Acessibilidade / Reportar erro

Macrophytes of the Capitão Poço river micro-basin, State of Pará, Eastern Amazon, Brazil: floristic composition and identification key for the species1 1 Part of the first Author’s Final Year Project Paper

Macrófitas da microbacia do rio Capitão Poço, Amazônia Oriental, Brasil: composição florística e chave de identificação para as espécies

ABSTRACT

We aimed to characterize the floristic composition, detect the life forms, and provide an identification key for the macrophyte species of the Capitão Poço river micro-basin in the State of Pará, located in the Eastern Amazon. The collected specimens were identified and deposited in the HCP herbarium. We found 23 species distributed in 19 genera and 14 families of macrophytes. The families with the highest species richness were Cyperaceae (six spp.), Poaceae (three spp.), Onagraceae and Plantaginaceae (two spp. each). We present here the first record of Dichanthelium aequivaginatum from the Brazilian Amazon and the Northern region of Brazil. We suggest that floristic-taxonomic studies of macrophytes in the hydrographic basins of the northeastern region of Pará should be intensified in order to better understand the regional flora of this group.

Keywords:
aquatic flora; Brazilian Amazon; checklist; new records; streams

RESUMO

Nosso objetivo foi caracterizar a composição florística, detectar as formas de vida e fornecer uma chave de identificação para as espécies de macrófitas da microbacia do rio Capitão Poço, no Estado do Pará, localizada na Amazônia Oriental. Os espécimes coletados foram identificados e depositados no herbário HCP. Encontramos 23 espécies de macrófitas distribuídas em 19 gêneros e 14 famílias. As famílias com maior riqueza de espécies foram Cyperaceae (seis spp.), Poaceae (três spp.), Onagraceae e Plantaginaceae (duas spp. cada). Apresentamos aqui o primeiro registro de Dichanthelium aequivaginatum para a Amazônia Brasileira e região Norte do Brasil. Sugerimos que sejam intensificados os estudos florístico-taxonômicos de macrófitas nas bacias hidrográficas da região nordeste do Pará, a fim de conhecer melhor a flora regional deste grupo.

Palavras-chave:
flora aquática; Amazônia Brasileira; inventário; novos registros; riachos

Introduction

Macrophytes are macroscopic photosynthetic organisms that can grow in permanently or seasonally humid environments (Cook et al. 1974Cook, C.D.K., Gut, B.J., Rix, E.M., Schneller, J. & Seitz, M. 1974. Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. 1. ed. Springer Science & Business Media, Berlim., Couto et al. 2022Couto, E., Assemany, P.P., Carneiro, G.C.A. & Soares, D.C.F. 2022. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. Chemosphere 302: 134808.). These organisms perform important ecosystem services, such as habitat structuring, nutrient cycling, supply of organic carbon and oxygen to the rhizosphere, reduction of water flow velocity, and stabilization of the filter bed (Cronin et al. 2006Cronin, G., Lewis Jr., W.M. & Schiehser, M.A. 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany 85: 37-43., Lahon & Sahariah 2022Lahon, D. & Sahariah, D. 2022. Physico-chemical properties of water and its impacts on the species diversity of aquatic plants at Disangmukh wetland of Assam, India. Ecology, Environment and Conservation 28: 203-207., Grzybowski et al. 2023Grzybowski, M., Furgała-Selezniow, G., Koszałka, J., Kalinowska, J. & Jankun-Woźnicka, M. 2023. Correlation between catchment land use/cover and macrophyte assessment of lake ecological status. Ecological Indicators 146: 109857.). Macrophytes also influence the hydraulic conductivity, allow the transfer of nutrients at the soil-water interface and the accumulation of sediments in lakes with low slopes (Tundisi & Tundisi 2016Tundisi, J.G. & Tundisi, T.M. 2016. Limnologia. Oficina de textos, São Paulo.), in addition to being phytoremediators, acting in the elimination of ammonia, phosphates and nitrates from water bodies (Esteves 2011Esteves, F.A. 2011. Fundamentos da Limnologia. 3. ed. Editora Interciência, Rio de Janeiro.). Apart from their ecological importance, macrophytes are used in animal and human food, fertilization, and production of medicines and cosmetics (Esteves 2011Esteves, F.A. 2011. Fundamentos da Limnologia. 3. ed. Editora Interciência, Rio de Janeiro.).

The Amazon basin is the largest freshwater basin on the planet and is predominantly located in Northern Brazil (Moura Júnior et al. 2015Moura Júnior, E.G.D., Paiva, R.M.S.D., Ferreira, A.C., Pacopahyba, L.D., Tavares, A.S., Ferreira, F.A. & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica 45: 111-132., Fares et al. 2021Fares, A.L.B., Sousa, R.L.M.D., Gurgel, E.S.C., Gil, A.D.S.B., Silva, C.A.S.D. & Michelan, T.S. 2021. Diversity of macrophytes in the Amazon deforestation arc: information on their distribution, life-forms and habits. Rodriguésia 72: e00312020.). Due to the environmental gradients present in the region, notably in the climate and limnological characteristics of the basins, the distribution, richness and composition of macrophyte species may vary across different water bodies (Moura Júnior et al. 2015Moura Júnior, E.G.D., Paiva, R.M.S.D., Ferreira, A.C., Pacopahyba, L.D., Tavares, A.S., Ferreira, F.A. & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica 45: 111-132.). The disorderly growth of cities and increase in the global population have caused several environmental problems in aquatic ecosystems, mainly the irregular release of effluents and solid waste and deforestation (McDonald et al. 2020McDonald, R.I., Mansur, A.V., Ascensão, F., Colbert, M., Crossman, K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, D., Hamann, M., Hillel, O., Huang, K., Kahnt, B., Maddox, D., Pacheco, A., Pereira, H.M., Seto, K.C., Simkin, R., Walsh, B., Werner, A.S. & Ziter, C. 2020. Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability 3: 16-24.). The disturbances caused by urbanization profoundly modify the habitat, resulting in the disappearance of specialist species and consequent dominance of generalist ones (Ferreira et al. 2023Ferreira, F.S., Solórzano, J.C.J. & Súarez, Y.R. 2023. Influence of urbanization on stream fish assemblages in three microbasins in the Upper Paraná River Basin. Brazilian Journal of Biology 83: e247384.).

