
Abstract

In the realm of modern cardiology, the integration of 
computer-interpreted electrocardiograms (CI-ECGs) has 
marked the beginning of a new era of diagnostic precision 
and efficiency. Contemporary electrocardiogram (ECG) 
integration systems, applying algorithms and artificial 
intelligence, have modernized the interpretation of heart 
rhythms and cardiac morphology. Due to their ability to 
rapidly analyze and interpret ECG recordings CI-ECGs 
have already profoundly impacted clinical practice. 

This review explores the evolution of computer 
interpreted ECG technology, evaluates the pros and 
cons of current automatic reporting systems, analyzes 
the growing role of artificial intelligence on ECG 
interpretation technologies, and discusses emerging 
applications that may have transformative effects on 
patient outcomes. Emphasis is placed on the role of 
ECGs in the automatic diagnosis of occlusion myocardial 
infarctions (OMI).

AI models enhance accuracy and efficiency in ECG 
interpretation, offering insights into cardiac function 
and aiding timely detection of concerning patterns 

for accurate clinical diagnoses. The shift to AI-driven 
diagnostics has emphasized the importance of data in 
the realm of cardiology by improving patient care. The 
integration of novel AI models in ECG analysis has 
created a promising future for ECG diagnostics through 
a synergistic fusion of feature-based machine learning 
models, deep learning approaches, and clinical acumen.

Overall, CI-ECGs have transformed cardiology 
practice, offering rapid, accurate, and standardized 
analyses. These systems reduce interpretation time 
significantly, allowing for quick identification of 
abnormalities. However, sole reliance on automated 
interpretations may overlook nuanced findings, risking 
diagnostic errors. Therefore, a balanced approach in 
integrating automated analysis with clinical judgment 
is necessary.

Introduction

The electrocardiogram (ECG) is a cornerstone diagnostic 
tool in cardiology, which offers clinicians invaluable 
insights into the electrical activity of the heart. ECGs can 
detect structural abnormalities, arrhythmias, and ischemic 
changes, among other conditions. This test plays a crucial 
role in the screening, diagnosis, treatment, and risk 
stratification of a wide range of cardiovascular disorders.

In modern cardiology, the integration of computer-
interpreted electrocardiograms (CI-ECGs) has marked 
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the beginning of a new era of diagnostic precision and 
efficiency. Contemporary ECG integration systems, 
applying algorithms and artificial intelligence, have 
modernized the interpretation of heart rhythms and 
cardiac morphology.1 Due to their ability to rapidly 
analyze and interpret ECG recordings, CI-ECGs have 
already profoundly impacted clinical practice.1 However, 
older available automated ECG interpretation systems 
have not demonstrated the ability to be solely relied 
upon.1 They sometimes fall short in noticing subtle 
changes and correctly specifying abnormal rhythms. 
Moreover, they are generally lacking in clinical decision-
making support.2 

While new ECG interpretation algorithms have displayed 
promising outcomes across diverse pathologies, refining 
ECG interpretation in patients presenting with chest pain 
emerges as a paramount clinical imperative. This stems from 
the direct impact of early reperfusion on the morbidity and 
mortality of myocardial infarction patients. 

Consequently, in this review, we will (i) explore the 
evolution of CI-ECG technology throughout history, (ii) 
evaluate the pros and cons of current automatic reporting 
systems, (iii) investigate the increasing influence of artificial 
intelligence on ECG interpretation technologies, and (iv) 
discuss existing and emerging applications that may have 
transformative effects on patient outcomes. Emphasis will 
be placed on the role of ECGs in the automatic diagnosis 
of occlusion myocardial infarctions (OMI).

