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Resumo: O presente trabalho apresenta um problema de dimensionamento e sequenciamento integrados para 
uma fábrica de grande porte de cimento para refratário. Foram abordadas três formulações matemáticas: duas 
presentes na literatura e uma proposta como alternativa às já existentes. Este estudo tem como objetivo comparar 
as formulações tanto em relação ao seu desempenho quanto à sua aplicabilidade como ferramenta de suporte à 
tomada de decisão. Uma dessas formulações utiliza variáveis contínuas e as outras são baseadas em variáveis 
indexadas no tempo. Estes modelos matemáticos abordam um conceito específico de como as variáveis e parâmetros 
são definidos, exigindo premissas e definições particulares para se adequar ao problema real. A fim de considerar 
os diferentes aspectos da situação prática, foram geradas várias instâncias a partir de distribuições uniformes, 
baseadas em informações reais. Extensivos testes computacionais foram executados e, com base nesses resultados, 
as modelagens foram avaliadas como ferramenta de apoio à decisão e as suas eficiências foram comparadas.
Palavras-chave: Scheduling; Lot sizing; Planejamento e controle da produção; Modelos de programação matemática.

Abstract: This work presents an integrated lot sizing and scheduling problem for a large refractory cement manufacturer. 
Three mathematical formulations were addressed: two already presented in the literature, and one proposed as an 
alternative to the existing ones. This study aims to compare these formulations with respect to their performance 
and applicability as a decision support tool. One of these formulations uses continuous variables, whereas the others 
are based on time-indexed variables. These mathematical models address the specific concept of how variables and 
parameters are defined, requiring assumptions and particular settings to suit the real problem. In order to consider 
the different aspects of the practical situation, several instances were generated from uniform distributions based on 
real information. Extensive computational tests were run and, based on the results, the formulations were evaluated 
as a decision support tool and their efficiencies were compared.
Keywords: Scheduling; Lot sizing; Production planning and control; Mathematical programming formulations.
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1 Introduction
Data from the Brazilian Ministry of Mines and 

Energy (Brasil, 2009) state that the refractory 
represents a segment of extreme importance, since 
all industrial processes that use heat directly require 
them, especially basic industries, as steel mills. 
According to the Magnesita Refratários (2015), 
the market of these products handles about US$ 25 
billion per year all over the world, with the top six 

companies representing nearly 40% of all global 
refractories sales. It is predicted that consumption 
of these products increases 3.3% until the year 2028.

This work emerged from the need to seek 
advantages in leverage of financial results, considering 
a market with increasing competition and with close 
price values. Thus, a greater organization of the 
production line is essential for the cost reduction 
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without interfering on the quality of the final product. 
The Operational Research comes as a tool to enable 
improvements in order to obtain a better organization 
of the production process, allowing a support to the 
decision making by mathematical modeling of real 
situations (Nogueira, 2008).

This study is the result of a real problem of lot 
sizing and production scheduling in a large refractory 
cement industry which is located in Contagem/MG. 
This company dedicates in mining, producing and 
marketing a wide line of refractory materials, being 
the third largest producer in the world and leader in 
the Brazilian market of these products. It currently 
employs about 6,400 employees and has production 
capacity of over 1.4 million of tones of refractories per 
year, achieving a sales revenue of 2.7 billion of reais 
in 2013, with selling to more than 1,000 customers 
in over 100 countries, resulting in an approximated 
net profit of 30 million.

The objective of this study is to minimize the cost 
of inventory and unmet demand, usually caused by the 
lack of organization of the factory and its activities. 
The studied process is performed in continuous 
flow and it can be characterized as a single machine 
problem which receives raw material and executes 
the process, resulting in a final product. In this 
process, the bottleneck machine is responsible for the 
production rate and asymmetrical setup times between 
production lots are considered, i.e., they have time 
variations for each type of product/product family.

In this paper the problem is mathematically 
formulated in three distinct ways, two which already 
exists on the literature and a new one. In order to 
compare the performance of the three formulations, 
the lower bounds, obtained by means of the LP (linear 
programming) relaxation, and the found optimum 
solution, when using commercial software, were 
discussed. Since the broached problem is NP-Hard, 

with larger instances the computational time is a limit 
for the software in achieving the optimal solution. 
The LP relaxation was used for these formulations 
in order to meet the lower bounds, relaxing all their 
integer variables.

With the purpose of evaluating the proposed 
formulation, it was made a study comparing it with the 
other two approaches: a formulation with continuous 
variables based on Manne (1960), Santos (2006) and 
Carvalho & Santos (2006), and a reference formulation 
with time-indexed variables based on Toledo et al. 
(2007), Toso et al. (2009) and Ferreira et al. (2010). 
These formulations are applied to instances taken 
from real data and the results are compared.

To achieve the objectives described herein it 
was used the rolling horizon approach, as shown in 
Figure 1. This technique consists in a differential to 
reduce computational time, where the first period is 
divided into sub-periods and it will slide in time as 
planning is performed, with the scheduling detailed 
only for the immediate period. After, the horizon is 
rolled and the formulation is executed again, being 
updated with new information. The planning for future 
periods is done only for evaluation of the capacity. 
Thus, the number of variables in the formulation 
is drastically reduced (Carvalho & Santos, 2006).

Buxey (1989) highlights the uselessness in 
spending efforts with long periods, since that the 
uncertainty grows with the size of the auscultated 
time. The proposed planning formulation uses the 
planning horizon as discussed in Santos (2006).

