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Abstract: Uncertainty-based multidisciplinary design 
optimization considers probabilistic variables and parame-
ters and provides an approach to account for sources of 
uncertainty in design optimization. The aim of this study 
was to apply a decoupling uncertainty-based multidisci-
plinary design optimization method without any dependence 
on probability mathematics. Existing approaches of un-
certainty-based multidisciplinary design optimization are 
based on probability mathematics (transformation to 
standard space), calculating an approximation of the con-
straint functions in standard space and finding the most 
probable point, which is the best possible one. The current 
approach used in this paper was inspired on interval 
modeling, so it is good when there is insufficient data to 
develop a good estimate of the probability density function 
shape or parameters. This approach has been implemented 
for an existing Unmanned Aerial Vehicle (UAV, Global Hawk) 
designed for purposes of comparison and validation. The 
advantages of the provided approach are independence of 
probability mathematics, appropriate when there is insu- 
fficient data to approximate the uncertainties variables, 
appropriate speed to calculate the best reliable response, and 
proper success rate in the presence of uncertainties.

Keywords: Uncertainty-based multidisciplinary design 
optimization, MDO, Systemic design, Unmanned Aerial 
Vehicles design.
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INTRODUCTION

Uncertainty existing at the early phases of the design 
process influences the system reliability. It is important to 
manage error early in the design process to decrease the 
redesign likelihood. Designing complicated and large systems 
such as aerospace vehicles requires appropriate compromise 
for gaining balance between multiple coupled targets. The 
targets include high performance and low costs. The sooner 
these compromises are understood in design process, the 
more technology, programming, and cost-related risks can be 
minimized. There are complicated relationships existing between 
assignment requirements, constraints, design sub-systems and 
contradicted targets, which could be coordinated using a suitable 
strategy of optimization. Multidisciplinary design optimization 
(MDO) or coordination between multidisciplinary analyses 
makes understandable more effective solutions during design 
and optimization of complicated systems. This allows system 
engineers to look for a vast scope of compromise in a systematic 
and thoughtful way and to consider more structures in conceptual 
design phase and before concentrating on final design. 

Preliminary application of optimization in aerospace 
industries is accompanied by optimization of sub-systems 
or components such as aerodynamic shape, orbital path, as 
well as optimization of sub-systems altogether. Anyway, an 
optimized systemic compound will not be always created through 
optimization of sub-systems. In aerospace engineering, MDO 
was first applied in design of airplanes and to date the method 
has been used in academic papers and manufactured airplanes 
(Geethaikrishnan 2003).

In Olds (1993), González et al. (2005), Morris and Kroo 
(1990), Raymer (2002), Çavuş (2009), Neufeld (2010), Hendrich 
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(2011), Giunta (1997), Buonanno (2005), Iqbal (2009), Mattos 
and Secco (2013), Eisler (2003), Rowell et al. (1999), Goraj 
(2005), Lee et al. (2007), Tianyuan and Xiongqing (2009), 
Jaeger et al. (2013), Ahn et al. (2002), Perez et al. (2004), 
Sóbester and Keane (2006), Lee et al. (2009), Choi et al. (2010), 
Zill et al. (2011), and Tekinlap and Cavus (2012), the airplane 
conceptual designing is done by taking advantage of MDO. 
In these references, all fighter, passenger, and conventional 
planes, as well as Unmanned Aerial Vehicles (blended wing 
body and conventional) are considered. In a systemic attitude 
towards previous studies, the applied design algorithms are: 
MDOs in different frameworks, such as All at Once (AAO), 
Multiple Discipline Feasible (MDF), Collaborative (CO), and 
Bi-level Integrated System Synthesis (BLISS), which are made 
compatible to different optimization methods like evolutionary 
algorithms and Steepest Descent. Mostly, design criteria are 
minimum-cost, minimum-weight, and minimum-drag under 
constraints of scenario performance and functional capability. 
New researches started to study and develop novel design 
methods, applying optimized and efficient frameworks in 
various fields. Aerospace science is included in a way that the 
application of MDO methods with various single- or multi-level 
frameworks in aerospace vehicles — such as airplane, launch 
vehicles, and satellites — is seen referring to reliable papers, 
being considered as a current theme up to date. Aircraft design 
under uncertainty has been the subject of some recent studies 
too. In Ahn and Kwon (2006), it was introduced a BLISS based 
on Reliability-Based Design Optimization (RBDO) framework 
to design a simplified supersonic transport problem (Ahn and 
Kwon 2006; Sobieszczanski-Sobieski et al. 2000). The study 
assumed normal distributions with coefficients of variation 
equal to 0.3 (the ratio of the mean to standard deviation) 
on each of the 10 design variables considered such as wing 
area, span, and others describing aircraft geometry. In Smith 
and Mahadevan (2003), it was solved a spacecraft conceptual 
optimization problem using RBDO to consider uncertain design 
variables, reflecting the possibility of minor design changes 
later in the design process. Probabilistic error terms were added 
to the responses of the aerodynamics and structural analysis 
output with assumed values of 10%. The optimization problems 
were solved with several MDO architectures and First-Order 
Reliability Method (FORM) based reliability analysis methods. 
The aforementioned studies consider uncertainties in the design 
variables or parameters such as atmospheric conditions or 
material properties.