Methods

An electronic review of published data was conducted 
in PubMed, EMBASE and MEDLINE databases. The 
selection of articles of interest was made according 
to the following criteria: 1) case series, case reports, 
systematic reviews, observational studies, retrospective 
and prospective studies, cross-sectional studies and 
pronouncements of professional associations and 
scientific societies; 2) published within the last 10 years, 
3) English language; and 4) papers referring to the history 
of automatic reporting ECG systems, pros and cons of 
current automatic reporting systems, AI & ECGs, value of 
machine learning process, value of AI in detecting OMI, 
ECG interpretation, and the impact of automated ECGs 
on cardiology practice. Studies were excluded if the full 
text was not accessible. 

Several investigators (S.G., A.K., S.S., R. H., A.B. and 
A.M.) conducted the research independently. First, 
relevance based on title and abstract was determined. 
Selected publications were further reviewed for 
relevance using the full text. Disagreement was solved 
by consensus. A secondary search was conducted by 
reviewing the reference lists of included papers. 

History of Automatic Reporting ECG Systems

The history of automatic reporting ECG systems traces 
back to the mid-20th century when advancements in 
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technology laid the foundation for automated analysis 
of ECGs.3 Early work focused on developing systems 
capable of detecting and interpreting cardiac rhythms 
and abnormalities with minimal human help.

However, in the 1960s, experts in biomedical 
engineering and computer science began exploring 
the usefulness of digital signal processing techniques 
for ECG analysis.4 One of the earliest automatic ECG 
interpretation systems was developed by Frank Sanborn 
and his colleagues at the Massachusetts Institute of 
Technology (MIT) in the late 1960s.4 Their work used 
pattern recognition algorithms to identify specific 
waveforms that indicated various cardiac diagnoses.

After that, throughout the 1970s and 1980s, researchers 
made further improvements by modernizing automatic 
ECG reporting systems.5 Improvements drove these 
advancements to computing power and the development 
of sophisticated algorithms for signal processing and 
pattern recognition. In concert with these developments, 
industry stakeholders expanded the distribution of 
automatic ECG analysis software in commercial products 
for clinical use.5

By the 1990s, automatic reporting ECG systems had 
become universally utilized in healthcare environments.3 
These systems are now an integral part of clinical practice, 
enabling rapid acquisition and interpretation of ECG 
recordings, leading to more efficient clinical diagnoses 
and treatments. Furthermore, ECG machines became 
integrated with hospital information systems, allowing 
for automatic generation of electronic reports, further 
streamlining clinical settings.

In the 21st century, automatic reporting of ECG systems 
continued to evolve with advancements in artificial 
intelligence and machine learning.3 Modern systems use 
deep learning algorithms trained from large datasets to 
improve the accuracy of ECG analysis. These systems can 
detect subtle abnormalities, predict adverse cardiac events, 
and provide personalized risk assessments.

Overall, the history of automatic reporting ECG 
systems represents an impressive journey of technological 
innovation, from early experimental prototypes to 
sophisticated AI-powered platforms.

Pros of Current Automatic Reporting Systems

CI-ECGs have revolutionized cardiology practice by 
providing rapid, accurate, and standardized analyses of 
cardiac rhythm and morphology (Central Illustration). 

One significant impact of CI-ECGs is the reduction in 
interpretation time.6 Traditionally, manual interpretation 
of ECGs required clinical expertise and time, often 
leading to delays in treatment. With computerized 
interpretation, ECGs can be analyzed within seconds, 
allowing for quick identification of abnormalities and 
timely intervention. This rapid turnaround time is crucial 
in emergencies such as myocardial infarctions, where 
rapid treatment is necessary. Moreover, CI-ECGs enhance 
diagnostic accuracy and consistency. While experienced 
cardiologists are highly skilled in ECG interpretation, 
human error can still affect results, particularly when 
fatigue sets in. Automated algorithms minimize these 
errors by providing standardized analyses based on a set 
of criteria.1 This ensures that interpretations are objective, 
leading to more reliable diagnoses.

Additionally, computerized ECG interpretation allows 
for remote monitoring and telemedicine. With the rise of 
digital health, patients at home can record ECGs using 
mobile devices and send the rhythms to practitioners.7 
Computer algorithms quickly analyze recordings and 
alert clinicians to abnormal findings remotely. Remote 
monitoring is especially valuable for patients with 
chronic disease or those at risk of arrhythmias, allowing 
for proactive management and a reduction in regular 
in-person appointments. 

