented an 
optimization model for a series-parallel system to simul-
taneously obtain the best component state distribution 
and best redundancy for each stage.

Multi-state structures following the k-out-of-r-from-n: F 
configurations were analyzed by Levitin  (2002b; 2003) 
using a “sliding-window” approach, as follows: consider n 
ordered multi-state elements with different failure modes 
and with a performance rate associated to each mode. The 
system fails if the sum of rates of consecutive elements 
is lower than a threshold. The sliding-window scans the 

2	Three-state systems

Reliability is usually defined as the probability that a 
system, product or component will perform its designed 
function during a certain period of time, when opera-
ting under specified environmental conditions. A vast 
literature focused on reliability concepts and estima-
tion (KAPUR; LAMBERSON, 1977; O’CONNOR, 
1985; CHING et al., 2005; ELSAYED, 2006; VIERTL, 
2008; NEIL et al., 2008), optimization, allocation and 
redundancy (COIT; SMITH, 1995; MAJETY  et  al., 
1999; KUO, 2000; ELEGBEDE; CHU, 2003; 
RAMIREZ‑MARQUEZ  et  al., 2004a, 2008, AZAIEZ; 
BIER, 2007; LIANG et al., 2008) has emerged in recent 
years. Intense effort has also been devoted to the multi-
state problem (LISNIANSKI; LEVITIN, 2003; ROCCO; 
MUSELLI, 2005; RAMIREZ-MARQUEZ; COIT, 
2004b, 2005; RAMIREZ-MARQUEZ et al., 2006a, 
2006b; TIAN et al., 2008; RAMIREZ-MARQUEZ; 
LEVITIN, 2008).

A multi-state device presents a normal functioning 
state and two or more failure states. Devices with two 
failure modes are defined as three-state components, and 
these are usually referred to as open and short modes. 
This terminology originates from electrical circuits, typi-
cally represented by diodes and rheostats. A diode allows 
the current flow in only one direction, blocking it from 
coming back in an opposite direction. Such a device can 
operate properly, or fail by blocking the current in the 
forward direction, or fail by permitting the current to 
backward (PAGE; PERRY, 1988; ELSAYED, 2006).

Reliability evaluation of three-state component systems is 
conceptually more complex than that of systems with bina-
ry-state components, even when considering identical units. 
Major efforts performed in this field seem to be focused on 
(i) the development of methods to evaluate the reliability of 
systems composed of identical and non-identical compo-
nents, and (ii) on the optimization of a system reliability 
subjected to structural constraints (LEVITIN; LISNIANSKI, 
2001; RAMIREZ-MARQUEZ; LEVITIN, 2008). 

Regarding the first issue, Elsayed (2006) presents a 
basic set of equations to estimate the reliability of diffe-
rent structures derived from identical components. These 
structures include series systems, parallel systems, series-
parallel and parallel-series systems. Jenney and Sherwin 
(1986) evaluate the reliability and risk analysis of multi-
state systems with identical components based on their 
failure probabilities in open and short modes. Reliability 
analysis also motivated studies by Dillon and Rayapati 
(1986) and Page and Perry (1987), both works devoted 
to estimating the reliability of complex configurations 
(networks) composed of three-state components. In addi-
tion, Rocco and Muselli (2005) applied machine learning 
techniques to estimate the reliability of multi-state 
systems, while Ramirez-Marquez and Levitin (2008) 
proposed an approach to estimate reliability confidence 
bounds. Other reliability estimation approaches for multi-
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Similarly, Equation 4 depicts the reliability expression 
for a system consisting of four components in series.
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By comparing Equations 2, 3 and 4, we infer that each 
additional component affects the reliability expression in 
two ways: (i) by adding one last row describing the open 
failure of all n components; and (ii) by increasing the 
number of combinations in each previous row according 

to 
n

m

 
 
 

, where n is the number of total components and 

m is the number of failed components in each row, from 
1 to n. Note that the reliability equation presents a single 
term describing the short failure mode, indicating that the 
system can only fail in such mode if all n components 
fail. For convenience, this term is presented in the first 
line of the reliability equation.