The northeastern mesoregion of the State of Pará, in the Eastern Amazon, faces problems resulting from the lack sewage treatment and the consequences of agricultural activities such as itinerant family farming, which involves the slashing and burning of forest areas of different sizes (Barroso et al. 2015Barroso, D.F.R., Figueiredo, R.O., Pires, C.S. & Costa, F.F. 2015. Avaliação da sustentabilidade ambiental de sistemas agropecuários em microbacias do Nordeste Paraense a partir de parâmetros físico-químicos. Instituto Histórico e Geográfico do Pará 2: 56-68., Alves et al. 2018Alves, J.D.N., Conceição, A.G.C.D., Oliveira, S.S., Okumura, R.S., Oliveira Neto, C.F.D. & Bezerra, F.A.X. 2018. Water quality evaluation in water courses in the municipality of Capitão Poço – PA. Nucleus 15: 269-278.). The release of wastewater without prior treatment directly affects the basin of the Guamá River, which currently has 29% of its area altered (Rocha & Lima 2020Rocha, N.C.V. & Lima, A.M.M.D. 2020. A sustentabilidade hídrica na bacia do rio Guamá, Amazônia Oriental/Brasil. Sociedade e Natureza 32: 141-160.). This basin is composed by eight sub-basins (Upper Guamá, Lower Guamá, Igarapé Apeú, Rio Bujaru, Middle Guamá west sector, Middle Guamá east sector, Igarapé Mãe do Rio, and Rio Sujo), covering 7% of the State of Pará and 19 municipalities (Kubota et al. 2020Kubota, N.A., Lima, A.M.M.D., Rocha, N.C.V. & Lima, I.F. 2020. Hidrogeomorfologia da Bacia Hidrográfica do Rio Guamá - Amazônia Oriental - BRASIL. Revista Brasileira de Geomorfologia 21: 759-782.). Alterations are more noticeable in the Upper Guamá sub-basin, particularly in the Capitão Poço river micro-basin, where urban and agricultural activities result in the diffuse pollution of the igarapés and, very likely, the artificial eutrophication of water bodies (Alves et al. 2018Alves, J.D.N., Conceição, A.G.C.D., Oliveira, S.S., Okumura, R.S., Oliveira Neto, C.F.D. & Bezerra, F.A.X. 2018. Water quality evaluation in water courses in the municipality of Capitão Poço – PA. Nucleus 15: 269-278.). The Capitão Poço river micro-basin flows into the Upper Guamá sub-basin, which is widely used for animal husbandry, bathing, irrigation, fishing, and fish farming (Rodrigues 2018Rodrigues, R.S.S. 2018. Correlação entre índice de qualidade da água e usos múltiplos na Bacia hidrográfica do Igarapé da Prata. Dissertação de Mestrado, Universidade Federal do Pará, Belém.).

Land use change generally favors certain species and biological forms of macrophytes (Umetsu et al. 2018Umetsu, C.A., Aguiar, F.C., Ferreira, M.T., Cancian, L.F. & Camargo, A.F.M. 2018. Addressing bioassessment of tropical rivers using macrophytes: the case of Itanhaém Basin, São Paulo, Brazil. Aquatic Botany 150: 53-63., Pereira et al. 2021Pereira, K.M., Hefler, S.M., Trentin, G., & Rolon, A.S. 2021. Influences of landscape and climatic factors on aquatic macrophyte richness and composition in ponds. Flora 279: 151811., Bomfim et al. 2023Bomfim, F.F., Fares, A.L.B., Melo, D.G.L., Vieira, E. & Michelan, T.S. 2023. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology.). However, although a high richness of macrophyte species has been reported for the State of Pará (Moura Júnior et al. 2015Moura Júnior, E.G.D., Paiva, R.M.S.D., Ferreira, A.C., Pacopahyba, L.D., Tavares, A.S., Ferreira, F.A. & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica 45: 111-132., Fares et al. 2021Fares, A.L.B., Sousa, R.L.M.D., Gurgel, E.S.C., Gil, A.D.S.B., Silva, C.A.S.D. & Michelan, T.S. 2021. Diversity of macrophytes in the Amazon deforestation arc: information on their distribution, life-forms and habits. Rodriguésia 72: e00312020.), the diversity, life forms and diagnostic morphological characters of macrophyte species in most basins of this State, including those of Guamá, have not yet been comprehensively investigated. In this context, the objective of the present study was to characterize the floristic composition, detect the life forms, and provide an identification key for the macrophyte species of the Capitão Poço river micro-basin.

Material and methods

Study area - The study was carried out in the Capitão Poço river micro-basin (1°43’37.0”-1°46’57.5” S; 47°03’03.9”-47°05’41.2” W), which has approximately 112 km2 and is restricted to the municipality of Capitão Poço, State of Pará, Brazil. The municipality is located in the northeastern mesoregion of Pará and the Guamá microregion, has an area of 2,899 km2 and an average altitude of 73 meters above sea level (IBGE 2021IBGE (Instituto Brasileiro de Geografia Estatística). 2021. Dados de Capitão Poço. Available at https://cidades.ibge.gov.br/brasil/pa/capitaopoco/panorama (access in 19-I-2021).
https://cidades.ibge.gov.br/brasil/pa/ca...
). The climate in Capitão Poço is of the Am type (Alvares et al. 2013Alvares, C.A, Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.), with a markedly rainy (January to April) and a slightly drier (July to November) season, with an average annual precipitation of 2,449 mm and an average annual temperature of 26.9 °C (Pacheco & Bastos 2001Pacheco, N.A. & Bastos, T.X. 2001. Caracterização climática do Município de Capitão Poço-PA. Embrapa Amazônia Oriental, Documentos 79: 1-20., Santos 2013Santos, D.B.O. 2013. Aplicação da RUSLE a uma pequena bacia hidrográfica da Amazônia. Dissertação de Mestrado, Universidade Federal do Pará, Belém., Sauma Filho et al. 2020Sauma Filho, M.S., Ruivo, M.D.L.P., Conceição, H.E.O.D., Viégas, I.D.J.M., Gonçalves, A.C.D.S., Teixeira, O.M.M., Oliveira, J.N. & Galvão, R.M. 2020. Atributos químicos do solo construído após a extração de seixo em Capitão Poço, Pará, Brasil. Brasilian Journal of Development 6: 64608-64623.). The vegetation of the region is predominantly composed of secondary vegetation of Dense Ombrophilous Forest (IBGE 2023IBGE (Instituto Brasileiro de Geografia Estatística). 2023. Banco de Dados de Informações Ambientais. Available at https://bdiaweb.ibge.gov.br/#/consulta/vegetacao (access in 7-VII-23).
https://bdiaweb.ibge.gov.br/#/consulta/v...
).