This work is divided into six sections: section 1 
gives an introduction to the broached subject. In section 
2 it is done a literature discussion about this theme. 
The section 3 discusses the type of problem and the 
company’s particularities under study. The section 4 
presents the proposed formulation and other ones 
existing on the literature, comparing them. In section 5 

Figure 1. Rolling horizon.
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the results of the presented formulations are discussed. 
Finally, the section 6 is about the conclusions of 
the study.

2 Literature review
Studies about production planning are found in large 

quantity in the literature. According to Fernandes & 
Santoro (2005) Production Planning and Control (PPC) 
problems are broached in three ways: considering only 
the production lot sizing, considering only the daily 
scheduling of items to be produced or considering 
these two aspects in an integrated way, i.e., the PPC 
integrated with scheduling. The latter form tries to 
join the long term planning to the short term one, 
making a weekly lot sizing of the items and daily 
scheduling of them.

The Table 1 shows in chronological order the main 
references in the literature used for this study. As it 
can be observed, about 10% of these works discuss 
the lot sizing problem. All of them have the objective 
of minimizing costs and one study uses for this the 
Lagrangian Relaxation.

Approximately 30% of the studies presented in the 
Table 1 are about the production scheduling problems. 
Considering the ones which present mathematical 
models, almost 70% of them use exact methods, such 
as Branch and Bound, and 30% heuristics. More than 
40% of the scheduling problems aim to reduce the 
anticipation and delay costs, and the remaining 60% 
have various goals, such as minimizing the costs of 
the production resources and the production line setup.

Around 60% of the analyzed works discuss about the 
integrated PPC and scheduling problems. Considering 
the studies that have mathematical models, 40% of 
them use to solve the exact methods, such as Branch 
and Bound and Branch and Cut, 50% use relax-and-fix 
heuristic and the rest use Local Search algorithms 
and other heuristics. Concerning to the objectives 
of these studies, 45% of them minimize together 
the costs of inventory, unmet demand/backward and 
setup. The others have diverse objectives, including 
minimization of the extra hours and production costs. 
Around 80% of the works can be considered as a multi 
objective problem, and of these, 74% are integrated 
problems, 10% are lot sizing problems and 16% are 
scheduling problems.

It is possible to notice that, as the present study, 
almost 90% of the works aim to minimize the costs, 
as the stock, unmet demand, production, delay or 
preparation costs. The problem under study is not 
found with the same focus on practical applications in 
the literature. Those with greater compatibility were 
found in the works of Toso & Morabito (2005) and 
Henriques et al. (2010), which analyze scheduling 
problems of discrete production lines, focusing on the 
attendance of the final products and determining the 
lot sizing. Other studies that are similar in relation to 

the objectives of this work are Araujo et al. (2007), 
Ferreira  et  al. (2009), Ferreira  et  al. (2010) and 
Stadtler & Sahling (2012).

The scheduling problems are widely studied in the 
literature due to the difficulty level and applicability, 
and they may extend to production scheduling, projects, 
vehicle routing, among others (Nogueira, 2014). 
The mathematical models of scheduling consist of 
allocating tasks and scarce resources to the products 
in order to meet the pre-established goal, setting 
the sequence of goods production, as discussed in 
Allahverdi et al. (2008), Pinedo (2012) and Leung 
(2004). Applications of these problems are also seen 
in Lawler (1976), Manne (1960), Du & Leung (1990), 
Sousa & Wolsey (1992), Tavares (2002), Santos & 
Massago (2007), Bustamante (2007), Yamashita & 
Morabito (2007), Chen & Askin (2009), Ramos & 
Oliveira (2011) and Rego (2013).

The lot sizing decisions are related to the amount 
of end items. They should consider the influence of 
production factors, the costs related to the latters and 
how these costs can influence the PPC. The works 
that address only the lot sizing problem can be seen 
in Brahimi et al. (2006) and Molina et al. (2013).

The studied problem is composed of an integrated 
lot sizing and scheduling formulation, as discussed 
in studies by Araujo  et  al. (2004), Carvalho & 
Santos (2006), Santos (2006), Toledo et al. (2007), 
Araujo et al. (2007), Toso et al. (2009), Ferreira et al. 
(2009), Ferreira et al. (2010), Bernardes et al. (2010), 
Henriques et al. (2010), Stadtler (2010), Shim et al. 
(2011), Defalque et al. (2011), Clark et al. (2011), 
Stadtler & Sahling (2012) and Seeanner & Meyr 
(2013).

The studies that use heuristics to address integrated 
formulations can be seen in Araujo et al. (2007) and 
Shim et al. (2011). The exact methods are also used 
to solve integrated problems, as it can be seen in 
Toledo et al. (2007). More detailed reviews on the 
exact methods can be seen in Nemhauser & Wolsey 
(1988), Pochet & Wolsey (2006), Arenales  et  al. 
(2007) and Wolsey (2008).

3 Problem
This study consists of an integrated lot sizing and 

scheduling problem with multi item, single machine, 
capacitated and the possibility of making stock and 
not meeting the demand. The database for the study 
was collected in a large refractory cement industry 
located in Contagem, Minas Gerais.

The details of the production process have greater 
emphasis on operational and organizational issues of 
the factory and by an analysis of them it is intended 
to find inconsistencies that might bring losses for the 
organization in terms of efficiency. This process has 
a linear flow and it can be treated as a single machine 
problem, with the phase of lower production rate 
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determining the process speed. It starts at the receiving 
raw materials step and ends with the shipment of the 
final product to the customer.