Furthermore, CI-ECGs support decision-making 
in clinical practice by providing clinicians with 
actionable insights. Algorithms can flag abnormal 
findings and highlight subtle changes. This helps 
physicians formulate efficient treatment plans and 
reduces the chances of overlooking critical information. 
Furthermore, there may be a potential decrease in 
healthcare costs through the avoidance of unnecessary 
sophisticated testing. For example, if ECG-AI tools could 
predict aortic stenosis early, complex testing might be 
reduced as physicians would only have to order tests 
based on the predictions of such ECG tools. This could 
also improve the management of conditions that are 
treatable by providing early diagnoses. 

Cons of Current Automatic Reporting Systems

While CI-ECGs offer significant advantages, there are 
potential drawbacks to consider (Central Illustration). 

First, relying solely on automated interpretations may 
lend itself to overlooking nuanced findings that a trained 
clinician would identify, potentially leading to errors 
in diagnosis.1 For example, older automatic reporting 

Int J Cardiovasc Sci. 2024; 37:e20240079Gupta et al.

Computer-interpreted ECGs: Impact on cardiology Review Article



4

systems have demonstrated a lack of sensitivity and 
specificity in noticing subtle changes, detecting abnormal 
rhythms, and supporting clinical decision-making.1 

Additionally, the speed of computerized interpretation 
may prioritize efficiency over thoroughness, failing to 
capture clinically significant changes on an ECG.2 

Moreover, while remote monitoring provides patients 
with both accessibility and convenience, there are 
potential drawbacks to consider. One concern is the 
risk of overreliance on technology, which may lead to 
decreases in establishing therapeutic rapports between 
patients and clinicians and a loss of detailed clinical 
assessments, including subjective factors such as personal 
histories.6 Additionally, ECGs recorded outside of 
controlled clinical settings may be variable, depending 
on a myriad of factors such as the patient’s environment. 
This raises questions about the validity of the data and 
the potential for misinterpretation. 

In addition, the transition to remote monitoring may 
exacerbate healthcare disparities, as patients with limited 
technology access or digital literacy may face barriers to 
participating. Therefore, while remote ECG monitoring 
does have undeniable benefits in improving patient care, 
careful appraisal of limitations and appropriate safety 
measures would be essential to implement equitable care. 

Finally, complete reliance on technology can limit 
opportunities for healthcare providers to hone and 
perfect their interpretative skills. This may diminish 
diagnostic proficiency over the years. Therefore, while 
rapid interpretation is essential in emergent situations, 
a balanced approach that synergizes automated 
analysis with clinical judgment is necessary to ensure 
comprehensive ECG interpretation.1

Overall, while computerized ECG interpretation 
offers undeniable advantages, clinicians must maintain 
a cautious and discerning approach, recognizing its 
limitations and integrating automated analyses with 
clinical judgment. The hope is that new machine learning 
and artificial intelligence will also modernize current 
automatic reporting systems, thus improving sensitivity 
and specificity for clinical practice.8

The Role of Artificial Intelligence in ECG Analysis

Introduction to Artificial Intelligence in ECG 
Analysis

The advent of artificial intelligence-augmented 
ECG (AI-ECG) models has revitalized the field of 

electrocardiology. These models extend beyond 
conventional machine learning to include a diverse array 
of deep learning approaches. Through their development 
and implementation, clinicians might gain access to 
sophisticated analytical tools that provide profound 
insights into cardiac function, facilitate the timely 
detection of intricate patterns, and enhance the delivery 
of accurate clinical diagnoses.8

This shift towards AI-driven diagnostics is propelling 
cardiology into a data-centric era, setting the stage for 
profound advancements in patient care.9 The ability 
of AI models to process and analyze large datasets 
greatly surpasses human capabilities and can facilitate 
the identification of predictive patterns that were once 
elusive.10 Enhancement not only improves the precision 
of cardiac evaluations but also broadens the scope for 
personalized preventive medicine, allowing for treatment 
strategies that are uniquely tailored to the nuances of 
individual cardiac profiles.