Data collection and analysis - Collections were carried out at eight sampling points in streams of first and second order (Strahler 1957Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38: 913-920.) along the Capitão Poço river micro-basin, including stretches that cross the urban center of the municipality (points 2, 4 and 5, recognized as more urbanized) and others relatively far from it (points 1, 3, 6, 7 and 8, less urbanized) (figures 1 and 2), in order to cover locations with different levels of anthropization. Field expeditions took place in July, August, September, and November 2019 and from January to April 2020, in order to cover the different regional climatic seasons. Collection and processing of the botanical materials were carried out according to usual taxonomic procedures (Peixoto & Maia 2013Peixoto, A.L. & Maia, L.C. 2013. Manual de Procedimentos para Herbários. INCT-Herbário virtual para a Flora e os Fungos. Editora Universitária UFPE, Recife.) and the vouchers were deposited in the HCP herbarium (acronym according to Thiers 2023Thiers, B. 2023. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at https://sweetgum.nybg.org/science/ih/ (access in 15-VI-23).
https://sweetgum.nybg.org/science/ih/...
). The identification of macrophytes was carried out using relevant literature, such as Pott & Pott (2000)Pott, V.J. & Pott, A. 2000. Plantas aquáticas do Pantanal. Embrapa Comunicação para Transferência de Tecnologia. Brasília, Distrito Federal., Souza & Lorenzi (2019)Souza, V.C. & Lorenzi, H. 2019. Botânica Sistemática. Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG I V. Jardim Botânico Plantarum, Nova Odessa., Flora e Funga do Brasil (2023)Flora e Funga do Brasil. 2023. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/ (access in 5-V-2023).
http://floradobrasil.jbrj.gov.br/...
, and especially floristic-taxonomic articles (Souza & Giulietti 2009Souza, V.C. & Giulietti, A.M. 2009. Levantamento das espécies de Scrophulariaceae sensu lato nativas do Brasil. Pesquisas, Botânica 60: 7-288., Barbosa 2012Barbosa, E.A. 2012. Macrófitas aquáticas em um reservatório da grande João Pessoa, Paraíba-Brasil. Trabalho de Conclusão de Curso, Universidade Estadual da Paraíba, João Pessoa., Costa 2014Costa, D.L. 2014. Diversidade de macrófitas na piscicultura Santa Helena. Trabalho de Conclusão de Curso, Universidade Federal de Rondônia, Presidente Médici., Duarte et al. 2015Duarte, G.S.V., Pott, V.J., Lemke, A.P. & Suarez, Y.R. 2015. Efeito das características ambientais sobre a riqueza e composição de macrófitas aquáticas em córregos urbanos. Ciência e Natura 37: 74-94., Araújo 2017Araújo, E.S. 2017. Padrões ecológicos e prováveis determinantes da comunidade de macrófitas aquáticas em um rio subtropical de maré. Dissertação de Mestrado, Universidade Federal do Paraná, Curitiba., Sousa et al. 2019Sousa, N.X.M., Vieira, A.O.S., Costa, G.M. & Aona, L.Y.S. 2019. Caracteres importantes na identificação de espécies de Ludwigia (Onagraceae) ocorrentes no Recôncavo da Bahia, Brasil. Rodriguésia 70: e01392018.2019., Fares et al. 2020aFares, A.L.B., Calvão, L.B., Torres, N.R., Gurgel, E.S.C. & Michelan, T.S. 2020a. Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators 113: 106231.), in addition to consultations with taxonomists. The key to the identification of macrophyte species of the Capitão Poço river micro-basin was elaborated mainly based on the analysis of the collected specimens and, in addition, morphological information on the species available in Flora and Funga do Brasil (2023)Flora e Funga do Brasil. 2023. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/ (access in 5-V-2023).
http://floradobrasil.jbrj.gov.br/...
. The classification of biological forms was based on the concepts of Pedralli (2003)Pedralli, G. 2003. Macrófitas aquáticas como bioindicadoras da qualidade da água: alternativas para usos múltiplos de reservatórios. In: S.M. Thomaz & L.M. Bini (eds.). Ecologia e Manejo de Macrófitas Aquáticas. Eduem, Maringá, pp.171-188. and Esteves (2011)Esteves, F.A. 2011. Fundamentos da Limnologia. 3. ed. Editora Interciência, Rio de Janeiro.. We adopted the APG IV and PPG I classification systems for the taxa recorded (APG IV 2016APG IV (Angiosperm Phylogeny Group). 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG I V. Botanical Journal of the Linnean Society 181: 1-20., PPG I 2016PPG I (Pteridophyte Phylogeny Group). 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.).

Figure 1.
Capitão Poço river micro-basin in the State of Pará, Brazil, highlighting the location of the eight sampling points of macrophytes of the present study.

Figure 2.
Satellite view of the urban center of the municipality of Capitão Poço, State of Pará, Eastern Amazon, Brazil (a). The eight sampling points of the present study, namely P1 (b), P2 (c), P3 (d), P4 (e), P5 (f), P6 (g), P7 (h), and P8 (i).

Results

We found 23 species of macrophytes belonging to 19 genera and 14 families, including ferns, basal angiosperms, eudicots, and monocots, in the Capitão Poço river micro-basin. The families with the highest species richness were Cyperaceae, with six species, Poaceae, with three species, and Onagraceae and Plantaginaceae, with two species each (figures 3 and 4, table 1). The genus Cyperus L. had three species and Bacopa Aubl. and Ludwigia L. had two species each. All other genera were represented by only one species each.

Figure 3.
Macrophytes of the Capitão Poço river micro-basin, State of Pará, Eastern Amazon, Brazil. a. Salvinia auriculata Aubl. b. Christella dentata (Forssk.) Brownsey & Jermy. c. Cabomba aquatica Aubl. d. Nymphaea rudgeana G.Mey. e. Sauvagesia erecta L. f. Ludwigia hyssopifolia (G.Don) Exell. g. Ludwigia leptocarpa (Nutt.) H.Hara. h. Bacopa aquatica Aubl. i. Bacopa aubletiana Scatigna. j. Limnocharis flava (L.) Buchenau. k. Cyperus haspan L. l. Cyperus luzulae (L.) Retz.