The factory works in two turns of production and 
it has 32 silos available for input storage, of which 
11 silos store raw materials that are common for 
many products and the other silos exchanged their 
types of raw materials according to the production 
requirements. The receiving is done with bags that 
are maintained in bins that are near to the production 
line entrance, which are supplied weekly (Figure 2 
in section A).

The silos, Figure 2 in section B, are emptied after 
the production order and supplied with the necessary 
raw materials. The setup time for the product 
manufacturing is about 50 minutes, with 30 minutes 
for the silo unloading and 20 minutes for supplying 
it. There is preparation of one raw material at time, 
since there is a single device which transports the raw 
material to the silos. The bags with these materials 
are transported to the silos entrance and carried by 
an elevator to the empty silos, where the inputs are 
ensiled. Each silo has 2,000 kg of capacity. After filling 
these, the raw material is weighed by the hopper in 
the necessary amount for the receipt formation in the 
transport carriage, Figure 2 in section C. The silos are 
located over a trolley which receives the raw material 
after weighed and directs them to the mixer, Figure 2 
in Section D, for subsequent bagging. The Figure 2 
illustrates the production process of the studied 
company, following the flow: bin, ensilage, receipt 
formation and mixer.

The ensilage has a great impact on idle time, since, 
as previously described, it spends about 50 minutes 
in each silo. The swap of product/product family 

may result in changing raw materials in many 
silos, therefore, the greater the amount of silos that 
requires change, greater the idle time. Furthermore, 
product/product family which may cause contamination 
increases the setup time, because of the requirement 
for additional cleaning. Thus, the ensilage is crucial 
for the scheduling due its influence on idle time and 
available capacity. It is noteworthy that the discussed 
data were strictly generated to consider the reality 
described here.

This study aims to create a greater integration 
between the tactical and operational decision making 
levels, seeking to facilitate the activities of PPC by 
means of the mathematical modeling. At the tactical 
level it is determined lot sizing and their respective 
delivery date. At the operational level it is defined 
the products/product family scheduling. According to 
Loveland et al. (2007), a formulation that communicates 
the tactical and operational decisions pursues to 
establish better communication and organization of 
the shop floor.

Currently, the company’s PPC seeks to produce 
every week only the expected demand for this time 
interval, trying not to accumulate stocks of previous 
periods, but it incurs in the use of overtime when needed. 
The company believes that the demand uncertainties 
are relatively large. However, PPC defines only the 
need of production hours and it does not consider 
the time spent in scheduling. This  scheduling is 
not planned in the initial program, leaving it to the 
operational level. Thus, many production plans set by 
the PPC become infeasible on the shop floor or they 
require large amounts of overtime work. This is the 
crucial problem to the company today. The proposed 
formulation should provide the anticipation of 

Figure 2. The disposition of the studied process.
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production in periods when there is idle capacity, 
and it seeks better production sequences, i.e., with 
fewer setups.

The company sales forecast is made by internal 
and external forecasts. The first week of planning has 
real demands and by increasing the distance of the 
planning period, the demand is made by forecasts. 
All demands are available in the integrated management 
system of the company. An employee performs the 
system to check the requests, returning information 
about the inventory. At the end of this process, it is 
possible to determine how much manufacture of each 
product/product family.

The production scheduling is defined in the PPC 
team meeting which, based on tacit knowledge, 
defines the production sequence for the next few 
weeks in order to reduce the idle time and ignoring 
the stock costs. This process spends around 8 hours 
per week, but it does not guarantee the optimality 
of the productions scheduling, i.e., it is not known 
how close the proposed solution is from the optimal 
solution, since the proposed sequence only sets the 
production scheduling, without considering the 
setup times. Then it is necessary to make additional 
calculations to check the feasibility of the demand 
meeting and delivery dates obedience.

It is interesting to highlight that there is no interaction 
between the tactical and operational decision levels 
in determining the amount of goods to be produced. 
Therefore, there is no guarantee that the production 
set by the PPC can be sequenced and manufactured. 
The sales orders are supplied by the finished product 
inventories or, if there are not the good in stock, they 
are converted into production orders. The sequencing 
of these production orders should be done respecting 
the established demand.

The company has a 5% rate of overdue delivery 
because of the lack of capacity on the production line. 
Currently, 20% of the available line time is used in 
the machine setup, thus, minimizing this time results 
in increasing the capacity and reducing the delays 
in delivery. Therefore, there is a need to create a 
mathematical model that organizes the production 
line, reducing the preparation time and increasing the 
time for production. This formulation should look for 
the best production sequence in order to minimize 
the costs inherent to the process.

The PPC has chosen to work with a planning period 
of only seven days, even providing four weeks to the 
sales department. This period was chosen based on 
the information reliability, and in the current week 
the requests are made based on actual demands. 
The PPC department, to increase productivity, allows 
anticipating the production and attending the orders 
before the expected date, however, this can lead to 
unnecessary stock.

4 Proposed formulations and 
solution method
This study presents three mathematical models for 

integrated lot sizing and scheduling with the objective 
of minimizing the unmet demand and inventory 
costs, considering sequence-dependent setup times. 
These models are: one with continuous variables, one 
reference approach with time-indexed variables and 
a new formulation proposed by the authors.

