Acessibilidade / Reportar erro

Influence of salivary conditioning and sucrose concentration on biofilm-mediated enamel demineralization

Abstract

The acquired pellicle formation is the first step in dental biofilm formation. It distinguishes dental biofilms from other biofilm types.

Objective

To explore the influence of salivary pellicle formation before biofilm formation on enamel demineralization.

Methodology

Saliva collection was approved by Indiana University IRB. Three donors provided wax–stimulated saliva as the microcosm bacterial inoculum source. Acquired pellicle was formed on bovine enamel samples. Two groups (0.5% and 1% sucrose–supplemented growth media) with three subgroups (surface conditioning using filtered/pasteurized saliva; filtered saliva; and deionized water (DIW)) were included (n=9/subgroup). Biofilm was then allowed to grow for 48 h using Brain Heart Infusion media supplemented with 5 g/l yeast extract, 1 mM CaCl2.2H2O, 5% vitamin K and hemin (v/v), and sucrose. Enamel samples were analyzed for Vickers surface microhardness change (VHNchange), and transverse microradiography measuring lesion depth (L) and mineral loss (∆Z). Data were analyzed using two-way ANOVA.

Results

The two-way interaction of sucrose concentration × surface conditioning was not significant for VHNchange (p=0.872), ∆Z (p=0.662) or L (p=0.436). Surface conditioning affected VHNchange (p=0.0079), while sucrose concentration impacted ∆Z (p<0.0001) and L (p<0.0001). Surface conditioning with filtered/pasteurized saliva resulted in the lowest VHNchange values for both sucrose concentrations. The differences between filtered/pasteurized subgroups and the two other surface conditionings were significant (filtered saliva p=0.006; DIW p=0.0075). Growing the biofilm in 1% sucrose resulted in lesions with higher ∆Z and L values when compared with 0.5% sucrose. The differences in ∆Z and L between sucrose concentration subgroups was significant, regardless of surface conditioning (both p<0.0001).

Conclusion

Within the study limitations, surface conditioning using human saliva does not influence biofilm–mediated enamel caries lesion formation as measured by transverse microradiography, while differences were observed using surface microhardness, indicating a complex interaction between pellicle proteins and biofilm–mediated demineralization of the enamel surface.

Dental caries; Biofilms; Salivary pellicle; Saliva

Faculdade De Odontologia De Bauru - USP Serviço de Biblioteca e Documentação FOB-USP, Alameda Dr. Octávio Pinheiro Brisolla 9-75, 17012-901 Bauru SP Brasil, Tel.: +55 14 3235-8373 - Bauru - SP - Brazil
E-mail: jaos@usp.br