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ABSTRACT: Contemporary digital systems must necessarily 
be based on the “System-on-Chip” (SoC) concept. Especially 
in relation to the aerospace industry, these systems must 
overcome some additional engineering challenges concerning 
reliability, safety and low power. An interesting style for 
aerospace SoC design is the GALS (Globally Asynchronous, 
Locally Synchronous) paradigm, which can be used for Very 
Large Scale Integration – Deep-Sub-Micron (VLSI_DSM) 
design. Currently, the major drawback in the design of a 
GALS system is the asynchronous interface (asynchronous 
wrapper – AW) when being implemented in VLSI_DSM. 
There is a typical AW design style based on asynchronous 
controllers that provides communication between modules 
(called ports), but the port controllers are generally subjected 
to essential hazard, what decreases the reliability and safety 
of the full system. Concerning to this main drawback, this 
paper proposes an AW with robust port controller that 
shows to be free of essential hazard, besides allowing full 
autonomy for the locally synchronous modules, creating fault 
tolerant systems as much as possible. It follows the Delay 
Insensitive (DI) model interacting with the environment in the 
Generalized Fundamental Mode (GFM) without the need to 
insert any delay elements. Additional delay elements, although 
proposed by some previous work found in literature, are not 
desirable in aerospace applications. The proposed interface 
allows working on Ib/Ob mode, showing the DI model is more 
robust than the QDI model and, therefore, it does not need 
to meet isochronic fork requirements nor timing analysis.  
Once an interface presenting similar properties was not found 
in literature, the proposed architecture proved to have great 
potential of implementation in practical VLSI_DSM designs, 
including the aerospace ones, once it overcomes the main 
engineering challenges of this kind of industry.

KEYWORDS: Aerospace systems, Reliability, Low power, 
Asynchronous controllers, GALS.
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INTRODUCTION

Contemporary digital systems are usually implemented 
on Very Large Scale Integration (VLSI) and must necessarily 
be based on the “System-on-Chip” (SoC) concept. The 
reason for that is to satisfy the ever-growing demand for 
higher performance, reusability and low-power requirements  
(De Micheli, 2009; Muller-Glaser et al., 2004). Especially in 
relation to the aerospace industry, these systems must overcome 
some additional engineering challenges concerning reliability, 
safety, high complexity and the unavailability of component 
failure data, generating fault tolerant systems as much as 
possible (Sues, et al., 2005; Bertuccelli, 2008). SoC circuits are 
composed of functional modules, which can be the  intellectual 
property cores (IP-cores) from many different vendors.  
These IP-cores are pre-designed, verified, tested and optimized 
for high-performance, providing both cost and development 
time reduction. Once SoC circuits are implemented in deep-
sub-micron (DSM) technologies (VLSI_DSM) (for example, 
70 nm, 500M transistors for chip and f=2,5 GHz), delays 
caused by  wires prove to be big when compared to the gate 
timing, and the difference between minimal and maximum 
delays in the gates is significant (Jain et al., 2001; Martin 
et al., 2006).  Therefore, when SoC circuits are implemented 
using only a global clock signal, they are subjected to speed 
and power penalties (clock skew, distribution networks etc.), 
thus making timing analysis very complex (Friedman, 2001). 
Besides that, the harsh environment found in aerospace 
applications, with high temperature variations, can make this 
time analysis even more difficult.  
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Asynchronous project methodologies (Martin  
et al., 2006; Myers, 2004) can naturally eliminate such 
challenges by removing the clock signal from the design. 
Different classes of asynchronous circuits may be used 
to implement SoCs, which can be built from completely 
asynchronous modules, but these kinds of circuits are 
not a widely accepted solution. The main reasons for that 
refusal are: a) lack of reliable tools for asynchronous design;  
b) difficulties from hazard-free designing and testing;  
c) limited culture on asynchronous design; and  d) lack of 
asynchronous IPs (Hardt et al., 2000).

The aerospace industry imposes many additional 
challenges to the design of dedicated systems, such as the 
high complexity of systems; main power generation systems; 
missions’ profiles and environment; high demand for new 
technologies; high reliability and safety requirements; 
unavailability of component failure data; component sizes; 
and especially tight schedules, what leaves no room for 
errors. Any problem in an aerospace system leads to big losses 
of aircrafts (or spacecraft), crews, missions and revenues. In 
this context, reliability and robustness are important, leading 
to lower maintenance cost and lower failure frequency. 
The objective is always to maximize system performance, 
while satisfying constraints that ensure a reliable operation  
(Sues et al., 2005; Bertuccelli, 2008).