Figure 4.
Macrophytes of the Capitão Poço river micro-basin, State of Pará, Eastern Amazon, Brazil. a. Cyperus odoratus L. b. Eleocharis interstincta (Vahl) Roem. & Schult. c. Fuirena umbellata Rottb. d. Rhynchospora corymbosa (L.) Britton e. Tonina fluviatilis Aubl. f. Apalanthe granatensis (Humb. & Bonpl.) Planch. g. Dichanthelium aequivaginatum (Swallen) Zuloaga h. Echinochloa colona (L.) Link i. Urochloa arrecta (Hack. ex T.Durand & Schinz) Morrone & Zuloaga j. Heteranthera reniformis Ruiz & Pav. k-l. Xyris fallax Malme.

Table 1.
List of species of macrophytes in the eight sampling sites (P1, P2, P3, P4, P5, P6, P7, and P8) surveyed in the Capitão Poço river micro-basin, Pará, Brazil, and respective vouchers. Asterisks (*) indicate the most urbanized sampling sites. Biological Forms: A: amphibious. EM: emergent. EM/A: emergent/amphibious. FF: fixed with floating leaves. FL: free floating. FS: fixed submerged.

The species richness at the sampled points ranged from three (P1) to eight (P3) species. Two species (Cabomba aquatica Aubl. and Nymphaea rudgeana G.Mey.) were found in all localities, while eight species were restricted to a single locality. Eighteen species occurred in areas further away from the urban center (P1, P3, P6, P7 and/or P8) and 10 were exclusive to these environments. Dichanthelium aequivaginatum (Swallen) Zuloaga stood out, occurring in four of the five less urbanized spots. In turn, 13 species occurred in urban areas (P2, P4 and/or P5), five of which were exclusive to these points. Urochloa arrecta (Hack. ex T.Durand & Schinz) Morrone & Zuloaga was the only species found in all three most anthropized points (table 1).

Emergent and amphibious life forms were the most abundant, corresponding to 30.4% of the species (n = 7), followed by exclusively amphibious (26.1%; n = 6), exclusively emergent (21.7%; n = 5), fixed submerged (13%; n = 3), and free floating and floating leaves (4.4%; n = 1 each) (table 1). The species surveyed in the present study are distinguished by diverse vegetative and reproductive morphological characters, such as the presence and/or absence of a leaf blade, the presence and/or absence of trichomes on the stem, phyllotaxy of leaves, shape of the leaf blade, floral symmetry, number and color of tepals, concrescence of the gynoecium, and the biological form (see identification key below).

Dichanthelium aequivaginatum (Swallen) Zuloaga (Poaceae) is reported here for the first time from the Brazilian Amazon and the Northern region of Brazil.

  • 1. Plants without flowers, fruits or seeds (ferns)

    • 2. Herbs not rooted in substrate, floating; fronds entire, frond blades suborbicular to orbicular; heterosporous Salvinia auriculata

    • 2. Herbs rooted in substrate; fronds pinnate, frond blades lanceolate to elliptical; homosporous Christella dentata

  • 1. Plants with flowers, fruits or seeds (basal angiosperms, monocots or eudicots)

    • 3. Carpels not plicate, with margins sealed by secretion (basal angiosperms)

      • 4. Leaves submerged, presence of heterophylly; flowers with 6 tepals, yellow Cabomba aquatica

      • 4. Leaves floating, absence of heterophylly; flowers with more than 6 tepals, white to cream Nymphaea rudgeana

    • 3. Carpels plicate, with margins sealed by post-genital fusion of epidermis (monocots or eudicots)

      • 5. Plants with leaf blades with usually brochidodromous, never parallelodromous venation; pollen grains predominantly tricolpate or tricolpate-derived (eudicots)

        • 6. Leaves alternate

          • 7. Leaves with stipules; leaf blades with crenulate margin; petals white-pink Sauvagesia erecta

          • 7. Leaves without stipules; leaf blades with entire margin; petals yellow

            • 8. Stem glabrous; flowers with four petals Ludwigia hyssopifolia

            • 8. Stem pilose; flowers with five petals Ludwigia leptocarpa

        • 6. Leaves opposite

          • 9. Leaf blades orbicular to broad-oval; petals white Bacopa aubletiana

          • 9. Leaf blades linear to oblanceolate; petals white-lilac Bacopa aquatica

      • 5. Plants with leaf blades with parallelodromous venation or rarely without leaf blades; monosulcate pollen grains (monocots)

        • 10. Leaves reduced to sheaths, without leaf blades Eleocharis interstincta

        • 10. Leaves with developed leaf blades

          • 11. Leaves petiolate; leaf blades wide ovate, reniform or slightly cordate

            • 12. Flowers zygomorphic; petals white; gynoecium syncarpous Heteranthera reniformis

            • 12. Flowers actinomorphic; petals yellow; gynoecium apocarpous Limnocharis flava

          • 11. Leaves sessile; leaf blades linear to lanceolate

            • 13. Plants fixed submerged

              • 14. Leaves alternate Tonina fluviatilis

              • 14. Leaves whorled Apalanthe granatensis

            • 13. Plants emergent and/or amphibious

              • 15. Floral scape quinquangular Fuirena umbellata

              • 15. Floral scape triangular or cylindrical

                • 16. Floral scape triangular

                  • 17. Glumes spiraled Rhynchospora corymbosa

                  • 17. Glumes distichous

                    • 18. Leaf blades shorter than involucral bracts; involucral bracts 2-3, glabrous; stamens 3 Cyperus haspan

                    • 18. Leaf blades as long or longer than involucral bracts; involucral bracts 6-10, partially pilose; stamen 1

                      • 19. Spikelet with persistent rachilla, oval; fertile glumes deciduous Cyperus luzulae

                      • 19. Spikelet with deciduous rachilla, linear to cylindrical; fertile glumes persistent Cyperus odoratus

                • 16. Floral scape cylindrical

                  • 20. Leaves spiraled; presence of mucilage at the base of the leaves; flowers dichlamydeous Xyris fallax

                  • 20. Leaves distichous; absence of mucilage at the base of the leaves; flowers achlamydeous

                    • 21. Leaves without ligule Echinochloa colona

                    • 21. Leaves with ligule

                      • 22. Nodes glabrous; leaf blades glabrous Urochloa arrecta

                      • 22. Nodes pilose; leaf blades pilose toward the base at the adaxial surface Dichanthelium aequivaginatum