The set of equations for a parallel system can be simi-
larly developed, switching the positions of q

io
 and q

is
 in 

the equations above.

3.2	 Expansion of small structures into larger 
structures

A simple approach here is to construct sequential sprea-
dsheet tables and perform the combinations of component 
failure probabilities. Therefore, we follow the pattern exem-
plified in Equations 2 to 4 that describe the reliability of 
systems with 2, 3, and 4 components in series, respectively. 
These combinations are easily implemented in a spreadsheet 
environment, since the combination level l (due to the addi-
tion of component l) uses the numerical values calculated on 
the l-1 combination level (previous table) for its estimation. 
Logical spreadsheet functions for concatenation are used for 
merging the tables and spreading the formulation to subse-
quent tables. Alternative computational tools could be used.

Every level of combination (e. g., q
io
, q

io
q

jo
, q

io
q

jo
q

ko
,…) 

is obtained in a separate table that generates a positive or 
negative numerical value according to the level of that 
combination. We note that combinations based on an 
even number of components (e.g., q

io
q

jo
) generate posi-

tive values, while odd combinations (e.g., q
io
, q

io
q

jo
q

ko
) 

generate negative values. The final reliability (R) is 
obtained by adding the numerical values of all combina-
tions (tables) to the unitary value.

This step is concluded by analyzing the effect of diffe-
rent ratios of open and short failure probabilities (q

o
/q

s
) 

on the reliability profiles as the number of components 
is increased. For the proposed analysis, q

io
 and q

o
/q

s
 are 

to be defined by the decision-maker and q
is
 appears as a 

function of those probabilities.

order of elements and identifies the order responsible for 
the highest reliability. As for the k-out-of-n configuration, 
recent approaches to the multi-state problem can be found 
in Chen and Yang (2005), and Li and Zuo (2008a, 2008b).

3	Approach to evaluate reliability of 
three-state systems with non-identical 
components 

The approach proposed herein to evaluate the reliabi-
lity of non-identical three-state components is as follows: 
(i) analyze the mathematical expressions that estimate 
the reliability of systems comprising a small number of 
components; (ii) expand such expressions to larger confi-
gurations, and analyze the effect of different ratios of open 
and short failure probabilities on reliability patterns as the 
number of components is increased; and (iii) apply a nonli-
near programming model aiming to optimize the allocation 
of non-identical components under project restrictions. 
These steps are better explained in the following sections.

It is important to mention that the approach is described 
based on a series structure; the parallel configuration can 
be easily derived by switching open and short failure 
probabilities in the reliability equations.

3.1	 Analysis of reliability pattern of series 
systems composed of a small number of 
non-identical components

This step initially describes the modes that induce 
a series system composed of few components to fail. 
Consider a system composed of 2 components (labeled as 
1 and 2); the following events conduct the system to failure: 
(i) component 1 fails open; or (ii) component 2 fails open; 
or (iii) both components fail short. The reliability expres-
sion listing such events is expressed in Equation 1.

	 2 1 2 1 21 ( )o o s sR P x x x x= − + + 	 (1)

where iox  and isx  denote the probability of component i to 
fail in open or short mode, respectively, and R is the system 
reliability. Equation (1) can be mathematically expanded, 
and terms iox  and isx  substituted by q

io
 and q

is
, respecti-

vely, for convenience. In addition, p
i 
+ q

io 
+ q

is 
= 1, where 

p
i
 is the probability of component i work properly. These 

manipulations lead to Equation 2, which is depicted in 
two lines to make the identification of patterns easier.

	 2 1 2 1 2 1 21 o o s s o oR q q q q q q= − − − +
	 (2)

In the case of having three components in series, 
possible failure modes are described as performed in 
previous case. Appropriate manipulations and substitu-
tions lead to Equation 3.
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of each candidate component are depicted in Figure 1, as 
well as the maximum budget and q

o
/q

s
. The output iden-

tifies the components to be assembled (1 = in, 0 = out), 
reliability and cost of the optimal system. In this example, 
components 1, 6 and 8 lead to the optimal solution for a 
scenario under a budget limitation of $ 23. The solution 
leads to a reliability of 0.996.