Concerning to this special situation and the features of 
both synchronous and asynchronous systems, intermediate 
solutions were proposed between “totally synchronous” and 
“totally asynchronous”, such as the Globally Asynchronous, 
Locally Synchronous methodology (GALS). The term GALS was  
first used by Chapiro (1984), in his PhD thesis. A GALS 
system consists of many synchronous functional modules 
that communicate in the asynchronous form. In this paper, 
we refer to the GALS systems as digital systems partitioned in 
functional modules (that may be IPs), which carry their own 
individual clock signals and are unrelated between modules. 
An asynchronous communication scheme is provided 
for the communication between different modules with 
different clock domains. In order to handle the asynchronous 
communication between these modules, an interface circuit 
has to be added around each one of the synchronous modules, 
which is called an asynchronous wrapper (AW). The AW term 
was first used by Bormann et al. (1997). This local interface 
may be built by using local clocks, FIFOs, asynchronous 
controllers (Input Ports, Output Ports) etc. Techan et al. (2007) 

show different styles for asynchronous interfaces dedicated 
to GALS systems. Figure 1 shows a generic interface with a 
synchronous module as an example. 

GALS systems have been successfully used in many 
implementations, including the Application Specific 
Integrated Circuit (ASIC) (Gurkaynak et al., 2006; Amini 
et al., 2006; Miller et al., 2005) and Field Programmable 
Gate Array (FPGA) (Jia et al., 2005; Kumala et al., 2006; 
Yuan et al., 2005). Currently, FPGA devices have shown 
to be a common choice for implementing digital circuits 
(Muller-Glaser, 2004), growing considerably in recent 
years. High-performance FPGAs, with up to 50 million 
gates, can be easily found nowadays, therefore allowing 
complex digital systems, such as GALS, to be programmed 
on them (De Micheli, 2009) and to be implemented in 
CMOS technology, DSM. 

Asynchronous interfaces that use communication 
ports are of main interest, once they allow removing the 
asynchronous handshake scheme from the synchronous 
modules, allowing the synchronous module to be developed 
using standard techniques of synchronous design. Although 
the GALS methodology has solved problems related to the 
global clock signal, the communication between modules is 
already performed in the asynchronous paradigm, therefore 
being subjected to all its inherent problems.  

IMPLEMENTATIONS OF PORTS: DIFFERENT 
APPROACHS

Different kinds of ports have been synthesized in the  
logic synthesis style (Myers, 2004). As an example,  
the ports proposed by Amini et al. (2006) have been 
specified in Signal Transition Graph (STG), which is a  
Petri-net-like speficification (Chu, 1987), being synthesized 
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in the Petrify tool (Cortadella et al., 1997). These ports must 
meet the isochronic fork requirement (Myers, 2004), but the 
realization of this requirement in VLSI_DSM presents a high 
level of difficulty. Furthermore, the STG specification, as 
well as its synthesis method, is not familiar to synchronous 
paradigm designers.

The ports proposed by Muttersbach et al. (2000), 
Muttersbach (2001), Reddy Ravi (2001) and Pontes  
et al. (2007) were specified in Extended Burst-Mode (XBM) 
and Burst Mode (BM). These ports were implemented, 
respectively, in 3D (Yun et al., 1999) and minimalist (Fuhrer 
et al., 1999) tools. They interact with the environment in the 
generalized fundamental mode (GFM), requiring a timing 
analysis and being subjected to essential hazard, especially 
in the DSM technology. Concerning to this last drawback, 
the insertion of delay elements may be a possible solution 
(VLSI_DSM), but it degrades the testability and cycle-time 
of the system. The insertion of delay elements is not adequate 
when implementing GALS in FPGA as well, because these 
devices (FPGAs) are not designed to favor the insertion of 
delay elements.

AVOIDING ESSENTIAL HAZARD IN PORTS 
CONTROLLERS: INCREASING THE SYSTEM’S 
RELIABILITY 

The XBM specification is quite interesting when 
describing port controllers, once it is not only “familiar” 
to synchronous paradigm designers, but also because the 
method that synthesizes ports described by XBM shows 
to be simpler when compared to the synthesis by STG  
(Myers, 2004). Yun et al. (1999) and Nowick (1993) 
proposed the insertion of delay elements on the feedback 
wires in order to avoid essential hazard in burst-mode 
controllers. Oliveira et al. (2008) proposed a sufficient 
condition that guarantees essential hazard-free operation 
on burst-mode controller without the need for extra delay 
elements, when mapped on VLSI_DSM or any type of 
LUT-based FPGA. The absence of delay elements is highly 
desirable when considering FPGA devices (difficulties in 
implementing this kind of elements) and, furthermore,  
in aerospace applications, in which the harsh environment 
must change the behavior of electronic components. 