This study aimed to introduce the decoupling of Uncer-
tainty-based Multidisciplinary Design Optimization (UMDO) 
method, applying it to design UAVs as a case study. The 
following section introduces UMDO methods. Then, it is 
developed UAV decoupling UMDO algorithm, based on MDO 
method in single-level frameworks (MDF), using genetic algo-
rithm optimization and sequential quadratic programming 
(SQP). In the section “Implementation of Uncertainty-Based 
Multidisciplinary Design Optimization Methods and Their 
Comparison”, the redesign of Global Hawk UAV was made 
using prepared algorithm, and the comparison was carried 
out between MDO and UMDO while validating the results.

UMDO METHODS

MDO is a branch of engineering science that applies 
optimization methods for solving design problems with multiple 
contexts and themes with coupled parameters. The method is 
called multidisciplinary optimization or Multidisciplinary System 
Design Optimization (MSDO). The method allows designers to 
consider related themes simultaneously (Olds 1993). Any deviation 
in the designer’s assumptions (i.e., the material strength or the 
manufacturing precision of a structural member) or approximate 
analysis methods may result in the failure of the optimized design 
because the results take place in feasibility bound.

Any design variable, parameter, or any output from analysis 
codes in a given optimization problem can be considered as 
uncertain quantities provided that the uncertainty can be 
mathematically represented. Uncertainty at the early phases of the 
development exists due to the limited knowledge concerning 
the system characteristics and due to the low-fidelity simulations 
and analyses performed. UMDO methods are recent, still under 
development, and partially applied in conceptual phases. Many 
methods currently exist for quantifying the behavior of aleatory 
and epistemic uncertainty. The methods most often applied 
in design optimization are interval analysis, fuzzy numbers, 
and probability theory. The choice of the method is driven by 
the quantity of information available to the designer about the 
source of uncertainty. In general, sources of uncertainty in which 
there is insufficient data to accurately estimate a probability 
density function (PDF), interval analysis or fuzzy numbers are 
preferred (Hu and Qiu 2010; Schueller and Jensen 2008; Hajela 
2002; Vittal and Hajela 2003). UMDO process relies on 2 steps 
(Fig. 1): uncertain system modeling and UMDO procedure.
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Figure 1. UMDO process (Yao et al. 2011).
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distance between the design point and feasibility 
boundary is calculated. The point in the border of 
feasibility nearest to the design point is known as 
MPP. The distance between the design point and 
MPP is called reliability (β) of the desirable value 
which is determined by the designer and must 
have a minimum value. Several methods are used 
to calculate the MPP and β such as performance 
measure approach (PMA) and reliability index 
approach (RIA). These methods are based on FORM 
but differ in methods of finding MPP (Yu et al. 1997; 
Tu et al. 1999).

•	 Possibility-Based Design Optimization (PBDO): 
when there is not enough information about the 
uncertainty of design variables, PBDO is appropriate. 
In this method, the interval or fuzzy theory is used 
for uncertainty modeling, and interval or FORM-
based optimization methods are applied. In general, 
the results of this method compared to RBDO are the 
more stable (Du et al. 2006).