4	Numerical examples

The open failure probabilities of 10 components were 
randomly generated under a uniform distribution in the 
interval [0.0005, 0.1], as in Table 1, and inserted into the 
formulation described in Section 3.2. Components followed 
the order they were labeled (i.e., an analysis of 3 compo-
nents is based on units 1, 2 and 3), but their order can be 
easily modified by replacing the initial probabilities. Table 2 
displays the reliability variation under different values 
of q

o
/q

s
 as the number of components is increased up to 

10 units. In this scenario, q
is
 is a function of q

io
 and q

o
/q

s
.

The addition of three-state components decreases the 
reliability of the system (as depicted in Table 2), follo-
wing the normal behavior of a series system as extra units 
are included. However, the decreasing rate is reduced as 
additional components are considered, and the reliability 
asymptotically tends to 0.66 for structures with 10 or 
more components. This is due (i) to the magnitude of q

io
 

used in this analysis (different values would lead to diffe-
rent final reliabilities), and (ii) to the fact that q

io
’s are the 

key terms for explaining variations on the reliability of a 
series system, but only the values of q

is
 are subjected to 

changes in the manner this analysis was structured.
A profile relating reliability and number of components is 

not recommended here, since the profiles would be comple-
tely overlapped as displayed in Table 2. That implies that 
different q

o
/q

s
 do not modify the reliability pattern.

Table 3 provides the results of an identical analysis 
performed for a parallel system based on the same values 
of q

io
 and q

o
/q

s
. In opposition to the series system, the 

ratio q
o
/q

s
 significantly affects the reliability of the parallel 

configuration as the number of components is increased. 
The strong effect of q

o
/q

s
 is justified by the influence of q

is
 

on the reliability of parallel systems. Similarly to the series 
structure, adding three-state components does not increase 
system reliability (which differs from the normal behavior 
of parallel systems composed of two-state components as 
extra units are added). For two-state components, redun-
dant units lead to reliability increase in any circumstance 
(unless components with smaller reliabilities are added).

Figure 2 displays reliability patterns as non-identical 
components are added following the same q

o
/q

s
 values 

from the previous case. The higher the q
o
/q

s
 the smaller 

the reliability variation.
In order to evaluate the effect of the magnitude of failure 

probabilities over the reliability profiles, Table 4 brings a 
new set of q

io
 (with higher failure probabilities than those 

3.3	 Nonlinear programming model for 
allocation of non-identical components 
under restrictions

The purpose here is to maximize the reliability expression 
generated in Section 3.2. Consider we have n alternative multi-
state components with different failure probabilities and 
costs to be assembled in a series system with k components 
(k < n). The task is to choose these k components regarding 
budget restrictions and limited number of units to be used. 
Equation 5 illustrates a closed expression of the reliability 
function to be optimized for a series structure (which indeed 
summarizes the tables generated in Section 3.2), where q

io
 

and q
is
 denote the probability of component i to fail in open 

or short mode, respectively.
A binary decision variable x

i
 is used to identify the 

components to be chosen, where 1 indicates that compo-
nent i should be used or else 0. Note that the decision 
variable must be included in all possible combina-
tions generated by n candidate components. For 
modeling a parallel system, q

io
 and q

is
 switch positions 

in Equation 5.

	 1 1
max (1 ) i

n n x
i io is

i i
x q q

= =
∏ ∏− −

	
(5)

When using a spreadsheet with an optimization tool 
to solve the problem, it is necessary to manually link 
the combination cells to the respective binary variables. 
Using the first two levels of probability combinations 
(i.e., q

io
 and q

io
q

jo
) is a good alternative when the optimi-

zation tool presents restrictions on the number of decision 
variables. This is a plausible assumption, since high 
levels of combinations are generated by the multiplica-
tion of many small terms. However, such approximation 
does not ensure optimal allocation.