This paper proposes robust port controllers for 
asynchronous interfaces used in GALS style. They are 
completely free of essential hazard and are described 

in the XBM specification. The robust controller design 
for asynchronous interfaces is proposed as a solution 
to the increasing demand for high reliablility aerospace 
electronic systems. The paper also shows that the 
method proposed by Oliveira et al. (2011) to synthesize 
BM controllers free of essential hazard is improved for 
XBM controllers. These proposed ports are implemented 
in the following architectures: “Huffman machine with 
feedback output” and “standard RS”. The use of both 
architectures enables a better performance of the system, 
besides being more reliable and providing safer operation 
for aerospace applications. A new AW for GALS with 
robust ports is also proposed. Once it is known that a 
major drawback in the design of asynchronous wrapper 
is the synthesis of these ports, the proposed AW proved 
to be very important and robust. These ports are easily 
implemented both in VLSI_DSM and LUT-based FPGA. 
Other advantages of this wrapper are: 1) total autonomy 
to the locally synchronous modules, when interacting 
with the proposed AW; and 2) its ports interact with the 
environment in the mode Ib/Ob, thus not requiring timing 
analysis and being more robust than the GFM mode. In 
this mode, a new input burst is immediately accepted 
when all signals of output burst change their values. All of 
these achieved features make the proposed architecture 
a good option for aerospace implementations, once it 
increases the reliability of the full system, overcoming 
some of the main challenges in this kind of industry.

DIFFERENT STYLES OF GALS DESIGN
Once the synchronous modules of a GALS system 

operate at different frequencies and/or different phases, the 
communication between them is subjected to metastability 
(Ginosar, 2003). Metastability occurs when a specific signal 
violates the setup time or the hold time of the memory 
element, and during any time the output voltage assumes an 
intermediate value that leads the circuit to achieve a random 
logic value. Metastability may occur in a timing window 
defined by the sum of “setup” and “hold” times. So, the GALS 
design style is determined according to the treatment of 
metastability, since there different ones in literature. Techan et 
al. (2007) propose specific taxonomy to classify these styles, in 
which they basically can be classified into three main styles: 
a)  weak synchronous interface; b) pausible clock interface; 
and c) asynchronous interface.  
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WEAK SYNCHRONOUS INTERFACE 
This style has three variants: a) heterochronous;  

b) mesochronous; and c) plesiochronous. In the heterochronous 
style (footer), the clocks of the synchronous modules run 
on different nominal frequencies (Techan et  al., 2007).  
On the other hand, in the mesochronous style (from 
Greek, meso means average), the clocks show the same 
average frequency, but with different unknown phases, 
which are generated by the same oscillator (Techan et al., 
2007). Finally, in the plesiochronous style (from Greek, 
plesio means “almost equal”), the clocks operate with 
equal nominal frequency, but being generated by different 
oscillators (Techan et al., 2007). These styles always require 
timing analysis, starting from the knowledge of the clocks 
and using FIFO as a base, phase adjusters and, sometimes, 
synchronizers. The advantage of these styles is to enable 
low latency and high frequency clocks. On the other hand, 
there is the need for a rigorous timing analysis. Figure 2 
shows a mesochronous interface that uses a phase adjuster 
(timing recovery circuit – TRC).

PAUSIBLE CLOCK INTERFACE
This style, firstly proposed by Chapiro (1984), tackles 

the problem of metastability by interrupting the clock 
signal. When data are ready for transmission, the clock is 
interrupted, enabling data synchronization. The synchronous 
modules have pausible clock signals. Most often, these clocks 
are locally generated using a ring oscillator and a mutual-
exclusion circuit, or arbitrator, which properly generates the 
pause and restart of the clock (Yun et al., 1999). The potential 
advantages of this style are the robustness in the treatment 
of metastability and power reduction. On the other hand, 
the weakness of this style is the possibility of “deadlock” and 
“jitter” (Mullins et al., 2007). Different architectures have been 
proposed for pausible clocks, for example, the one involving 
FIFO (Techan et al., 2007). Figure  3 shows an architecture 
involving pausible clock as an example.