The first approach, denominated Mixed-Binary-Integer 
Linear Programming with Continuous Time Horizon 
(MBILP-CH), is based on Manne (1960), Carvalho 
& Santos (2006) and Santos (2006). This formulation 
presents continuous, integer and binary variables and a 
continuous time planning horizon. The second approach 
is based on works of Toledo et al. (2007), Toso et al. 
(2009) and Ferreira et al. (2010). This is denominated 
Mixed-Binary-Integer Linear Programming with 
Discretized Time Horizon (MBILP-DH) and it presents 
time-indexed variables, with the planning horizon 
discretized into s  sub-periods. In this formulation, 
the s  parameter is at most equal to the number of 
product families j , thus all families can be produced 
(but do not need  to  be). Finally, the formulation 
proposed, denominated Mixed-Binary-Integer 
Linear Programming with Discretized Time Horizon 
(MBILP-DHP), inspired by previous formulations 
presented and by the works of Sousa & Wolsey (1992) 
and Henriques et al. (2010).

The MBILP-DH and MBILP-DHP formulations 
present time-indexed variables (discretized planning 
horizon), and as analyzed by Keha  et  al. (2009) 
this implies in tighter bounds. In the MBILP-DHP 
formulation the time is discretized in s  sub-periods 
with size equal to the production capacity in hours 
available. This increased planning horizon leads to 
a larger number of variables and constraints than 
MBILP-DH, and consequently, it restricts the size 
of instances that can be solved.

Keha et al. (2009) and Unlu & Mason (2010) showed 
that the lower bounds obtained from the formulations 
based on the proposal of the Sousa & Wolsey (1992) 
were strong, but the LP relaxations are harder to 
solve compared to the other formulations. However, 
the computational experiments from De Paula et al. 
(2010) suggest that when sequence-dependent setup 
times are introduced, the LP relaxation bounds in the 
time-indexed formulation are not as strong. Nogueira 
(2014) highlights this fact and proposes a family of 
valid inequalities to improve the lower bounds obtained 
with sequence-dependent setup times. Furthermore, 
the author expounds on when the number of products 
or the size of the planning time horizon increases 
the mathematical formulations are unable to solve 
problems in the commercial solver.
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4.1 Problem modeling
The MBILP-CH and MBILP-DH formulation are 

based on Manne (1960), Carvalho & Santos (2006), 
Santos (2006), Toledo  et  al. (2007), Toso  et  al. 
(2009) and Ferreira et al. (2010). The MBILP-DHP 
formulation is a new proposal, inspired by the works 
of Sousa & Wolsey (1992) and Henriques et al. (2010). 
All formulations consider the following considerations: 
i) the studied problem is treated as a single machine 
problem, considering rolling horizon strategy; ii) the 
lots have different sizes and its sequence impact on 
the total time spent on setups. When there is no risk 
of contamination between families the setup time is 
short, otherwise it is longer and compromises the 
total time available for production. The sets for the 
formulations are:

-	 J refers to the set of product families to be 
produced, with { }1, ,J j= … .

-	 T refers to the set of periods in the planning 
horizon, with { }1, , .T t= …

-	 S refers to the set of sub-periods in the planning 
horizon, with { }1, , .S s= …

The indexes used in the mathematical models are:

-	 i refers to the product family considered, such 
that .i J∈

-	 t indicates the period of the planning horizon 
considered, such that t T∈ .

-	 s indicates the sub-period of the planning horizon 
considered, such that s S∈ .

The parameters considered for the formulations are:

-	 dit: Demand of the product family i in period t.

-	 Smi: Minimal setup time to produce the product 
family i.

-	 pi: Processing time of the product family i.

-	 Ct: Total capacity in hours in period t.

-	 Stij: Setup time to changeover from the product 
family i to the product family j.

-	 Hi: Inventory cost of the product family i.

-	 Bi: Backorder cost of the product family i.

-	 M: Large value, which is given by the total 
time taken to produce all the demand of the 
first week of planning plus the maximum time 
spent for preparing the production of the product 
family i to the product family j, as can be seen 
in Nogueira (2014), which is given by:

1 ( )  .i i j J ij
i J i J

M p d max St∈
∈ ∈

= +∑ ∑ 	 (1)

The decision variables used in the formulations are:

-	 Iit: Continuous variable that indicates the amount 
in stock of the product family i in period t.

-	 qit: Continuous variable that indicates the amount 
produced of the product family i in period t.

-	 itI − : Continuous variable that indicates the 
backorder of the product family i in period t.

-	 ri: Continuous variable that indicates the starting 
time of the production of the product family i.

-	 bijs: Binary variable that indicates the production 
(bijs = 1) or not (bijs = 0) of the product family j 
after the production of the product family i in 
sub-period s.

-	 vit: Binary variable that indicates the production 
(vih = 1) or not (vih = 0) of the product family i 
in period t.

-	 xis: Binary variable that indicates the production 
(xis = 1) or not (xis = 0) of the product family i 
in sub-period s.

-	 yij: Binary variable that indicates the production 
(yij = 1) or not (yij = 0) of the product family j 
after the production of the product family i.