The total cost of the system to be assembled is subjected 
to the budget constraint in Equation 6.

	 1

n

i i
i

x c C
=
∑ ≤

	
(6)

where x
i
 is the binary variable indicating whether compo-

nent i is included in the system, c
i
 is the cost of component 

i and C is the total available budget.
The number of components in the final system is 

subjected to the constraint in Equation 7.

	 1

n

i
i

x k
=
∑ =

	
(7)

where x
i
 is defined as before and k is the total number of 

components to appear in the final system.
For exemplification purposes, Figure 1 depicts the 

interface of this model in a spreadsheet; What’s Best® 8.0 
is used as an optimization tool. Consider 3 components 
are to be assembled in a series structure choosing from 8 
candidate components; the failure probabilities and cost 
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examples, and the results for the series system are 
presented in Table 5 and Figure 3. The failure probabi-
lities tested here seem to induce slight modifications on 
the reliability of a two-component system. This behavior 
differs from the identical reliability patterns generated for 
2 components in Table 2, when smaller probabilities of 

in Table 1), randomly generated according to a uniform 
distribution in [0.08, 0.25]. A smaller range of q

o
/q

s
 values 

is herein adopted to obey the relationship p
i 
+ q

io 
+ q

is 
= 1, 

where p
i
 is the probability of component i to work properly.

An analysis based on the second set of failure probabi-
lities was performed following the approach of previous 

Table 1. Open failure probabilities for 10 components. 

Component 1 2 3 4 5 6 7 8 9 10
q

o
0.01 0.01 0.05 0.03 0.05 0.07 0.09 0.008 0.07 0.0007

Table 2. Reliability pattern of a series system under different q
o
/q

s
 and number of components.

Number of components
qo/qs 2 3 4 5 6 7 8 9 10

0.1 0.9701 0.9261 0.9017 0.8573 0.7974 0.7267 0.7203 0.6699 0.6694

0.2 0.9776 0.9305 0.9031 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

0.4 0.9795 0.9310 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

0.8 0.9799 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

1 0.9800 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

2 0.9801 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

5 0.9801 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

7.5 0.9801 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

10 0.9801 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

Table 3. Reliability of a parallel system for different levels of q
o
/q

s
 and number of components.

Number of components
qo/qs 2 3 4 5 6 7 8 9 10

0.1 0.8099 0.4050 0.2835 0.1417 0.0425 0.0010 0.0005 0.0000 0.0000

0.2 0.9024 0.6769 0.5753 0.4315 0.2805 0.1542 0.1480 0.0960 0.0950

0.4 0.9505 0.8318 0.7694 0.6732 0.5554 0.4304 0.4218 0.3480 0.3474

0.8 0.9751 0.9142 0.8799 0.8249 0.7527 0.6681 0.6614 0.6035 0.6030

1 0.9800 0.9311 0.9032 0.8580 0.7979 0.7261 0.7203 0.6699 0.6694

2 0.9899 0.9653 0.9508 0.9270 0.8946 0.8543 0.8509 0.8211 0.8202

5 0.9959 0.9860 0.9801 0.9703 0.9567 0.9395 0.9380 0.9249 0.9248

7.5 0.9972 0.9907 0.9867 0.9801 0.9710 0.9593 0.9583 0.9494 0.9493

10 0.9979 0.9930 0.9900 0.9851 0.9782 0.9694 0.9686 0.9618 0.9618

Figure 1. Interface of What’s Best programming.
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presented, based on the nonlinear formulation described 
in Section 3.3. These simulations were performed in a 
spreadsheet using What’s Best 8.0 as the optimization 
tool, and the decision variables were set to assume binary 
values (1 and 0) using a Branch and Bound method.

Consider a list of 8 non-identical three-state candidate 
components to be allocated in a series system, under diffe-
rent limitations of budget and number of components. 
The upper highlighted region of Table 7 brings the failure 
probabilities and costs of each component (randomly 
generated), while the first two columns on the left present 
size and budget restrictions for each simulation. The 
center of the same Table identifies the chosen components 

failure were tested. For the remaining scenarios, different 
q

o
/q

s
 do not lead to significant differences (Figure 3).