Discussion

We found a relatively lower number of macrophyte species in the Capitão Poço river micro-basin (19 genera and 23 species in eight sampled sites) than in other basins in Pará State. Fares et al. (2020a)Fares, A.L.B., Calvão, L.B., Torres, N.R., Gurgel, E.S.C. & Michelan, T.S. 2020a. Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators 113: 106231. recognized 49 species of 23 families in 30 sampling points (including streams, lakes and ponds) in the basin of the Capim river, and Fares et al. (2021)Fares, A.L.B., Sousa, R.L.M.D., Gurgel, E.S.C., Gil, A.D.S.B., Silva, C.A.S.D. & Michelan, T.S. 2021. Diversity of macrophytes in the Amazon deforestation arc: information on their distribution, life-forms and habits. Rodriguésia 72: e00312020. identified 50 species and 38 genera in 36 localities (also including streams, lakes and ponds) inserted in the Capim river and Acará-Mirim river basins. More recently, Bomfim et al. (2023)Bomfim, F.F., Fares, A.L.B., Melo, D.G.L., Vieira, E. & Michelan, T.S. 2023. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology. recorded 36 species and 30 genera of macrophytes in 17 streams associated with the Capim river basin. However, the number of sites sampled in the present study was smaller than in these studies. Thus, we believe that the expansion of sampling to other localities of Capitão Poço or the inclusion of different ecosystems such as lakes in future samplings may result in higher local richness, possibly similar to the abovementioned studies. Furthermore, 34.8% of the species occurred exclusively in a single locality (predominantly in the less urbanized sites), pointing to the importance of surveying the aquatic flora in multiple areas.

Cyperaceae and Poaceae were the families that most contributed to local richness, a recurrent pattern in inventories of the aquatic flora, mainly in lotic environments (Torres et al. 2016Torres, C.R.M., Fernando, E.M. & Lucena, M.F. 2016. Checklist de plantas aquáticas em trechos de caatinga do semiárido paraibano, Nordeste do Brasil. Gaia Scientia 10: 284-296., Lopes et al. 2019Lopes, A., Crema, L.C., Demarchi, L.O., Ferreira, A.B., Santiago, I.N., Ríos-Villamizar, E.A. & Piedade, M.T.F. 2019. Herbáceas aquáticas em igapós de água preta dentro e fora de Unidades de Conservação no estado do Amazonas. Biodiversidade Brasileira 2: 45-62., Nunes 2020Nunes, L.S.C. 2020. Ecologia de macrófitas aquáticas em rios costeiros de São Paulo: diversidade, competição interespecífica e distribuição espacial em gradientes ambientais. Tese de Doutorado, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro., Almeida & Fabricante 2021Almeida, T.S. & Fabricante, J.R. 2021. Macrófitas aquáticas do Parque Nacional Serra de Itabaiana, Sergipe, Brasil. Revista de Ciências Ambientais 15: 1-12., Fares et al. 2021Fares, A.L.B., Sousa, R.L.M.D., Gurgel, E.S.C., Gil, A.D.S.B., Silva, C.A.S.D. & Michelan, T.S. 2021. Diversity of macrophytes in the Amazon deforestation arc: information on their distribution, life-forms and habits. Rodriguésia 72: e00312020.). These two families are well represented probably due to their cosmopolitan distribution and large number of species, which is due to the presence of stolons, rhizomes and underground tubers that favor vegetative propagation (Pinheiro & Jardim 2015Pinheiro, M.N.M. & Jardim, M.A.G. 2015. Composição Florística e formas biológicas de macrófitas aquáticas em lagos da Amazônia Ocidental, Roraima, Brasil. Biota Amazônia 5: 23-27., Kawakita et al. 2016Kawakita, K., Rodrigues, R.S. & Filgueiras, T.S. 2016. Poaceae em uma planície de inundação no Brasil: listagem florística e novas ocorrências. Hoehnea 43: 203-216.). Onagraceae and Plantaginaceae also have significant richness in the Neotropics, being among the main families recorded in floristic studies of macrophytes (Araújo et al. 2012Araújo, E.S., Sabino, J.H.F., Cotarelli, V.M., Siqueira-Filho, J.A., & Campelo, M.J.A. 2012. Riqueza e diversidade de macrófitas aquáticas em mananciais da Caatinga. Diálogos & Ciência 32: 229-234., Costa 2014Costa, D.L. 2014. Diversidade de macrófitas na piscicultura Santa Helena. Trabalho de Conclusão de Curso, Universidade Federal de Rondônia, Presidente Médici., Sabino et al. 2015Sabino, J.H.F., Araújo, E.S., Cotarelli, V.M., Siqueira-Filho, J.A. & Campelo, M.J.A. 2015. Riqueza, composição florística, estrutura e formas biológicas de macrófitas aquáticas em reservatórios do semiárido nordestino, Brasil. Natureza Online 13: 184-194., Murphy et al. 2019Murphy, K., Efremov, A., Davidson, T.A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T.C., Chambers, P., Tapia Grimaldo, J., Varandas Martins, S., Springuel, I., Kennedy, M., Mormul, R.P., Dibble, E., Hofstra, D., Lukács, B.A., Gebler, D., Baastrup-Spohr, L., Urrutia-Estrada, J. 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127.). In these studies, Onagraceae is commonly represented by the genus Ludwigia, which has high plasticity and encompasses species with the most diverse biological forms, from amphibious to submerged, resulting in an outstanding ability to explore different environments (Pott & Pott 2000Pott, V.J. & Pott, A. 2000. Plantas aquáticas do Pantanal. Embrapa Comunicação para Transferência de Tecnologia. Brasília, Distrito Federal.). The greater richness of the genera Cyperus and Ludwigia found here can be related to their reproductive and adaptive morphological structures that provide them with the ability to grow in the most diverse environments, even in the face of irregular rainfall throughout the year, traits that make them to be considered generalist and, often, invasive plants and weeds (Costa 2014Costa, D.L. 2014. Diversidade de macrófitas na piscicultura Santa Helena. Trabalho de Conclusão de Curso, Universidade Federal de Rondônia, Presidente Médici.). Furthermore, most of the species of Cyperus and Ludwigia are emergent or amphibious; the reduction of water level in lotic environments during less rainy seasons provides a heterogeneity of habitats, favouring germination, survival and development of these biological forms (Reid et al. 2016Reid, M.A., Reid, M.C. & Thoms, M.C. 2016. Ecological significance of hydrological connectivity for wetland plant communities on a dryland floodplain river, MacIntyre River, Australia. Aquatic Sciences 78: 139-158.; Regmi et al. 2021Regmi, T., Shah, D.N., Doody, T.M., Cuddy, S.M. & Tachamo Shah, R.D. 2021. Hydrological alteration induced changes on macrophyte community composition in sub-tropical floodplain wetlands of Nepal. Aquatic Botany 173: 103413.).