ASYNCHRONOUS INTERFACE
This style uses circuits known as synchronizers and 

handshaking signals. The synchronous modules have clocks 
running freely at different frequencies, without any prior 
knowledge about their timing. Data are synchronized from one 
clock domain to another. Some examples of data synchronizers 
are the well known “two registers”, or “double latches” (Mullins 
et al., 2007), or some other more elaborated synchronization 
schemes, such as the “synchronization pipeline” (Sjogren 
et al., 2000) and “FIFOs” (Dobkin et al., 2006). The proposed 
synchronizers do not totally eliminate failure due to 
metastability, once the probability of failure different of zero 
percent remains (Dobkin et al., 2006). The “two register” 
synchronizer presents as advantages its simplicity and 
robustness, but as a disadvantage there is an increasing area, 
power, and especially a high penalty in latency times, which 
leads to an increase of two clock cycles. Figure 4 shows the 
architecture of asynchronous interface as an example.     
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Figure 4. Asynchronous interface based on FIFO. 
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COMMUNICATION CONTROLLERS (PORTS)
GALS systems require asynchronous communication 

links, which can require two kinds of communication 
protocols: two or four stages handshaking. The ports can 
work as active (generating the “request” signal) or passive 
(generating the “acknowledge” signal). In GALS design 
there are two types of communication controllers: a) port 
of “demand”, b) port of “poll” (inquiry). In the port of 
demand, the data being transferred are immediately 
required after the communication. Therefore, in this 
type of controller the clock must be immediately stopped 
(paused) and reactivated (restarted) when communication 
is done. In the port of poll, the clock is not stopped 
immediately. It defines when it is “safe” to send the data. 
The clock is stopped (paused) only in cases when there 
is the need for additional time, in order to troubleshoot 
eventual metastability.     

XBM-EHF SPECIFICATION: CONDITION
BM is a kind of specification based on a state transition 

graph which was first proposed by Davis et al., (1979), 
later formalized by Nowick (1993), and improved by Yun 
et al. (1999) as XBM. It allows multiple input changes and 
is usually used to describe Mealy Asynchronous Finite 
State Machines (FSM). These machines interact with the 
environment in GFM. In GFM, a new input burst can only 
occur if the controller is stable (with no activity in the ports 
or in the lines). The XBM specification supports the BM 
specification, introducing two kinds of input signals: a) 
conditional signal that is sensitive to level, showing non-
monotonic behavior; and b) “directed don’t care signals” 
that can activated concurrently with the output signals.     

In this paper, the XBM specification is illustrated 
with  the benchmark Biufifo2dma of the HP (see Fig. 5), 
with four inputs (cntgt1,dackn, fain,ok), two outputs 
(dreq,frout) and initial state 0. The description fain- 
dackn+/ frout+ in transition 4→3 means that the output 
(frout: 0→1) will follow the input burst (fain: 1→0 AND 
dackn: 0→1). Signals not enclosed in angle brackets and 
ending with + or — are “terminating”. Signals enclosed in 
angle brackets are “conditionals”, which are level sensitive 
with non-monotonic behavior. The input signals dackn, 
fain and ok are transition sensitive signals (TSS). The 
level sensitive signal cntgt1 is used to describe the mutual 
exclusion between transitions 2→5 and 2→4. The “directed 

don’t care signal” fain* in transition 2→4 means that fain 
may either change its value or remain in its previous value. 
All state transition should have at least one signal called 
“compulsory”. A compulsory signal is an input signal that, 
in the previous state transition, is not directed to don’t care.  

A TSS input signal in a XBM specification is 
considered as a context signal in a transition A→B if it 
does not change its value during such transition (it is not 
on the label). On the other hand, it is considered as a 
trigger signal if it is labeled during this transition. The 
input burst of each state transition can be represented 
by an input transition cube (ITC). For example, the 
ITC in state transition 0→1 on Fig. 5 is cntgt1, dackn, 
fain, ok=2102 (the number 2 means“don’t care”). In this 
example, ok is a trigger signal, while dackn and fain are 
context signals (whose values are 1 and 0, respectively).

Definition 1.1: Let A and B be a pair of total states in a 
XBM specification, and Ib/Ob be the input/output burst for the 
A→B transition. Let Es be one “terminating” input (Es ∈ Ib). 
Es is considered as an essential signal if it is a context signal 
on all transitions that address state A and is a trigger signal on 
the transition A→B.

For instance (see Fig. 5), there is not an essential signal 
in state transitions 0→1, 4→3 and 3→2 because they are 
trigger signals on transitions 5→0, 2→4 and 2→5. Signal 
ok is essential on transition 1→2, because it is a context 
signal on transition 0→1. On transitions 2→4 and 2→5, 
dackn is essential signal.