For a parallel structure, different values of q
o
/q

s
 produced 

significantly different profiles, as depicted in Table 6 and 
Figure 4. At this point, it is important to mention that, were 
the analysis structured based on q

s
/q

o
 instead of q

o
/q

s
, the 

results regarding both series and parallel structures would 
have presented opposite behavior. Such analysis was not 
performed to avoid repetition of the procedures.

In order to complete the numerical examples, some 
scenarios regarding the optimal allocation of three-state 
components with non-identical failure probabilities are 

Table 6. Reliability of the parallel system for different q
o
/q

s
 values and number of components (second set of q

io
).

Number of components
qo/qs 2 3 4 5 6 7 8 9 10
0.5 0.4600 0.3820 0.2685 0.1343 0.0752 0.0518 0.0348 0.0282 0.0207

0.75 0.6156 0.5488 0.4404 0.2937 0.2076 0.1685 0.1389 0.1222 0.0933

1 0.7000 0.6460 0.5505 0.4130 0.3222 0.2770 0.2409 0.2192 0.1799

1.5 0.7889 0.7530 0.6792 0.5661 0.4832 0.4381 0.4000 0.3761 0.3310

2 0.8350 0.8103 0.7510 0.6573 0.5851 0.5441 0.5088 0.4859 0.4421

Table 5. Reliability of series system for different q
o
/q

s
 and number of components (second set of q

io
).

Number of components
qo/qs 2 3 4 5 6 7 8 9 10

0.5 0.6400 0.6320 0.5460 0.4107 0.3212 0.2767 0.2408 0.2192 0.1799

0.75 0.6844 0.6433 0.5499 0.4128 0.3221 0.2770 0.2409 0.2192 0.1799

1 0.7000 0.6460 0.5505 0.4130 0.3222 0.2770 0.2409 0.2192 0.1799

1.5 0.7111 0.6474 0.5507 0.4131 0.3222 0.2770 0.2409 0.2192 0.1799

2 0.7150 0.6478 0.5508 0.4131 0.3222 0.2770 0.2409 0.2192 0.1799
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Figure 3. Reliability of a series system under different q
o
/q

s
 and 

number of components for the second set of q
io
.

Table 4. Second set of open failure probabilities (q
io
).

Component 1 2 3 4 5 6 7 8 9 10
q

o
0.1 0.2 0.1 0.15 0.25 0.22 0.14 0.13 0.09 0.18

0.0
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Figure 2. Reliability of a parallel system under different q
o
/q

s
 and 

number of components.
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Table 7. Allocations under different restrictions generated by the nonlinear optimization  model (first set of q
io
).

Number of 
components

Maximum 
budget

Comp. 1 2 3 4 5 6 7 8 Reliability Final cost
qo 0.002 0.001 0.002 0.01 0.1 0.001 0.1 0.001

qs 0.001 0.0005 0.001 0.005 0.05 0.0005 0.05 0.0005

$ 7 9 8 3 5 9 8 7
2 20 0 1 1 0 0 0 0 0 0.9970 17

3 21 0 1 0 1 0 0 0 1 0.9880 19

4 25 1 0 1 1 0 0 0 1 0.9851 25

5 34 1 0 1 1 0 1 0 1 0.9841 34

Table 8. Allocations under different restrictions generated by the nonlinear optimization model (second set of q
io
).