The predominance of amphibious and emergent life forms is in line with reports by other authors for tropical areas in Brazil (Ferreira et al. 2011Ferreira, F.A., Mormul, R.P., Pedralli, G., Pott, V.J. & Pott, A. 2011. Estrutura da comunidade de macrófitas aquáticas em três lagoas do Parque Estadual do Rio Doce, Minas Gerais, Brasil. Hoehnea 37: 43-52., Kufner et al. 2011Kufner, D.C.L., Scremin-Dias, E. & Guglieri-Caporal, A. 2011. Composição florística e variação sazonal da biomassa de macrófitas aquáticas em lagoa de meandro do Pantanal. Rodriguésia 62: 803-812., Sabino et al. 2015Sabino, J.H.F., Araújo, E.S., Cotarelli, V.M., Siqueira-Filho, J.A. & Campelo, M.J.A. 2015. Riqueza, composição florística, estrutura e formas biológicas de macrófitas aquáticas em reservatórios do semiárido nordestino, Brasil. Natureza Online 13: 184-194.). This predominance is associated with anthropized environments subject to seasonal flooding, low depths, and species tolerance to water volume variation (Moreira et al. 2011Moreira, S.N., Pott, A., Pott, V.J. & Damasceno-Junior, G.A. 2011. Structure of pond vegetation of a vereda in the Brazilian Cerrado. Rodriguésia 62: 721-729., Santos 2014Santos, V. V. 2014. Distribuição espacial e ecologia de macrófitas aquáticas do rio Ipojuca, Pernambuco, Brasil. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife.). This pattern was also previously observed in anthropized watersheds in Pará State, including one in the northeast of the State (Fares et al. 2020aFares, A.L.B., Calvão, L.B., Torres, N.R., Gurgel, E.S.C. & Michelan, T.S. 2020a. Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators 113: 106231., Bomfim et al. 2023Bomfim, F.F., Fares, A.L.B., Melo, D.G.L., Vieira, E. & Michelan, T.S. 2023. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology.).

The species found in this study are cosmopolitan, pantropical or neotropical with a wide distribution in the American continent. None of the species was restricted to Brazil or endemic to the Amazon (Tropicos 2023Tropicos. 2023. Name Search. Available at https://www.tropicos.org/name/Search (access in 1-VII-2023).
https://www.tropicos.org/name/Search...
). However, we recorded a new occurrence for the Brazilian Amazon (D. aequivaginatum), in addition to U. arrecta, an invasive species recently described to occur in Pará State which is likely causing ecological damage, so that its eradication from the water bodies in the State has been recommended (Fares et al. 2020bFares, A.L.B., Nonato, F.A.D.S. & Michelan, T.S. 2020b. New records of the invasive macrophyte, Urochloa arrecta extend its range to eastern Brazilian Amazon altered freshwater ecosystems. Acta Amazonica 50: 133-137.). Furthermore, the present study contributes to the knowledge of the macrophyte species from Northern Brazil, adding to the checklist presented by Moura Júnior et al. (2015)Moura Júnior, E.G.D., Paiva, R.M.S.D., Ferreira, A.C., Pacopahyba, L.D., Tavares, A.S., Ferreira, F.A. & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica 45: 111-132. and complemented by subsequent inventories (e.g. Bomfim et al. 2023Bomfim, F.F., Fares, A.L.B., Melo, D.G.L., Vieira, E. & Michelan, T.S. 2023. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology.) or records of punctual occurrences (e.g. Fares et al. 2020bFares, A.L.B., Nonato, F.A.D.S. & Michelan, T.S. 2020b. New records of the invasive macrophyte, Urochloa arrecta extend its range to eastern Brazilian Amazon altered freshwater ecosystems. Acta Amazonica 50: 133-137.). Here we report the occurrence of four species not previously listed as components of the aquatic flora of the North of Brazil: Christella dentata (Forssk.) Brownsey & Jermy, Heteranthera reniformis Ruiz & Pav., Xyris fallax Malme, in addition to D. aequivaginatum. Thus, we suggest that floristic-taxonomic studies of macrophytes in the hydrographic basins of the northeastern region of Pará State should be intensified in order to better understand the regional flora of this group.

Acknowledgments

We thank Universidade Federal Rural da Amazônia (UFRA) for the logistical support and infrastructure. We are also grateful to Lidyanne Yuriko Saleme Aona, Jeferson Miranda Costa, and Fernando Omar Zuloaga, who helped us identify some species; and to Lisi Damaris Pereira Alvarenga for revising the English.