4.1.1 MBILP-CH – mixed-binary-
integer linear programming with 
continuous time horizon

The formulation is evidenced below:

( )
,

 i it i it
i J t T

Minimize H I B I −
∈ ∈

+∑  	 (2)

Subject to:

	 , 1     ,  ,it i t it it itI I q d I i J t T−
−= + − + ∀ ∈ ∀ ∈  	 (3)

	 (   )  2 ,it i it i t
i J

v Sm q p C t t
∈

+ ≤ ∀ = …∑  	 (4)

	  ,  2 ,it i t itq p C v i J t t≤ ∀ ∈ ∀ = …  	 (5)

	 ( )1 1 1  , , ,j i ij i i i ijr r St v p q M y i J j J i j≥ + + − − ∀ ∈ ∀ ∈ ≠ 	 (6)

	 1 , , ,ij jiy y i J j J i j+ = ∀ ∈ ∀ ∈ ≠  	 (7)

	 1 1 1 ,i i i ir p q C v i J+ ≤ ∀ ∈ 	 (8)

	 { }0,1  , , ,ijy i J j J i j∈ ∀ ∈ ∀ ∈ ≠  	 (9)

	 { }0,1  , ,itv i J t T∈ ∀ ∈ ∀ ∈ 	 (10)

	 , , 0 , ,it it itq I I i J t T− ≥ ∀ ∈ ∀ ∈  	 (11)

	  0 .ir i J≥ ∀ ∈  	 (12)
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The problem aims to minimize the inventory costs 
and the backorder costs, as shown in the Constraint 
2. In the Expression 3 we have the line balancing 
constraint in which the amount of stock Iit of the 
product family i in the end of period t is equal to 
the stock of the previous period Ii,t–1 increased of 
the production of period t, qit, and backorder of the 
same period itI −, reducing the demanded quantity dit. 
The Constraint 4 limits the capacity of the factory, 
showing that the minimum amount of hours of setup 

( )it i
i J

v Sm
∈
∑  plus the total production time ( )it i

i J
q p

∈
∑  of 

the product family i must be smaller than the total 
time capacity of the factory Ct, from the period 2. 
If the product family i is produced in the period t, the 
total time qit pi for its production must be less than 
the total capacity of the factory Ct vit, as shown in the 
Constraint 5, being valid from the second planning 
period. The Constraint 6 requires that the production 
start date rj of the product family j is equivalent to 
the starting date ri of the production of the product 
family i plus the time spent in preparation for the 
exchange of the product family i to the j, Stij vi1 added 
to the total amount of production time of the product 
family i in the first time period, pi qi1. Note that rj 
must obey to this expression when the manufacture 
of the product family j occurs after the manufacture 
of the product family i (yij = 1). Otherwise, (yij = 0), 
the Expression 6 will have the subtraction of a very 
large value, denoted by M, so that it will not restrict 
the amount rj. The Constraint 7 states that, within a 
certain range of time, there will be exchange from 
the product family i to j or the contrary, i.e., it will 
be only one exchange during this period. In the 
Constraint 8 it is possible to see that the production 
beginning time of i plus the lead time of this product 
family should be less than the period 1 capacity, 
if the product family i is produced in this period. 
The Constraints 9, 10, 11 and 12 define the domains 
of the variables.

4.1.2 MBILP-DH – mixed-binary-integer 
linear programming with discretized 
time horizon

Following the modeling for this formulation.

	
,

 ( )i it i it
i J t T

Minimize H I B I −
∈ ∈

+∑  	 (13)

Subject to:

	 , 1  , ,it i t it it itI I q d I i J t T−
−= + − + ∀ ∈ ∀ ∈  	 (14)

	 (    )  2 ,it i it i t
i J

v Sm q p C t t
∈

+ ≤ ∀ = …∑  	 (15)

	 ( )1 1
, , ,

( ) , ijs ij i i
i J j J s S i j i J

St q p Cb
∈ ∈ ∈ ≠ ∈

+ ≤∑ ∑  	 (16)

	  , 2 ,it i t itq p C v i J t t≤ ∀ ∈ ∀ = …  	 (17)

	 1 1  ,i i is
s S

q p C x i J
∈

≤ ∀ ∈∑  	 (18)

	 1 ,is
i J

x s S
∈

= ∀ ∈∑  	 (19)

	 , 1 1 , , 2 , ,ijs i s jsx x i J j J s s i jb −≥ + − ∀ ∈ ∀ ∈ ∀ = … ≠ 	 (20)

	 { }0,1   , , , ,ijs i J j J s S i jb ∈ ∀ ∈ ∀ ∈ ∀ ∈ ≠ 	 (21)

	 { }0,1  itv i J∈ ∀ ∈ ,  ,t T∀ ∈ 	 (22)

	 { }0,1  , , isx i J s S∈ ∀ ∈ ∀ ∈ 	 (23)

	 , , 0 , .it it itq I I i J t T− ≥ ∀ ∈ ∀ ∈  	 (24)

The objective function shown in the Constraint 
13 is the same as already discussed in the Constraint 
2, as well as the Constraints 14 and 15, which 
have the same meaning of Constraints 3 and 4, 
respectively. Given the production in sub-periods, 
the preparation of the production line is required 
when the production of a product family j in the 
sub-period s begins after the end of the production 
of the family i, considering a total capacity into 
productive time in the first planning period, C1, the 
sum of the setup times and production times, as shown 
in the Expression 16. The Constraint 17 shows that 
the time for the production of each product family 
i in a given period of time should be less than the 
total capacity in time Ct in period t. In the Constraint 
18 we have that if the product family i is produced 
in period 1 its production time should be less than 
the capacity in this time period. The Constraint 19 
shows that only a product family shall be produced by 
sub-period s. The Constraint 20 shows that there will 
be only production of the product family j after the 
production of the product family i in the sub-period 
s if there are production of i in sub-period s-1 and 
production of j in sub-period s, i.e., there will be a 
change in the product family i to the product family 
j. The Expressions 21, 22, 23 and 24 define the 
domains of the variables.