Number of 
components

Maximum 
budget

Comp. 1 2 3 4 5 6 7 8 Reliability Final cost
qo 0.05 0.02 0.1 0.001 0.06 0.14 0.0007 0.03

qs 0.025 0.01 0.05 0.0005 0.03 0.07 0.0004 0.015

$ 3 9 8 7 5 4 8 4
2 20 0 0 0 1 0 0 1 0 0.9983 15

3 21 0 0 0 1 0 0 1 1 0.9684 19

4 25 1 0 0 1 0 0 1 1 0.9199 22

5 34 1 1 0 1 0 0 1 1 0.9015 31

Figure 4. Reliability of parallel system under different levels of 
q

o
/q

s
 and number of components for the second set of q

io
.
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for each system (1 = in and 0 = out), while the right side 
of the Table depicts the final reliability and cost of such 
a system. For instance, consider a system consisting of 4 
components to be built under total cost of $ 25; the set of 
components 1, 3, 4 and 8 is the optimal solution, genera-
ting a final reliability of 0.9851 and costing $ 25.

In order to evaluate the robustness of the optimization 
model, a second simulation was performed considering 
the same number of components and budget restrictions, 
but with higher failure probabilities and different costs 
from those in Table 7. The final results for this second 
set of simulations are depicted in Table 8, which follows 
the same organization of Table 7. The model performed 
well, identifying the best option in all tested scenarios 
(additional simulations regarding parallel systems are not 
displayed due to space limitations).

5	Conclusion

Reliability analysis of systems composed of non-identical 
three-state components can be extensively time consuming 
and confusing, due to the highly combinatorial nature of the 
problem. This limitation leads to a lack of understanding 
regarding the way components with different magnitudes of 
failure probabilities affect the system. This study presented 
a simplified approach to estimate the reliability of such 
systems. Reliability expressions for systems comprised of 
few components are first analyzed, and their equations are 
then extended to systems with higher number of compo-
nents in a spreadsheet. Different failure probabilities and 
ratios of such probabilities are tested and variations on relia-
bility profiles are assessed as the number of components is 
increased. A nonlinear optimization programming is also 
suggested to identify the optimal allocations of non-iden-
tical components under physical and financial restrictions.

We conclude that series systems are highly sensitive to 
variations on q

io
 (probability of open failure), while parallel 

structures are strongly affected by modifications on q
is
 

(probability of short failure). Due to the way the analysis was 
structured, parallel systems were more affected by the tested 
probability ratios. As expected, the addition of extra compo-
nents affected both series and parallel structures by reducing 
the reliability levels. This behavior is coherent for any series 
system; for parallel configurations, such result follows the 
theory of multi-state component structures, which states that 
there is an optimal number of redundant components to be 
used, and extra components become worthless. In addition, 
higher failure probabilities led to steeper decreases on relia-
bility values as components were added.
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Future studies will be focused on detecting reliability 
patterns of more complex structures, such as series-
parallel and parallel-series systems, and subsequent 
implementation of optimization models to identify the 
best component allocation for these structures. The use of 
alternative computational tools will also be tested, espe-
cially when dealing with systems consisting of elevated 
number of non-identical components.

Finally, the integration of such formulation with an 
optimization solver proved to be robust and precise for 
identifying the best set of non-identical components for 
allocation in series and parallel systems characterized by 
limitations of budget and number of components. The 
implementation of that formulation in the spreadsheet is 
straightforward and the calculations are fast even when 
using a Branch and Bound approach.

AZAIEZ, M.; BIER, V. Optimal resource allocation for security 
in reliability systems. European Journal of Operational 
Research, Netherlands, v. 181, n. 2, p. 773-786, 2007.

CHEN, Y.; YANG, Q. Reliability of two-stage weighted-k-out-of-n 
systems with components in common. IEEE Transactions on 
Reliability, Colorado, v. 54, n. 3, p. 431-440, 2005.

CHING, J.; AU, S.; BECK, J. Reliability estimation for dynamical 
systems subject to stochastic excitation using subset simulation 
with splitting. Computers Methods in Applied Mechanics 
and Engineering, Netherlands, v. 194, n. 12-16, p. 1557-1579, 
2005.

COIT, D.; SMITH, A. Optimization approaches to the redundancy 
allocation problem for series-parallel systems. PROCEEDINGS 
OF THE FOURTH INDUSTRIAL ENGINEERING 
RESEARCH CONFERENCE, Philadelphia, 1995. 