  • 1
    Part of the first Author’s Final Year Project Paper

Literature cited

  • Almeida, T.S. & Fabricante, J.R. 2021. Macrófitas aquáticas do Parque Nacional Serra de Itabaiana, Sergipe, Brasil. Revista de Ciências Ambientais 15: 1-12.
  • Alvares, C.A, Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711-728.
  • Alves, J.D.N., Conceição, A.G.C.D., Oliveira, S.S., Okumura, R.S., Oliveira Neto, C.F.D. & Bezerra, F.A.X. 2018. Water quality evaluation in water courses in the municipality of Capitão Poço – PA. Nucleus 15: 269-278.
  • APG IV (Angiosperm Phylogeny Group). 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG I V. Botanical Journal of the Linnean Society 181: 1-20.
  • Araújo, E.S. 2017. Padrões ecológicos e prováveis determinantes da comunidade de macrófitas aquáticas em um rio subtropical de maré. Dissertação de Mestrado, Universidade Federal do Paraná, Curitiba.
  • Araújo, E.S., Sabino, J.H.F., Cotarelli, V.M., Siqueira-Filho, J.A., & Campelo, M.J.A. 2012. Riqueza e diversidade de macrófitas aquáticas em mananciais da Caatinga. Diálogos & Ciência 32: 229-234.
  • Barbosa, E.A. 2012. Macrófitas aquáticas em um reservatório da grande João Pessoa, Paraíba-Brasil. Trabalho de Conclusão de Curso, Universidade Estadual da Paraíba, João Pessoa.
  • Barroso, D.F.R., Figueiredo, R.O., Pires, C.S. & Costa, F.F. 2015. Avaliação da sustentabilidade ambiental de sistemas agropecuários em microbacias do Nordeste Paraense a partir de parâmetros físico-químicos. Instituto Histórico e Geográfico do Pará 2: 56-68.
  • Bomfim, F.F., Fares, A.L.B., Melo, D.G.L., Vieira, E. & Michelan, T.S. 2023. Land use increases macrophytes beta diversity in Amazon streams by favoring amphibious life forms species. Community Ecology.
  • Cook, C.D.K., Gut, B.J., Rix, E.M., Schneller, J. & Seitz, M. 1974. Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. 1. ed. Springer Science & Business Media, Berlim.
  • Costa, D.L. 2014. Diversidade de macrófitas na piscicultura Santa Helena. Trabalho de Conclusão de Curso, Universidade Federal de Rondônia, Presidente Médici.
  • Couto, E., Assemany, P.P., Carneiro, G.C.A. & Soares, D.C.F. 2022. The potential of algae and aquatic macrophytes in the pharmaceutical and personal care products (PPCPs) environmental removal: a review. Chemosphere 302: 134808.
  • Cronin, G., Lewis Jr., W.M. & Schiehser, M.A. 2006. Influence of freshwater macrophytes on the littoral ecosystem structure and function of a young Colorado reservoir. Aquatic Botany 85: 37-43.
  • Duarte, G.S.V., Pott, V.J., Lemke, A.P. & Suarez, Y.R. 2015. Efeito das características ambientais sobre a riqueza e composição de macrófitas aquáticas em córregos urbanos. Ciência e Natura 37: 74-94.
  • Esteves, F.A. 2011. Fundamentos da Limnologia. 3. ed. Editora Interciência, Rio de Janeiro.
  • Fares, A.L.B., Calvão, L.B., Torres, N.R., Gurgel, E.S.C. & Michelan, T.S. 2020a. Environmental factors affect macrophyte diversity on Amazonian aquatic ecosystems inserted in an anthropogenic landscape. Ecological Indicators 113: 106231.
  • Fares, A.L.B., Nonato, F.A.D.S. & Michelan, T.S. 2020b. New records of the invasive macrophyte, Urochloa arrecta extend its range to eastern Brazilian Amazon altered freshwater ecosystems. Acta Amazonica 50: 133-137.
  • Fares, A.L.B., Sousa, R.L.M.D., Gurgel, E.S.C., Gil, A.D.S.B., Silva, C.A.S.D. & Michelan, T.S. 2021. Diversity of macrophytes in the Amazon deforestation arc: information on their distribution, life-forms and habits. Rodriguésia 72: e00312020.
  • Ferreira, F.A., Mormul, R.P., Pedralli, G., Pott, V.J. & Pott, A. 2011. Estrutura da comunidade de macrófitas aquáticas em três lagoas do Parque Estadual do Rio Doce, Minas Gerais, Brasil. Hoehnea 37: 43-52.
  • Ferreira, F.S., Solórzano, J.C.J. & Súarez, Y.R. 2023. Influence of urbanization on stream fish assemblages in three microbasins in the Upper Paraná River Basin. Brazilian Journal of Biology 83: e247384.
  • Flora e Funga do Brasil. 2023. Jardim Botânico do Rio de Janeiro. Available at http://floradobrasil.jbrj.gov.br/ (access in 5-V-2023).
    » http://floradobrasil.jbrj.gov.br/
  • Grzybowski, M., Furgała-Selezniow, G., Koszałka, J., Kalinowska, J. & Jankun-Woźnicka, M. 2023. Correlation between catchment land use/cover and macrophyte assessment of lake ecological status. Ecological Indicators 146: 109857.
  • IBGE (Instituto Brasileiro de Geografia Estatística). 2021. Dados de Capitão Poço. Available at https://cidades.ibge.gov.br/brasil/pa/capitaopoco/panorama (access in 19-I-2021).
    » https://cidades.ibge.gov.br/brasil/pa/capitaopoco/panorama
  • IBGE (Instituto Brasileiro de Geografia Estatística). 2023. Banco de Dados de Informações Ambientais. Available at https://bdiaweb.ibge.gov.br/#/consulta/vegetacao (access in 7-VII-23).
    » https://bdiaweb.ibge.gov.br/#/consulta/vegetacao
  • Kawakita, K., Rodrigues, R.S. & Filgueiras, T.S. 2016. Poaceae em uma planície de inundação no Brasil: listagem florística e novas ocorrências. Hoehnea 43: 203-216.
  • Kubota, N.A., Lima, A.M.M.D., Rocha, N.C.V. & Lima, I.F. 2020. Hidrogeomorfologia da Bacia Hidrográfica do Rio Guamá - Amazônia Oriental - BRASIL. Revista Brasileira de Geomorfologia 21: 759-782.
  • Kufner, D.C.L., Scremin-Dias, E. & Guglieri-Caporal, A. 2011. Composição florística e variação sazonal da biomassa de macrófitas aquáticas em lagoa de meandro do Pantanal. Rodriguésia 62: 803-812.
  • Lahon, D. & Sahariah, D. 2022. Physico-chemical properties of water and its impacts on the species diversity of aquatic plants at Disangmukh wetland of Assam, India. Ecology, Environment and Conservation 28: 203-207.
  • Lopes, A., Crema, L.C., Demarchi, L.O., Ferreira, A.B., Santiago, I.N., Ríos-Villamizar, E.A. & Piedade, M.T.F. 2019. Herbáceas aquáticas em igapós de água preta dentro e fora de Unidades de Conservação no estado do Amazonas. Biodiversidade Brasileira 2: 45-62.