Theoretical Framework of AI-ECG Algorithms
Ideally, modern ECG interpretation analysis will 

be supported by a robust suite of sophisticated AI 
algorithms, which offer substantial enhancements in 
pattern recognition and decision-making capabilities.11 
Unlike conventional automated ECG interpretation 
software used in clinical settings, which often depends 
on rule-based algorithms and decision trees, modern 
AI-ECG algorithms offer distinct advantages. While 
traditional algorithms identify specific waveforms, 
intervals, or segments in ECG interpretation and 
compare them against clinical criteria, their rigidity may 
fail to fully capture the complexity of certain cardiac 
pathologies, limiting adaptability and depth of analysis.12 
In contrast, newly developed AI-ECG algorithms harness 
a broader range of machine learning and deep learning 
techniques, each with unique capabilities in processing, 
analyzing, and adapting to ECG data.

AI-ECG Learning Frameworks
Novel AI-ECG approaches may be more broadly 

categorized according to the manner in which algorithms 
process and “learn” the data.

•	 Supervised Learning: Predominantly used 
in classification tasks, supervised learning 
algorithms are trained on a labeled dataset 
where specific patterns are associated with 
various cardiac conditions.13 These models excel 
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at mapping input data (e.g., ECG signals and 
measurements) to accurate outputs (ECG and 
clinical diagnoses), becoming highly proficient in 
recognizing similar patterns in new, unseen data. 
In contrast to rule-based algorithms, this method 
can adapt to a wider range of data variations and 
learn complex ECG patterns.

•	 Unsupervised Learning: This method proves 
invaluable in detecting unusual or atypical 
patterns in ECG data without prior labeling, 
which is important for identifying new or rare 
cardiac conditions that may not conform to the 
traditional rule-based framework.14 By analyzing 
data without predefined labels, unsupervised 
learning can unveil hidden structures or anomalies 
in ECG signals and offer insights into previously 
unrecognized phenomena.

•	 Reinforcement Learning: An emerging technique 
in ECG analysis, reinforcement learning algorithms 
improve their accuracy over time by optimizing 
their decisions through a process of trial and error, 
adjusting actions based on continuous feedback.15 
This type of learning is particularly advantageous in 
environments where the algorithm needs to adapt 
quickly to new information or changing conditions, 
providing a dynamic contrast to the static nature of 
rule-based algorithms.

Feature-Based Machine Learning Approaches
Feature-based machine learning algorithms make use 

of prespecified features from ECG signal data, which are 
incorporated into a machine learning model architecture 
(e.g., logistic regression, random forest, naïve Bayes, 
support vector machine, etc.) to enable accurate diagnostic 
classifications. This approach offers a notable advantage 
in terms of model explainability, as it allows for clearer 
tracing of model outputs back to the influence of the 
model inputs used in the modeling process.16 However, 
this approach may require extensive expert domain 
knowledge, as it may be imperative to understand the 
clinical relevance of each measurable feature in the context 
of cardiac physiology.17 In one sense, such an approach 
may mirror the decision-making process of a physician, 
taking into account multiple explainable features with a 
physiologic basis that have been historically proven to be 
indicators of specific cardiac conditions.

However, despite the effectiveness that may be 
achieved with feature-based approaches in specific 

scenarios, they can be limited by their dependence on 
the pre-defined features.18 This limitation may lead to 
omitted or yet-to-be-defined features that may be quite 
useful for diagnostic classification, especially patterns 
that are not fully encompassed by predefined features. 
Additionally, depending on specific, identified 
features can reduce the adaptability of these algorithms 
to data subtleties, yet-to-be-recognized relationships, 
or unique nuances present in individual patient cases. 
This rigidity can be a significant drawback, especially 
in complex clinical cases where subtle aberrations 
in the ECG could indicate critical developments in a 
patient’s condition.