ELEGBEDE, A; CHU, C. Reliability allocation through cost 
minimization. IEEE Transactions on Reliability, Colorado, 
v. 52, n. 1, p. 106-111, 2003.

ELSAYED, E. Reliability engineering. 2 ed. New Jersey: Elsayed 
A., 2006. 

HAUSKEN, K.; LEVITIN, G. Minmax defense strategy for 
complex multi-state systems. Reliability Engineering & 
System Safety, London, v. 94, n. 2, p. 577-587, 2009.

Metodologia simplificada para análise de confiabilidade e  
alocação de componentes não-idênticos com  

3 modos de falha em sistemas em série e paralelo

Resumo

Sistemas compostos por componentes não-idênticos com múltiplos modos de falha demandam expressões comple-
xas para estimativa de confiabilidade, tendo em vista o elevado número de combinações necessárias para descrição 
dos eventos que conduzem o sistema a falhas. Como consequência, a variação dos perfis de confiabilidade provocada 
por distintas magnitudes de probabilidades de falhas não é de claro entendimento, especialmente ao considerar-se 
a inclusão de novos componentes não-idênticos ao sistema. Este artigo apresenta uma abordagem simplificada para 
estimar níveis de confiabilidade em sistemas em série e paralelo, compostos por componentes não-idênticos com 
3 modos de falha. Um modelo não-linear para otimizar a alocação de tais componentes em sistemas submetidos a 
restrições de projeto também é apresentado. Os resultados obtidos mostram que o modelo proposto é robusto quando 
diversas magnitudes de probabilidades de falhas são consideradas.

Palavras-chave: Componentes não-idênticos. Componentes com múltiplos modos de falha. Alocação de componentes.

JENNEY, B.; SHERWIN, D. Open and short circuit reliability of 
systems of identical items. IEEE Transactions on Reliability, 
Colorado, v. 35, n. 5, p. 532-538, 1986.

KAPUR, K.; LAMBERSON, L. Reliability in engineering 
design. New York: Wiley & Sons, 1977.

KUO, W. An annotated overview of system-reliability optimization. 
IEEE Transactions on Reliability, Colorado, v. 49, n. 2, 
p. 176-187, 2000.

LEVITIN, G. Block diagram method for analyzing multi-state 
systems with uncovered failures. Reliability Engineering & 
System Safety, London, v. 92, n. 6, p. 727-734, 2007.

LEVITIN, G. Linear multi-state sliding-window systems. IEEE 
Transactions on Reliability, Colorado, v. 52, n. 2, p. 263-269, 
2003.

LEVITIN, G. Optimal allocation of elements in a linear multi-stat 
sliding window system. Reliability Engineering & System 
Safety, London, v. 76, n. 3, p. 245-254, 2002b.

LEVITIN, G. Optimal series-parallel topology of multi-state 
system with two failure modes. Reliability Engineering & 
System Safety, London, v. 77, n. 1, p. 93-107, 2002a.

LEVITIN, G.; LISNIANSKI, A. A new approach tho solving 
problems of multi-state system realiability optimization. 
Quality and Reliability Engineering International, London, 
v. 17, n. 2, p. 93-104, 2001.

References



62 Anzanello

Gest. Prod., São Carlos, v. 16, n. 1, p. 54-62, jan.-mar. 2009

RAMIREZ-MARQUEZ, J.; COIT, D. A heuristic for solving the 
redundancy allocation problem for multi-state series-parallel 
systems. Reliability Engineering & System Safety, London, 
v. 83, n. 3, p. 341-349, 2004b.

RAMIREZ-MARQUEZ, J.; COIT, D. Composite importance 
measures for multi-state systems with multi-state components. 
IIE Transactions on Quality and Reliability Engineering, 
Philadelphia, v. 87, n. 2, p. 517-529, 2005.

RAMIREZ-MARQUEZ, J.; COIT, D.; KONAK, A. Redundancy 
allocation for series-parallel systems using a max-min approach. 
IIE Transactions on Quality and Reliability Engineering, 
Philadelphia, v. 36, n. 9, p. 891-898, 2004a.