Finally, to check the reliability of the obtained optimal 
solution, uncertainty analysis can be used.

In the second method (decoupling approach), optimization 
cycles and reliability analysis are separated. For this purpose, 
4 steps are carried out:

1.	 Optimization without uncertainty.
2.	 Uncertainty analysis on the found answer from step 1 

by applying the uncertainty on the desired parameters 
of the issue.

3.	 Convergence: if the uncertainties violate the possibility 
of the answer, a reliable optimal solution is obtained.

4.	 Lack of convergence: if the uncertainties violate the 
possibility of the answer, a shifting vector of the 
answers must be found for feasibility. Then step 3 is 
carried out again.

The important thing in this method is finding the 
shifting vector of answers in a way that the least number 
of repetitions are needed. One of the ways to find shifting 
vector is using PMA method to find MPP for each constraint. 
In this case, the difference between optimal solution 
without uncertainty and the answer located at the MPP is 
considered as a shifting vector, and this cycle continues 
to achieve reliable optimal solution (Du and Chen 2004). 
In finding shifting vector, the designer’s experience can 
be very effective.

The first phase of the process consists on desired system and 
mathematical uncertainty modeling; the second phase includes 
optimization in the presence of uncertainty, resistance, and 
uncertainty analysis, as well as the reliability of the answer. 
UMDO should match the mathematical uncertainty modeling 
(probability theory, possibility, etc.) and type of design 
algorithm (AAO, MDF, CO, etc.). In an optimum problem 
designing, the failure of the plan will be determined by the 
problem constraints. If these constraints are identified by 
uncertainty variable, the output of the constraints will have 
some uncertainty. There are 2 ways to resolve the issue through 
reliability strategies: nested and decoupling approaches.

In the first method (nested approach), reliability analysis 
is carried out through optimization cycles for feasibility in the 
presence of uncertainty. For this purpose, at each iteration of 
optimizer, reliability analysis is carried out through uncertainty 
modeling in the parameters in mind. One of the theories available 
can be used for uncertainty modeling (probability theory, 
possibility, etc.). Depending on the use of existing theories 
for uncertainty modeling, there are 2 cases (Rao and Cao 
2002):

•	 RBDO: in this method, the probability theory is used 
for uncertainty modeling. This technique allows 
the propagation of uncertainty (given probability 
density function of variables) in the design process 
to determine their influence on the final answer (Rao 
1992). For uncertainty analysis in RBDO strategy, 
there are various methods such as first- and second-
order analysis (first-order reliability method — FORM 
and second-order reliability method — SORM). 
In this method, all design variables are mapped 
to normal distribution space, then the minimum 
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UAV DECOUPLING UMDO ALGORITHM

Before presenting the design algorithm, it is necessary that 
various parts of the UAV design be identified, modeled, and 
transformed into a software code. Other subjects involved in design 
are: aerodynamic, structure, propulsion, and path simulation.

Integrated Design Algorithm with 
UMdO Method

UAV design includes, respectively, 11, 15, and 11 common, 
uncommon, and coupled parameters (a total of 37) in addition 
to 33 constraints. The above design algorithm, mission definition, 
and flight scenario exist within which the following parameters are 
determined: payload geometrical specification and mass; cruise phase 
speed, altitude, and range; loiter phase speed, altitude, and duration; in 
addition to stall speed. Optimization methods applied in system level 
is a combination of genetic algorithm and SQP, taking the number 
of design parameters and related constraints into consideration. 
Combining these 2 methods makes the optimized point resulted 
from genetic algorithm using SQP method more accurate.

Figure 2 presents UAV’s multidisciplinary design optimi-
zation algorithm in MDF structure, in which an optimizer is 
located at system level within which UAV design parameters (a 
total of 37) are achieved in a way that, observing the problem’s 
constraints (a total of 33), optimization criterion (overall mass 
of the UAV) becomes minimum. 