  • McDonald, R.I., Mansur, A.V., Ascensão, F., Colbert, M., Crossman, K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, D., Hamann, M., Hillel, O., Huang, K., Kahnt, B., Maddox, D., Pacheco, A., Pereira, H.M., Seto, K.C., Simkin, R., Walsh, B., Werner, A.S. & Ziter, C. 2020. Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability 3: 16-24.
  • Moreira, S.N., Pott, A., Pott, V.J. & Damasceno-Junior, G.A. 2011. Structure of pond vegetation of a vereda in the Brazilian Cerrado. Rodriguésia 62: 721-729.
  • Moura Júnior, E.G.D., Paiva, R.M.S.D., Ferreira, A.C., Pacopahyba, L.D., Tavares, A.S., Ferreira, F.A. & Pott, A. 2015. Updated checklist of aquatic macrophytes from Northern Brazil. Acta Amazonica 45: 111-132.
  • Murphy, K., Efremov, A., Davidson, T.A., Molina-Navarro, E., Fidanza, K., Crivelari Betiol, T.C., Chambers, P., Tapia Grimaldo, J., Varandas Martins, S., Springuel, I., Kennedy, M., Mormul, R.P., Dibble, E., Hofstra, D., Lukács, B.A., Gebler, D., Baastrup-Spohr, L., Urrutia-Estrada, J. 2019. World distribution, diversity and endemism of aquatic macrophytes. Aquatic Botany 158: 103127.
  • Nunes, L.S.C. 2020. Ecologia de macrófitas aquáticas em rios costeiros de São Paulo: diversidade, competição interespecífica e distribuição espacial em gradientes ambientais. Tese de Doutorado, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro.
  • Pacheco, N.A. & Bastos, T.X. 2001. Caracterização climática do Município de Capitão Poço-PA. Embrapa Amazônia Oriental, Documentos 79: 1-20.
  • Pedralli, G. 2003. Macrófitas aquáticas como bioindicadoras da qualidade da água: alternativas para usos múltiplos de reservatórios. In: S.M. Thomaz & L.M. Bini (eds.). Ecologia e Manejo de Macrófitas Aquáticas. Eduem, Maringá, pp.171-188.
  • Peixoto, A.L. & Maia, L.C. 2013. Manual de Procedimentos para Herbários. INCT-Herbário virtual para a Flora e os Fungos. Editora Universitária UFPE, Recife.
  • Pereira, K.M., Hefler, S.M., Trentin, G., & Rolon, A.S. 2021. Influences of landscape and climatic factors on aquatic macrophyte richness and composition in ponds. Flora 279: 151811.
  • Pinheiro, M.N.M. & Jardim, M.A.G. 2015. Composição Florística e formas biológicas de macrófitas aquáticas em lagos da Amazônia Ocidental, Roraima, Brasil. Biota Amazônia 5: 23-27.
  • Pott, V.J. & Pott, A. 2000. Plantas aquáticas do Pantanal. Embrapa Comunicação para Transferência de Tecnologia. Brasília, Distrito Federal.
  • PPG I (Pteridophyte Phylogeny Group). 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 563-603.
  • Regmi, T., Shah, D.N., Doody, T.M., Cuddy, S.M. & Tachamo Shah, R.D 2021. Hydrological alteration induced changes on macrophyte community composition in sub-tropical floodplain wetlands of Nepal. Aquatic Botany 173: 103413.
  • Reid, M.A., Reid, M.C. & Thoms, M.C. 2016. Ecological significance of hydrological connectivity for wetland plant communities on a dryland floodplain river, MacIntyre River, Australia. Aquatic Sciences 78: 139-158.
  • Rocha, N.C.V. & Lima, A.M.M.D. 2020. A sustentabilidade hídrica na bacia do rio Guamá, Amazônia Oriental/Brasil. Sociedade e Natureza 32: 141-160.
  • Rodrigues, R.S.S. 2018. Correlação entre índice de qualidade da água e usos múltiplos na Bacia hidrográfica do Igarapé da Prata. Dissertação de Mestrado, Universidade Federal do Pará, Belém.
  • Sabino, J.H.F., Araújo, E.S., Cotarelli, V.M., Siqueira-Filho, J.A. & Campelo, M.J.A. 2015. Riqueza, composição florística, estrutura e formas biológicas de macrófitas aquáticas em reservatórios do semiárido nordestino, Brasil. Natureza Online 13: 184-194.
  • Santos, D.B.O. 2013. Aplicação da RUSLE a uma pequena bacia hidrográfica da Amazônia. Dissertação de Mestrado, Universidade Federal do Pará, Belém.
  • Santos, V. V. 2014. Distribuição espacial e ecologia de macrófitas aquáticas do rio Ipojuca, Pernambuco, Brasil. Dissertação de Mestrado, Universidade Federal de Pernambuco, Recife.
  • Sauma Filho, M.S., Ruivo, M.D.L.P., Conceição, H.E.O.D., Viégas, I.D.J.M., Gonçalves, A.C.D.S., Teixeira, O.M.M., Oliveira, J.N. & Galvão, R.M. 2020. Atributos químicos do solo construído após a extração de seixo em Capitão Poço, Pará, Brasil. Brasilian Journal of Development 6: 64608-64623.
  • Sousa, N.X.M., Vieira, A.O.S., Costa, G.M. & Aona, L.Y.S. 2019. Caracteres importantes na identificação de espécies de Ludwigia (Onagraceae) ocorrentes no Recôncavo da Bahia, Brasil. Rodriguésia 70: e01392018.2019.
  • Souza, V.C. & Giulietti, A.M. 2009. Levantamento das espécies de Scrophulariaceae sensu lato nativas do Brasil. Pesquisas, Botânica 60: 7-288.
  • Souza, V.C. & Lorenzi, H. 2019. Botânica Sistemática. Guia ilustrado para identificação das famílias de Fanerógamas nativas e exóticas no Brasil, baseado em APG I V. Jardim Botânico Plantarum, Nova Odessa.
  • Strahler, A.N 1957. Quantitative analysis of watershed geomorphology. Transactions, American Geophysical Union 38: 913-920.
  • Thiers, B. 2023. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available at https://sweetgum.nybg.org/science/ih/ (access in 15-VI-23).
    » https://sweetgum.nybg.org/science/ih/
  • Torres, C.R.M., Fernando, E.M. & Lucena, M.F. 2016. Checklist de plantas aquáticas em trechos de caatinga do semiárido paraibano, Nordeste do Brasil. Gaia Scientia 10: 284-296.
  • Tropicos. 2023. Name Search. Available at https://www.tropicos.org/name/Search (access in 1-VII-2023).
    » https://www.tropicos.org/name/Search
  • Tundisi, J.G. & Tundisi, T.M. 2016. Limnologia. Oficina de textos, São Paulo.
  • Umetsu, C.A., Aguiar, F.C., Ferreira, M.T., Cancian, L.F. & Camargo, A.F.M. 2018. Addressing bioassessment of tropical rivers using macrophytes: the case of Itanhaém Basin, São Paulo, Brazil. Aquatic Botany 150: 53-63.

Edited by

Associate Editor: Paulo Silveira

Publication Dates

  • Publication in this collection
    02 Aug 2024
  • Date of issue
    2024

History

  • Received
    07 Aug 2023
  • Accepted
    11 Mar 2024
Instituto de Pesquisas Ambientais Av. Miguel Stefano, 3687 , 04301-902 São Paulo – SP / Brasil, Tel.: 55 11 5067-6057, Fax; 55 11 5073-3678 - São Paulo - SP - Brazil
E-mail: hoehneaibt@gmail.com