RAMIREZ-MARQUEZ, J.; COIT, D.; TORTORELLA, M. A 
generalized multi-state based path vector approach for multi-
state two-terminal reliability. IIE Transactions on Quality and 
Reliability Engineering, Philadelphia, v. 38, n. 6, p. 477-488, 
2006b.

RAMIREZ-MARQUEZ, J.; LEVITIN, G. Algorithm for 
estimating reliability confidence bounds of multi-state systems. 
Reliability Engineering & System Safety, London, v. 93, n. 8, 
p. 1231‑1243, 2008.

RAMIREZ-MARQUEZ, J.; ROCCO, C.; ASSEFA, B.; COIT, D.; 
TORTORELLA, M. New insights on multi-state component 
criticality and importance. Reliability Engineering & System 
Safety, London, v. 9, n. 1, p. 894-904, 2006a.

ROCCO, C.; MUSELLI, M. Approximate multi-state reliability 
expressions using a new machine learning technique. Reliability 
Engineering & System Safety, London, v. 89, n. 3, p. 261-270, 
2005.

TIAN, Z.; ZUO, M.; HUANG, H. Reliability-redundancy allocation 
for multi-state series-parallel systems. IEEE Transactions on 
Reliability, Colorado, v. 57, n. 2, p. 303-310, 2008.

VIERTL, R. On reliability estimation based on fuzzy lifetime data. 
Journal of Statistical Planning and Inference, Netherlands, 
v. 139, n. 5, p. 1750-1755, 2008.

LEVITIN, G.; AMARI, S. M. Multi-state systems with multi-fault 
coverage. Reliability Engineering & System Safety, London, 
v. 93, n. 11, p. 1730-1737, 2008.

LI, W.; ZUO, M. Optimal design of multi-state weighted -out-of- 
systems based on component design. Reliability Engineering 
& System Safety, London, v. 93, n. 11, p. 1673-1681, 2008.

LI, W.; ZUO, M. Reliability evaluation of multi-state weighted 
k-out-of-n systems. Reliability Engineering & System Safety, 
London, v. 93, n.1, p. 160-167, 2008.

LIANG, J.; MOURELATOS, Z.; TU, J. A single-loop method for 
reliability-based design optimization. International Journal of 
Product Development, London, v. 5, n. 1-2, p. 76-92, 2008.

LISNIANSKI, A.; LEVITIN, G. Multi-state system reliability 
assessment, optimization and applications. New Jersey: 
World Scientific, 2003. Series on Quality, Reliability and 
Engineering Statistics. 

MAJETY, S; DAWANDE, M.; RAJGOPAL, J. Optimal reliability 
allocation with discrete cost-reliability data for components. 
Operations Research, London, v. 47, n. 6, p. 899-906, 1999.

NEIL, M.; TAILOR, M. MARQUEZ, D.; FENTON, N.; HEARTY, 
P. Modelling dependable systems using hybrid Bayesian 
networks. Reliability Engineering & Systems Safety, London, 
v. 93, n. 7, p.933-939, 2008.

O’CONNOR, P. Practical reliability engineering. 2 ed. New York: 
Wiley & Sons, 1985.

PAGE, L.; PERRY, J. Optimal “Series-Parallel” Networks of 
3-State Devices. IEEE Transactions, v. 37, n. 4, p. 388-394, 
1988.

PAGE, L.; PERRY, J. Reliability of networks of three-state devices. 
Microelectronics Reliability, London, v. 27, n. 1, p. 175-178, 
1987.

RAMIREZ-MARQUEZ, J. Holistic reliability analysis of weighted 
voting systems from a multi-state perspective. IIE Transactions 
on Quality and Reliability Engineering, Philadelphia, v. 40, 
n. 2, p. 122-132, 2008.

About the authors

Michel José Anzanello

Department of Industrial and Systems Engineering, Rutgers University, 
Piscataway, NJ 08854-8018, USA, 
e-mail: michelja@eden.rutgers.edu

Received: 24/1/2008 
Accepted: 16/2/2009