In order to expedite design algorithm and maintain a better 
convergence, constraints are prioritized, and a certain value is 

added to the criterion function against any of these priorities 
not being observed. This way, optimization algorithm will satisfy 
constraints while minimizing criterion function. Constraints 
are prioritized according to their importance: 1) geometrical 
constraints; 2) constraints related to minimum required thrust; 
3) constraints related to minimum require lift; 4) static stability 
constraints; 5) load coefficient constraints; 6) propulsion mass 
constraints; and 7) constraints related to performing an mission.

In this framework, disciplines would be feasible through 
multidisciplinary analyses and internal cycles between cou-
pled sub-systems. In other words, internal cycles between 
coupled sub-systems are continued till all disciplines are 
feasible in each optimizer evaluation.

The uncertainty of some of these parameters, such as the 
aerodynamic ones, according to the theory used, is available 
in the references; however, for the rest of the parameters, there 
is no authoritative reference. Thus, according to the authors’ 
experience, sources of uncertainty and their values (3σ) are 
considered in this work as follows:

•	 Environmental uncertainties include gravity (5% of 
nominal value) and density (5% of nominal value).

•	 Uncertainties of the appliance model include mass (5% 
of nominal value), fuel consumption (5% of nominal 
value), aerodynamic coefficients (10% of nominal value 
[5, 17]), and thrust (5% of nominal value). 

To provide design algorithm in the presence of uncertainties, it 
is necessary to identify the sources of the uncertainty. According to 
the given description, all design methods are based on reliability on 

Figure 2. Multidisciplinary design optimization of UAV.
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Fitness function Function name

Minimize takeoff weight in order to 
below mission parameters

VCruise Cruise velocity

HCruise Cruise height

R Range

VLoiter Loiter velocity

HLoiter Loiter height

E Endurance

Payload specifications

VS Stall speed

RN Nose radius

Table 1. Optimization without uncertainty (step 1). Fitness function.

the basis of the mathematics of uncertainty (mapping to a normal 
distribution space), calculating the border of feasibility and the 
nearest point from it with a point (MPP). Since the constraints 
defined in the current problem of UAV are in a way that there is 
no clear feasibility border, using such methods is very difficult. 
Here it is presented the method for UAV multidisciplinary optimal 
design in the presence of uncertainties, which is based on the 
evolutionary algorithm. The advantage of this method compared 
to introduction ones is its independence from mathematics of 
uncertainty and no need for calculating the feasibility border. To 
perform the design in the presence of uncertainties, the following 
steps should be taken separately: 

1.	 Optimization without uncertainty (Table 1-3).
2.	 Uncertainty modeling by the found answer from step 

1 as follows: the worst case of uncertainty in a definite 
range for any constraint is calculated by an optimization 
algorithm as below. The parameters of optimization 
algorithm are uncertainty values, and optimization criteria 
maximize the impossibility of any constraint (for example, 
minimizing the duration of the flight or an increase in 
instability). The optimization algorithm in this method, 
like the original optimization algorithm, is a combination 
of genetic algorithm and SQP. Therefore, its output will 
be the set of the worst uncertainties for each constraint):
Maximize constraint(i), (i = No. of constraints)
By changing (7 parameters): UT, USFC, UWe, UCD, UCL, Ug, Uρ

3.	 Convergence: uncertainty analysis by applying the set of 
the worst uncertainties on the parameters of the problem. 
If the uncertainties do not violate the possibility of the 
answer, a reliable optimal solution is obtained.

Design variable Variable name

CrW Wing root chord

CtW Wing tip chord

bW Wing span

RB Body radius

LB Body length

ΛW Wing sweep

CrH Horizontal tail root chord

CtH Horizontal tail tip chord

bH Horizontal tail span

ΛH Horizontal tail sweep

CrV Vertical tail root chord

CtV Vertical tail tip chord

bV Vertical tail span

ΛV Vertical tail sweep

iP Propulsion system incidence

ZW Wing vertical position

iW Wing incidence

iH Horizontal tail incidence

LN Nose body length

LA Aft body length

ѲW Wing twist

ΓW Wing dihedral

ѲH Horizontal tail twist

ΓH Horizontal tail dihedral

ZCG Vertical position of gravity center

WF Fuel weight

T Thrust

N Load factor

Table 2. Optimization without uncertainty (step 1). Design 
variable.