4.1.3 MBILP-DHP – mixed-binary-integer 
linear programming with discretized 
time horizon

The proposed formulation, as already mentioned, is 
based on Sousa & Wolsey (1992) and Henriques et al. 
(2010). This is a new formulation, inspired by 
scheduling problems, however, requiring particular 
settings and definitions. For this formulation a new 
parameter is necessary:
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-	 ai: Product family i production rate in each 
sub-period.

Are also used the new variables:

-	 zis: Binary variable indicating the beginning 
(zis = 1) or not (zis = 0) of the product family i 
production in sub-period s.

-	 wis: Binary variable indicating the end (wis = 1) 
or not (wis = 0) of the product family i production 
in sub-period s.

The proposed formulation is presented below.

	
,

 ( )i it i it
i J t T

Minimize H I B I −
∈ ∈

+∑  	 (25)

Subject to:

	 , 1  , ,i t it it it itI q I d I i J t T−
− + + = + ∀ ∈ ∀ ∈  	 (26)

	 ( )  2 ,it i it i t
i J

v Sm q p C t t
∈

+ ≤ ∀ = …∑  	 (27)

	  , 2 ,it i t itq p C v i J t t≤ ∀ ∈ ∀ = …  	 (28)

	 1  ,i i is is is
s S s S s S

q a sw sz z i J
∈ ∈ ∈

 
= − + ∀ ∈  

 
∑ ∑ ∑  	 (29)

	  ,is is
s S s S

w z i J
∈ ∈

= ∀ ∈∑ ∑  	 (30)

	 1 ,is
s S

z i J
∈

≤ ∀ ∈∑  	 (31)

	
( )min 1,

, 1 , , , ,
ij is St p s

is j ss
ss s

w z s S i J j J i j
+ + −

=

+ ≤ ∀ ∈ ∀ ∈ ∀ ∈ ≠∑ 	(32)

2

, 1 , 2
1

1 , , 1 , 2 , 2 1, ,
s

is i s j s
s s

w z z i J j J s S s S s s i j
=

≥ + − ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ≥ ≠∑ 	(33)

2

, 1 , 2
1

1 , , 1 , 2 , 2 1, ,
s

is j s i s
s s

z w w i J j J s S s S s s i j
=

≥ + − ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ≥ ≠∑ 	(34)

	 { }, 0,1  , ,is isw z i J s S∈ ∀ ∈ ∀ ∈  	 (35)

	 { }0,1  , ,itv i J t T∈ ∀ ∈ ∀ ∈ 	 (36)

	 , ,  0 , .it it itq I I i J t T− ≥ ∀ ∈ ∀ ∈ 	 (37)

The Constraints 25, 26, 27 and 28 have the same 
meaning as the Constraints 2, 3, 4 and 5, respectively. 
The amount to be made of the product family i in 
the first period is given by the Constraint 29, in 
which this quantity is calculated based on the time 
spent and in the production rate, ai. The Constraint 
30 ensures that the entire product family i which 
has its production started must be completed, 
guaranteeing the processing end of all items started. 
The Constraint 31 determines that each product 
family has its production started only once in all 

sub-periods s. The Constraint 32 ensures that if the 
product family i is allocated to a sub-period s, so no 
other product family j can be allocated until the end 
of this sub-period, while respecting the total capacity 
of the first week of planning. In the Constraint 33 it 
is set that between two beginnings of production will 
always be an end and the Constraint 34 determines 
that between two endings of production will always 
be a start. The Constraints 35, 36 and 37 present the 
domains of the variables.

The proposed formulation, MBILP-DHP, presents 
homogeneity in its time of the sub-periods, since the 
length thereof does not depend on the lead time of 
each product family. Thus, directly by the values of 
variables zis and wis it is possible to determine the 
chronological position of certain product family, 
as well as the precedence relations of the whole 
production.

Both the MBILP-CH and the MBILP-DH only show 
the start date of the production of each product family, 
there being no temporal detail during manufacturing. 
This fact imposes that the production of all demand 
for certain product family occurs once in the period. 
In addition, attention should be given to the fact 
that the MBILP-CH presents the parameter M, a 
large number, which is often determined arbitrarily, 
worsening the limits obtained.

Like the first two formulations presented, the latter 
limits by the Restriction 31 that, in all sub-periods, a 
product family initiate its production only once. This 
assumption was adopted so that the MBILP-DHP 
possesses the same characteristics of other formulations 
discussed here. However, if it has been suppressed, 
the formulation is able to realize interruption in the 
production of a product family to begin another and, 
where possible, complete the production of this first, 
characterizing the preemptive scheduling.

Analyzing the problems of PPC, this characteristic 
can benefit managers to adapt the production more 
easily to unexpected and urgent demands of some 
products. Thus, the production of these can be prioritized 
without compromising the remaining scheduling. 
The imposition that the entire necessary amount of 
a product/product family should be manufactured at 
a single time per period may generate some practical 
complications.

5 Computational results
Extensive computational experiments are performed 

to identify the strength and the weaknesses of each 
proposed formulation as a support decision tool. 
In order to analyze the performance of the mathematical 
formulations same parameters will be varied. A specific 
benchmark including these different features and 
characteristics was created for this purpose.



Integrated lot sizing and production scheduling formulations… 213

5.1 Benchmarking
Three different classes of instances are created 

based on real data. All instances classes have four 
weeks for the planning horizon. In the MBILP-DHP 
formulation, each week is divided into 112 sub-periods 
of 1 hour (2 shifts of 8 hour for each day of the week). 
In MBILP-DH formulation each week is divided in 
an amount equal to the number of product families 
to be produced. Therefore, in this formulation, the 
size of each sub-period is flexible, i.e., it will always 
depend on the number of product families that will 
be produced in each week. For all formulations were 
considered the following distinct product family 
quantities: 2, 3, 4, 5, 6, 7, 10, 15 and 20. Furthermore, 
the inventory of any product family at the start of 
the planning horizon is zero.