Deep Learning Approaches
Unlike feature-based methods, deep neural network 

architectures represent an alternative approach that is 
primarily data-driven and does not heavily depend on 
expert domain knowledge.18 Deep learning approaches 
enable the exploration and identification of complex 
hierarchal patterns that may not have been previously 
recognized or clearly defined in the medical literature. 

•	 Convolutional Neural Networks (CNNs): CNNs 
are a sub-category of deep learning and have 
demonstrated exceptional capabilities in processing 
spatial relationships within data, making them 
particularly effective for interpreting the structured 
patterns of ECG signals.19 Their architecture is 
adept at recognizing complex patterns with high 
precision, accommodating variations in signal 
presentation such as slight shifts or distortions. 
For instance, CNN models have been shown to 
predict low left ventricular ejection fraction and the 
likelihood of developing atrial fibrillation from a 
sinus rhythm ECG, representing predictive findings 
that are not typical of the diagnostic findings in 
traditional, rule-based approaches.20-24

•	 Recurrent Neural Networks (RNNs): Excelling 
in the analysis of sequential or time-series data, 
RNNs are another subcategory of deep learning 
that is invaluable for diagnosing conditions that 
manifest over time, such as atrial fibrillation or 
progressive conduction defects.25 These networks 
manage the temporal dynamics of the ECG signal 
by maintaining a memory of previous inputs. 
This enables a continuous and dynamic analysis 
that adapts to new data in real time. This feature 
is particularly helpful for accurately capturing 
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and interpreting the evolving nature of cardiac 
conditions that may vary significantly between 
different readings and over time.

Challenges of Implementing New AI Models
Despite its significant advantages, integrating novel 

AI models into ECG analysis presents several challenges 
that must be addressed to ensure their effective 
implementation in clinical settings. 

Among these challenges is ensuring that AI-ECG 
models are provided with high-quality data. The 
efficacy of AI models is dependent on the quality and 
diversity of the data used for training.26 Inadequate or 
poor-quality data will result in model inaccuracies that 
ultimately degrade performance in clinical applications. 
Additionally, biased data sets can skew AI predictions, 
leading to algorithmic bias where models inadvertently 
develop biases based on the demographic characteristics 
of the training data, potentially causing disparities in 
diagnostic accuracy across different patient groups.27-29

Overfitting represents another significant challenge, 
characterized by models that perform exceptionally well 
on training data but fail to generalize to new and unseen 
datasets.30 This can limit the utility of AI models in real-
world settings, where they must be able to accurately 
interpret data from a broad spectrum of individuals and 
conditions not represented in the initial training phase.

Another challenge lies in ensuring that the data used 
for developing an AI-ECG model is representative of its 
intended application, as variations in disease prevalence 
within different populations can greatly impact the 
performance and applicability of AI-ECG models.31 For 
example, AI-ECG algorithms trained populations with 
a high prevalence of certain cardiac conditions may 
not perform as expected in a population where such 
conditions are rare. Therefore, rigorous evaluation of 
these models within the intended populations where they 
are expected to be used may be needed to understand the 
expected performance of AI-ECG models fully.

Understanding the interaction between human 
clinicians and emerging predictive AI-ECG models 
is growing in importance. Although AI can augment 
decision-making and diagnostics, comprehending its 
impact on physician behaviors, clinical decisions, and 
patient outcomes is crucial. Prospective studies offer a 
means to gain insight into these dynamics.32 Furthermore, 
effort should be made to ensure that clinicians are trained 
to interpret AI predictions within the broader context 

of patient care, understanding both the strengths and 
limitations of AI-assisted diagnostics. This includes 
recognizing when to rely on AI guidance and when to 
question or override automated recommendations based 
on human insight or additional clinical evidence.