Calculate & check constraint(i), (i = No. of constraints)
in order to mission parameters (VCruise, HCruise, R, VLoiter, HLoiter, E,
	 	 Payload Specifications, VS, RN)
& Uncertainty value (Ui = [UT, USFC, UWe, UCD, UCL, Ug, Uρ])

for i = 1, 2, …, nc

& Optimum design variable: XW, CrW, CtW, bW, RB, LB, ɅW, CrH,
	 CtH, bH, ɅH, CrV, CtV, bV, ɅV, iP, ZW, iW, iH, 

LN, LA, ϴW, ΓW, ϴH, ΓH, ZCG, WF, T, n
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Constraints

VPL + VF < VW + Vb

bW > 2RB

bH > 2RB

bV > 2RB

CtW < CrW

CtH < CrH

CtV < CrV

ZW < RB

XW + CrW < 0.8LB

LN < 0.5LB

LA < 0.5LB

Cmα < 0
 
without fuel and external payload

Cnβ
 > 0 without fuel and external payload

Cmα < 0 without fuel and with external payload

Cnβ
 > 0 without fuel and with external payload

Cmα < 0
 
with fuel and without external payload

Cnβ
 > 0 with fuel and without external payload

Cmα < 0
 
with fuel and external payload

Cnβ
 > 0 with fuel and external payload

WF Opt > WF Required

nOpt > nCalculated

Lift > WTO in stall speed

Lift > WTO in cruise speed

Lift > WTO in loiter speed

T > TCalculated in stall speed

T > TCalculated in cruise speed

T > TCalculated in loiter speed

VCruise = VCruise calculated in simulation

HCruise = HCruise calculated in simulation

R = RCalculated in Simulation

VLoiter = VLoiter calculated in simulation

HLoiter = HLoiter calculated in simulation

E = ECalculated in simulation

Table 3. Optimization without uncertainty (step 1). Constraints.

4.	 Lack of convergence: if the uncertainties violate the 
possibility of the answer, a shifting vector of 
the answers, appropriate for the violated constraint, 
must be found for feasibility — for example, if the 
constraints related to flight time requirements is not 
met. The difference between the required fuel and the 
available one will be added to the latter (required fuel 
is the output of movement simulation), then step 3 
is carried out again.

After designing in the presence of uncertainty, its analysis 
using the Monte Carlo method is performed to check the final 

answer. The UAV multidisciplinary optimal design algorithm 
in the presence of uncertainties is presented in Fig. 3.

UAV design algorithm in the presence of uncertainties 
was transformed into a software code; through it, the results 
of re-designing UAV — Global Hawk (RQ-4B) — in the presence 
of the uncertainties are presented. The results of UAV design 
have been compared without the presence of uncertainties.

Mission

MDF AAO

Multidisciplinary Design 
Optimization without uncertainty

Uncertainty modeling

Calculate and check 
constraints

De�ne shi�ing vector for 
every constraint

No

Yes

Optimum solution

Convergence?

Uncertainty analysis (Monte Carlo based on 
normal distribution function)

Worst case modeling
(an optimization to �nd the worst case value of uncer-

tainty for every constraint)

Figure 3. UAV MDO algorithm in the presence of uncertainties.

IMPLEMENTATION OF UMDO 
METHODS AND THEIR COMPARISON

The results of the MDO algorithm in MDF structure 
and decoupled method are provided for Global Hawk 
UAV in the rest of the paper, and parameters such as total 
mass, runtime code, and the percentage of success have 
been compared.
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To do so, mission information of this UAV was considered 
as design code input and the output extracted. Then, outputs 
were compared to real UAV information. Code inputs for 
Global Hawk redesign are: 575 km/h of velocity cruise, 28 h 
of flight endurance, maximum altitude of 18 km, and payload 
mass of 1,360 kg.