All parameters of the instances are randomly 
generated from a uniform distribution and their 
minimal and maximal values are based on specific 
scale parameters listed in Table 2.

The j  parameter refers to the total number of 
product families in J. The values of the demand for 
each family, the processing time, the setup times, the 
cost of inventory and the cost of backorder are based 
on real data. The demand for each family is generated 
by three different ways (Classes 1, 2 and 3) to capture 
several aspects of real situations and their influences. 
The amount is generated by a parameter a1 with values 
0.75, 1.50 and 3.00 for each class respectively. For each 
class, three independent instances are considered with 
size { }2,3,4,5,6,7,10,15,20 .j ∈  Thus, 81 instances are 
randomly and independently generated. All instances 
are slightly modified to satisfy the triangle inequality 
( , , ,ij il ljSt St St i J j J l J i j l≤ + ∀ ∈ ∀ ∈ ∀ ∈ ≠ ≠ ). The M value 
was defined by Equation 1.

5.2 Results
The mathematical formulations were modeled and 

solved using AMPL and CPLEX 12.1 with default 
settings. The experiments were run on a Windows 7 
with a single 2.2 GHz processor and 4GB memory. 
The runs were concluded after one hour of CPU time.

5.2.1 Specific results

5.2.1.1 Validation of the formulations 
solutions

In order to evaluate and to compare the solution of 
the three formulations, this section aims to analyze 
the solutions of each one, taking as input the same 

data. First it was chosen one instance problem with 
three product families to be processed, with four 
sub-periods. All formulations managed to solve at 
optimality and the resolution times for MBILP-CH, 
MBILP-DH and MBILP-DHP were, respectively, 
0.05, 0.55 and 68.25 seconds.

The lot sizing variables obtain identical results 
for the three formulations, satisfying the demand 
without any inventory or backorder. However, these 
formulations present different solutions for the 
scheduling of the first period for the same instance 
problem, emphasizing the difference between them.

For the MBILP-CH the product families schedule 
is 2-3-1, with their start times (ri) 0, 30 and 38. In this 
formulation it is possible to identify directly by decision 
variables the schedule and the start times. Although 
there is no complexity in these calculations, it is clear 
that this formulation requires auxiliary procedures to 
identify the production completion times.

The MBILP-DH presents the optimal schedule 
3-1-2. The solution shows the number of sub-periods 
equals to the amount of product families, therefore 
there is no temporal notion about the production 
beginning and end of each product family. Again, 
this formulation also requires auxiliary procedures 
to provide more details of the solution.

For the MBILP-DHP the product families schedule 
is 2-1-3, with their start times (zis) and completion times 
(wis): 3 and 30, 45 and 96, 106 and 111, respectively. 
The decision variables allow a temporal notion of the 
schedule, and it is evident by them that the solution 
presents slack, therefore, if necessary, more product 
families can be added for the first period.

The formulation MBILP-DHP has longer resolution 
time than the other formulations, however the elimination 
of the Restriction 31, as already mentioned, enables 
the preemptive scheduling. This provides flexibility to 
start and complete the production of a product family 
more than once in the same period. This choice can 
be useful to anticipate the production of subsequent 
periods, if the cost of backorder is higher than the 
cost of the generated inventory.

5.2.1.2 Comparation with company’s 
results

As mentioned, the company decides the schedule 
of the families to be produced just for the first week of 
the planning horizon, not anticipating the production 
of next weeks, preferring to incur in overtime when 
necessary. This practical may cause idleness in 
production line and backorders.

This study aims to define mathematical formulations 
that allow the studied company anticipates the 
production of other weeks for the previous weeks 
with idleness, reducing the costs of the backorder and 
delivery delays. Furthermore, the forecasts for more 

Table 2. Distribution values of the instances.
Input Data Distribution Value

Processing Time (pi) – Hours U(1,4)
Setup Time (Stij) – Hours U(0,2)
Demand (dit) – Units U(0,5 a1)
Cost (Hi and Bi) – R$ U(0, j )



Alves, F. F. et al.214 Gest. Prod., São Carlos, v. 23, n. 1, p. 204-218, 2016

distant periods are likely to change once the horizon 
is rolled forward and managers often have to revise 
the plans to cope with disruptive events. For this, the 
production planning should be done considering a 
rolling horizon, scheduling the product families for 
the first week and just defining the lot sizing for the 
remaining weeks.

In general, the mathematical formulations present 
an average delay of 0% for the product families to 
instances of the classes 1 and 2 and 7% for the Class 3, 
the last has tighter demand in relation to other classes. 
The total average delay presented by formulations 
is approximately 2%, while the company historical 
average delay is 4%. It is noteworthy that the data 
is based on real historical values of the company, 
but there is no guarantee that the behavior exhibited 
by the mathematical formulations is exactly the 
identical as the real company results, even if the 
instance problems used in this study were based on 
real historical data.