Lastly, another important challenge will be the 
integration of these tools into clinical settings. This 
integration must be thoughtfully managed to maintain 
trust in AI systems, ensure adherence to medical 
standards, and ultimately enhance patient outcomes 
through more accurate and timely diagnoses. Moreover, 
another scenario where artificial intelligence will 
undoubtedly reshape the course of medicine is its 
potential applications in medical education. However, 
delving further into this topic exceeds the scope of the 
present discussion.

Clinical Utilities of ECG-AI Tools

There are several clinical applications of ECG-
AI tools, including the diagnosis of aortic stenosis, 
cardiac amyloidosis, valvular heart disease, contractile 
dysfunction and more.33-36 The use of AI in improving 
ECG utility is vast and undeniable in the field 
of cardiology.

For this review, an example of the value of AI in 
detecting acute myocardial infarction and coronary 
artery disease will be used. In the current landscape 
of automatic reporting, the development of a system 
to diagnose acute coronary occlusion myocardial 
infarction (ACOMI, shortened to OMI) has contributed 
to revolutionary advances in the cardiology community. 
Clinical decision making for OMI is heavily based on 
the ECG, making it a valuable example to exemplify the 
usefulness of AI.  

Value of AI in Detecting OMI
The 12-lead ECG plays an essential role in the rapid 

identification of patients with persistent OMI without 
collateral circulation who are at risk for irreversible 
infarction of the involved myocardial territory. Detecting 
and measuring ST Elevation (STE) millimeter criteria 
on the ECG has long been the standard method for 
diagnosing OMI, even though STE was neither developed 
nor subsequently correlated as an accurate measure of 
angiographic occlusion. In fact, STE is very insensitive 
and non-specific for acute coronary occlusion.37-45 Not 
surprisingly, then, 25%-33% of NSTEMI are found to have 
an occluded infarct artery at next day angiography, and 
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these patients have far higher mortality than NSTEMI 
with an open artery.46,47

Thus, it has been proposed that the STEMI/NonSTEMI 
paradigm should be replaced with the name of the actual 
underlying pathology, which is acute coronary occlusion. 
Accordingly, the term Occlusion MI/Non-Occlusion MI 
(OMI/NOMI) can be used as its replacement.37,48 Expert 
ECG interpretation using other features of the ECG, 
including hyperacute T-waves, any ST depression (STD) 
maximal in leads V1-V4, terminal QRS distortion, subtle 
STE with other features such as any reciprocal STD, or 
associated Q-waves, can diagnose OMI with double the 
sensitivity of the STEMI criteria while maintaining equal, 
or better, specificity.49,50 While assessing blinded ECGs, 
the presence or absence of OMI has been validated using 
a more robust angiographic reference standard, including 
the presence of culprit lesion, vessel flow, intervention, 
and peak troponin as a surrogate for infarct size in arteries 
that were open but with a culprit.49,50-54

Non-OMI or acute MI that does not have ongoing 
ischemia is very difficult to diagnose with the ECG. 
Many researchers have attempted to diagnose all MI 
(Non-OMI in addition to OMI) with machine learning 
methods, but without success because the subset of 
non-OMI is so difficult to diagnose.55-58 Others have 
trained and tested their systems on STEMI ECGs from 
STEMI databases and have excellent performance. Still, 
by the nature of STEMI databases, these studies exclude 
NSTEMI that are OMI because NSTEMI is not included 
in STEMI databases.59,60 A previous study developed an 
AI system that was trained with 74 hand-crafted items 
(not a DNN) and turned their attention to OMI instead of 
all acute MI; their accuracy was excellent, with an AUC 
of 0.87.61 Reliance on hand-crafted features, however, has 
its limitations, since there are few validated finite rules 
for detecting subtle OMI patterns.