In Table 4, by the percentage of success, we wonder 
what is the percentage of likelihood of fulfillment of all 
constraints (as explained in previous seasons) in the 
presence of uncertainty for the final design. As seen in 
this table, result differences in MDF method with existing 
information from Global Hawk are between 13 – 23% in 
mass and less than 9% in geometrical specifications. The 
following points could be referred to as the reasons for 
these differences: 

•	 Lack of sufficient information about Global Hawk 
flight scenario.

•	 Lack of information about airfoil and lifting instruments 
at the time of takeoff and landing.

•	 Lack of information about accurate stall speed and 
some of functional parameters.

•	 Lack of information about payload geometric 
specifications, sub-systems layout, and fuel.

•	 Lack of consideration of uncertainties.
Convergence procedure in MDF frameworks is shown in 

Fig. 4. As can be seen, the success rate of optimal response 
from MDF algorithm (without uncertainty) is 51 and 
100% for decoupled method. The run time of this code in 
decoupled method is 1,600 s more than the MDF algorithm 

Value

Section Decoupling 
approach

MDF
Real 
value

393939.9Wing span (m)

68.2568.263.02Wing area (m2)

1.31.281.42Body diameter (m)

14.514.514.5Body length (m)

5,5385,2295,868Empty mass (kg)

14,13312,15914,628Takeoff mass (kg)

7,2355,5707,400Propellant mass (kg)

23,10721,507-Time of optimization(s)

10051-Percentage of success

Table 4. Outputs of design code for Global Hawk redesign in 
presence of uncertainty.

Figure 4. (a) Convergence trend in GA algorithm ; (b) SQP.
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(without uncertainty). The total mass obtained from the 
decoupled method is 1,974 kg more than that of the MDF 
algorithm. 

The total mass obtained from the optimal design 
algorithm in the presence of uncertainties in decoupled 
method is 14.1 t. This means that, to compensate the failure 
probability in multidisciplinary optimal algorithm without 
uncertainties, the mass is increased in order to increase 
the success chance from 51 to 100%, considering that the 
uncertainties have also resulted in less difference between 
the obtained responses and the real values. Regarding the 
obtained result, although designing without uncertainties 
in a more optimal way, it is not reliable.

In Figs. 5 and 6, the results of the Monte Carlo analysis 
are presented for thousands of performances. In Fig. 7, it 
is observed the 3-D view; in Fig. 8, the presented charts 
resulted from redesigned UAV simulation of motion.

(a)

(b)
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Figure 7. 3-D view of the redesigned UAV.

Figure 6. Monte Carlo analysis: fuel consumption versus time.

Figure 5. Monte Carlo analysis: angle of attack and thrust 
versus time.

CONCLUSION

The present study introduced MDO and UMDO 
frameworks in UAVs, implemented and compared as a case 
study. To this aim, sub-systems and disciplines involved in 
design were modeled, and a proposed algorithm for conceptual 
design of UAV was developed based on multidisciplinary 
optimization method in MDF framework, using genetic 
algorithm optimization method and SQP. This algorithm 
includes 11 common parameters, 15 uncommon parameters, 
11 coupled parameters (a total of 37) and 33 constraints.

Regarding the results achieved from MDO in the 
presence of uncertainties for operational UAV, the results 
are explained as:

•	 The comparison of the code outputs, results of the 
movement simulation, and Monte Carlo analysis for 
multidisciplinary optimal design code output in the 
presence of uncertainties indicates the correctness 
and reliability of results of the proposed algorithm. 
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Figure 8. Height and velocity versus time.
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•	 To compensate the failure probability in multidis-
ciplinary optimal algorithm without uncertainties, 
the mass is increased in order to increase the success 
chance to 100%. 

The advantages of the provided approach are: independence 
from probability mathematics, appropriate when there is 
insufficient data to approximate the uncertainties variables 
or develop a good estimate of the probability density function 
shape, appropriate speed to calculate the best reliable response, 
and proper success rate in the presence of uncertainties. 

Totally, regarding the presence of the uncertainties in the 
real world, it is better to consider the mass increase penalty in 
order to increase the reliability of the design. With the help 

of this algorithm, we can, according to the defined operation 
for the UAV and the level of uncertainties of the proposed 
models in the design, achieve a reliable and optimal answer 
in the conceptual design phase with the least time and highest 
accuracy.
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