5.2.2 General results – performance 
evaluation of the formulations

To analyze the differences between the formulations, 
it was compared the optimality GAP ( IntegerGAP ) within 
3,600 seconds, the LP relaxation GAP, CPU times 
and its dimensions. The LP relaxation gap ( RelaxGAP ) 
is defined as the relative difference between the best 
integer solution found for each instance and the LP 
relaxation value, divided by the best integer solution. 
The results of the experiments and analysis are 
presented in Tables 3 and 4. The Table 3 depicts the 
average GAP results and the average computational 
times for the presented formulations considering 
each instance class problem, while Table 4 shows 
the dimension of the formulations.

In Table  3, the first two columns refer to the 
instance class and the number of product families. 
For each instance class its average and its standard 
deviation are calculated. The RelaxT  and IntegerT  indicate 
the average CPU times for the LP relaxation and 
the mixed-integer programming (MIP) problem, 
respectively. The “% Inst. Resol.” is the percentual 
of the instances solved within 3,600 seconds for LP 
relaxation and MIP problem.

As an example, the “Class 1” and the “Product 
Family 20” in Table 3 indicate that 20 distinct product 
families are considered, with its characteristics 
defined in the “Class 1” in “Section 5.1”. Therefore, 
as already presented, three results were generated for 
the “Class 1” and the “Product Family 20” and its 
averages for the GAPs and the computational times 
are calculated. Furthermore, its average and standard 
deviation values are calculated for each instance class 
to compare the performance of the formulations.

For instance classes 1 and 2 with up to 5 product 
families all analyzed formulations have GAP near 
to 0%, whereas them managed to optimality solve in 
most cases, for both LP relaxation and MIP problem. 
It is also observed a reduced computational time, 
which justifies the use of the formulations for a small 
number of product families. In the Class 3, the LP 
relaxation of the mathematical formulations presents 
higher GAP values than classes 1 and 2. The higher 

RelaxGAP  is presented by MBILP-CH with value of 
75.6%, however this formulation has computational 
time near to 0 seconds for all instances. The results 
of the Class 3 were expected due to have a tighter 
demand than other classes.

For the instance classes greater than 5 product 
families, the MIP formulation MBILP-DH has GAP 
near to 0% for all problems. On the other hand, for 
large problem instances the MBILP-CH presents worse 
lower bounds than MBILP-DH. The MBILP-CH has 
GAP values near to 100% with similar computational 
time to MBILP-DH. The LP relaxation also presents 
similar GAPs to MIP problems, having few instances 
with solutions near to the optimal.

The formulations MBILP-CH, MBILP-DH 
and MBILP-DHP solve 100%, 100% and 67% 
of the instance problems for the LP relaxations, 
respectively, and 72%, 77% and 41% for the MIP 
formulations. As the size of the input data increases, 
the GAP and the computational time increase faster 
for MBILP-DHP, solving smaller number of LP and 
MIP instances than other formulations. This is due to 
number of constraints and variables associated with 
MBILP-DHP which increase the model’s size faster 
than other formulations. It must be highlighted that in 
several occasions the formulation was unable to load 
the whole problem into the solver. In those cases the 
GAP and its computational time were defined by “-”.

The Table 4 presents the order of complexity for 
each formulation. For the formulations, “Binary 
Variables” indicate the number of associated variables 
and “Constraints” the number of associated constraints.

The formulation MBILP-DH presents in its worst 
case, s j= , therefore, its representation is only in 
function of j  in Table  4. The complexity of the 
formulations MBILP-CH and MBILP-DH in this 
article have a polynomial number of constraints and 
variables in the input data. However, this is not the case 
for MBILP-DHP, as they also are strongly dependent 
on j  and s . It is worth noting that as s


j , s j∝  (see 

Keha et al. (2009) for more details), MBILP-DHP 
formulation will increase its size faster than other 
formulations. In this paper the size of the s  was 
defined in “Section 5.1”.

As it can be seen in Table 4, the MBILP-CH has 
a smaller number of constraints and variables than 
other presented formulations. The MBILP-DH has 
identical number of variables with slightly larger 
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number of constraints than MBILP-CH. Finally, 
MBILP-DHP formulation has a considerably larger 
number of variables and constraints, due to s


j , 

i.e., the number of sub-periods is much greater than 
the number of product families, requiring a lot of 
memory space.

6 Conclusion
The MBILP-DHP, using random data based on 

actual data, showed satisfactory results, adequately 
representing the decision making process. In addition, it 
is emphasized the possibility of preemptive scheduling, 
allowing more flexibility in the manufacture of the 
product families. This flexibility permits that in the 
same time horizon a product family manufacture 
can be initiated and completed more than once, 
depending on the backorder and inventory costs. 
Thus, this formulation has a key differential aspect 
in the generation of the production scheduling when 
compared to the formulations that do not allow 
preemptive scheduling.

With the obtained results, it was possible to 
notice that the MBILP-CH formulation presented 
ease of resolution, because this formulation has 
a fewer number of constraints and variables, but 
showed weaker bounds when compared to the other 
formulations. The MBILP-DH formulation has a 
greater number of constraints and variables, requiring 
a longer computational time, but its use is justified 
by the fact of possessing stronger bounds, resulting 
in a closest solution to the optimum. The solution 
methods such as relax-and-fix method could be used, 
given that it provides a good solution for this type 
of formulations in a reasonable computational time. 
A deep discussion about this method can be seen in 
Kelly & Mann (2004).

The MBILP-DHP formulation is an alternative 
to literature formulations, returning similar results 
to the MBILP-DH. However, the former requires a 
greater computational time, due to the growing order 
behavior of its variables and constraints, being better 
used for Lagrangian Relaxation. As advantages, it 
presents sub-periods with identical lengths, which 
ensures the homogeneity of production time.
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