An example of the value of automatic reporting is 
the development of a system, Powerful Medical, where 
any ECG can be digitized and converted into a usable 
waveform. This system was used to collect thousands of 
12-lead ECG waveforms with expert ECG interpretation 
and angiographic outcomes. Then, a DNN-based AI 
model named PMcardio OMI AI ECG Model (“Queen 
of Hearts” for short) was developed to understand the 
complex parameter space of acute coronary occlusion 
regardless of the presence of typical STE. This DNN 
was tested on a large database of known outcomes, 
with clinical symptoms and a troponin elevation 
consistent with the fourth universal definition of MI and 

angiographic evidence of acute culprit coronary stenosis 
with either (i) a thrombolysis in myocardial infarction 
(TIMI) flow grade of 0–1 or (ii) a TIMI flow grade of 2–3 
with emergent or urgent percutaneous revascularization. 
In an international evaluation of more than 3000 ECGs, 
the DNN-based AI model detected an angiographically 
confirmed diagnosis of OMI with favorable performance 
(AUC 0.94, Sensitivity 81% and Specificity 94%), which 
was non-inferior to expert ECG interpreters.62

The QoH translator is a proof-of-concept AI 
visualization tool for the Queen of Hearts (OMI AI ECG 
Model v1). Four aspects of this AI system have been 
designed to analyze ECG data and are circled in red 
(Figure 1, Panel B).

1.	 ECG-wide AI prediction (OMI/not-OMI):

•	 This refers to the AI's ability to make predictions 
or classifications based on the entire ECG signal.

•	 The AI is predicting whether the ECG indicates 
the presence of OMI or not.

2.	 Per-lead AI prediction:

•	 ECGs typically consist of multiple leads, each 
providing a different perspective on the heart's 
electrical activity.

•	 "Per-lead AI prediction" refers to the AI's 
ability to analyze each lead individually and 
make predictions or assessments based on 
each one.

3.	 Lead relevancy (percentage & color intensity of 
the rectangular box):

•	 In the context of ECG analysis, different 
leads may carry different levels of diagnostic 
significance.

•	 "Lead relevancy" indicates the importance or 
usefulness of each lead in making a diagnosis 
or prediction.

•	 The percentage and color intensity of a rectangular 
box represent the degree of relevancy assigned to 
each lead, helping clinicians understand which 
leads are more crucial in the analysis.

4.	 Time-point relevancy (intensity of blue vertical 
lines):

•	 ECGs are plotted over time, with each vertical 
line representing a specific moment in time.

•	 "Time-point relevancy" refers to the importance 
or significance of certain time points within the 
ECG signal.
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•	 The intensity of blue vertical lines indicates the 
relevance or significance of moments in the ECG 
data, highlighting key events or patterns that aid 
in diagnosis or prediction.

In summary, these four aspects outline how this AI 
system analyzes ECG data comprehensively, considering 
the entire signal as well as individual leads and specific 
time points, to make predictions or assessments related 
to cardiac health regarding the presence of OMI.

To demonstrate this, Figure 1, Panel A shows the 
before and Figure 1, Panel B shows the after of an 

automated ECG report. Alongside existing automated 
ECG analysis software, innovative systems such as this 
continue to be engineered to enhance the accuracy of 
ECG interpretation significantly.

Discussion

CI-ECGs have transformed cardiology practice, 
offering rapid, accurate, and standardized analyses 
(Central Illustration). These systems reduce interpretation 
time significantly, allowing for quick identification 

Figure 1 – A) Original manual ECG used to create digitized ECG image; B) Digitized ECG Image (using QoH translator), consisting of 
four elements (circled in red):
1) ECG-wide AI prediction (presence of OMI or not): AI's ability to make predictions or classifications based on the entire ECG signal.
2) Per-lead AI prediction: AI’s ability to analyze each lead individually and make predictions based on each lead separately.
3) Lead relevancy (percentage & color intensity of the rectangular box): the percentage and color intensity of a rectangular box 
represent the degree of relevancy assigned to each lead, helping clinicians understand which leads are more crucial in the analysis.
4) Time-point relevancy (intensity of blue vertical lines): refers to the importance of certain time points in the ECG signal, 
highlighting key events that help in diagnosis.
*Further detail on these four components is in the text
This OMI AI ECG Model detects acute coronary occlusion on a digitized ECG image with High confidence. The most relevant feature for the AI model 
in this case is hyper-acute T-waves in lead V2. This patient had a proximal LAD occlusion, which was confirmed angiographically.
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of abnormalities, crucial in emergency settings. 
They enhance diagnostic accuracy and consistency, 
minimizing human error. Furthermore, computerized 
ECG interpretation allows for the integration of remote 
monitoring into clinical practice, helping patients 
with chronic cardiovascular conditions. However, sole 
reliance on automated interpretations may overlook 
nuanced findings, risking diagnostic errors. The 
speed of interpretation could prioritize efficiency 
over thoroughness, potentially lowering diagnostic 
proficiency. Remote monitoring may reduce patient-
clinician interactions. Therefore, a balanced approach to 
integrating automated analysis with clinical judgment 
is necessary.

AI models enhance accuracy and efficiency in ECG 
interpretation, offering insights into cardiac function 
and aiding the timely detection of concerning patterns 
for accurate clinical diagnoses. The shift to AI-driven 
diagnostics has emphasized the importance of data 
in the realm of cardiology by improving patient care 
through advanced analytical tools. AI-ECG algorithms 
use various learning methods, which enhance pattern 
recognition and decision-making capabilities. Feature-
based machine learning offers model interpretability but 
may lack adaptability, while deep learning, including 
CNNs and RNNs, excels in processing complex patterns 
without heavy reliance on expert knowledge.

The integration of novel AI models in ECG analysis 
marks a shift in the field of electrocardiology. It provides 
clinicians with new systems that will impact the diagnostic 
landscape and overall approach to patient care. There 
exists a promising future for ECG diagnostics through 
a synergistic fusion of feature-based machine learning 
models, deep learning approaches, and clinical acumen.

As these technologies become more sensitive and 
specific, their integration into clinical practice will 
require rigorous validation and testing to ensure they 
perform effectively with different patient demographics 
such as age, race, sex, and more.1 This involves not only 
addressing challenges such as the quality of data and 
algorithmic bias but also ensuring that these advanced 
tools are used in a way that enhances the clinician’s 
expertise. Ultimately, the hope is that novel AI-ECG 
algorithms will never take over human expertise but 
will enrich the clinical experience by paving the way for 
personalized patient care.

Furthermore, as mentioned, OMI is a critical cardiac 
diagnosis that requires the use of information from 

the 12-lead ECG. Currently, STE criteria for diagnosis 
lack sensitivity and specificity. The authors advocate 
for a paradigm shift from STEMI/NonSTEMI to OMI/
NOMI, utilizing other ECG features for diagnosis. 
These manifestations are specific but challenging to 
teach or algorithmically define. Optimistically, deep 
convolutional neural networks (DNNs) offer promise in 
recognizing complex OMI ECG patterns.

The ECG manifestations of ACO are specific but 
can be subtle and are very difficult to define with 
algorithms. They can only be reliably discerned by 
pattern recognition, and artificial intelligence, especially 
DNN, may be promising. Therefore, in the future, it might 
be possible to teach a DNN to recognize these complex 
OMI ECG patterns.

Limitations

Due to the rapid advancement of medicine overall, 
and particularly of artificial intelligence applications in 
cardiology, some examples or descriptions may become 
outdated in a short period after the publication of  
this manuscript.

Conclusions

Overall, CI-ECGs have revolutionized cardiology 
by providing clinicians with rapid, accurate, and 
standardized analyses. With the added advent of AI 
models to improve ECG systems, a new era of enhanced 
diagnostic accuracy and consistency has come about. 
However, reliance solely on automated interpretations 
may overlook nuanced findings, risking diagnostic 
errors. Therefore, the automation of ECGs necessitates 
a balanced approach integrating automated analysis 
with clinical judgment for accurate interpretation and 
improved patient care.
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