Lemma 1.1 – (proof is presented by Oliveira et al. (2008)) 
A XBM specification is essential hazard-free (XBM-EHF) 
only if for each state transition labeled by Ib/Ob, if Ob≠∅, there 
must be, at least, one essential signal. 
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Figure 5. Extended burst-mode specification of Biufifo2dma. 
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As an example, Fig. 6 shows the HP-mp-for-pkt benchmark 
described by a BM specification. On all transition labels there 
is at least one essential signal. Therefore, it is a BM-EHF 
specification. Figure 7 shows the state flow map of HP-mp-
for-pkt. As shown by Oliveira et al. (2008), which applies the 
rule generalized Ungle to check for essential hazard, this states 
flow map is subjected to essential hazard. The essential hazard 
depends on the code that the don’t-care assumes, when held 
the logic coverage free of logic hazard.

ESSENTIAL CUBE CONDITION
Lemma 1.1 is a necessary and sufficient condition 

for an essential-hazard-free specification, but not for 
hazard-free implementation. The super-state concept will 
guarantee  the  latter condition. According to Oliveira et 
al. (2008), the concept of super-state is presented. It is 

used to obtain an implementation EHF. To simplify the 
implementation EHF, in this article we generalize the concept 
of super-state introducing the idea of essential cube.

Definition 1.2: Consider an input burst Ib (a, b, ..n) and 
an output burst Ob (x, y,..m). We call a super-state the set of 
single total states defined by all 0/1 combinations of a subset 
SIb of the input burst signals, keeping all the remaining input 
signals and all the output signals constant.  

Definition 1.3: Consider a XBM-EHF specification and 
a super-state F of the state transition T, so that FÎ XBM-EH, 
whereas T is labeled by Ib/Ob. We call essential cube of 
transition T all the total states related to the 0/1 combinations 
of input burst and output burst (Ib/Ob). Whereas the states 
not reachable in the cube T are encoded with the value of 
context signals, and trigger signals are don’t-care. 

A super-state XBM flow map is derived from a XBM-
EHF specification by applying definition 1.2 to all total 
states. The essential cube is composed of 2N states, in which 
N is the total number of input signals plus the output 
signals that are labeled in a state transition. Figures 8a-d 
are part of the flow map for the BM specification described 
in Fig. 6. Cells in blue are used to compose super-states and 
essential cubes (applying the definition 1.3). For example, 
the 0→1 transition (see Fig. 8a,b and 9a,b) creates super-
state 1 composed of two total states: AckPB Req Ackout 
Allockoutbound Ack AllocPB RTS=[0010001, 0000001]. 
State 0010001 is the final total state. Figure 9b shows 
the essential cube of the state transition 0→1, in which the 
next  total states in blue are not reachable and belong to 
the essential cube. Due to the delays of gates and wires, the 
state totals which not are reachable can become reachable. 
For example, the 1→2 transition (see Fig. 8c,d and 9c,d) 
creates super-state 2, composed of four total states: AckPB 
Req Ackout Allockoutbound Ack AllocPB RTS= [1000010, 
1100010 ,0100010,0000010]. State 0100010 is the final total 
state. Figures 9b,d respectively, show the essential cubes of 
the transitions 0→1 and 1→2. Lemma 1.2 and theorem 1.1 
show the robustness of our controls. 

Lemma 1.2 – Let T (B→A) be a state transition of XBM-
EHF specification labeled by Ib/Ob and let an input signal any 
Is ∈ Ib and an output signal any Os ∈ Ob. If T is described by 
an essential cube, then in whatever order and whatever the 
time of arrival of Is and Os activation the total generated states 
belong to the essential cube T, and they all lead to the final 
total state A. 
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Proof:  As a cube essential, T consists of 2N total states, 
in which N is the sum of the signals that compose the input 
burst (Ib) and the output burst (Ob). As the next states not 
reachable in the transition B→A are encoded in the way in 
which the signals of Ib and Ob are don’t-care, then whatever 
combination of activations of the signals Is and Os in T, the 
total states generated will belong to the cube essential T and 
lead to final state A, therefore the cube essential is free of 
essential hazard.

Theorem 1: The XBM-EHF specification has an EHF 
implementation in the “Huffman machine architectures 
with feedback output” or “standard RS” if ∀ state transition 
T (B→A) ∈ XBM-EHF, all your activation is covered by the 
cube essential T. 

Proof: Lemma 1.2 says that if the XBM specification is 
EHF, then whatever the state transition T ∈ XBM has a cube 
essential T. As the context signals in T transition remains as 
a constant value in all the next states, which are reachable 
and not reachable in the cube essential, then regardless of the 
delays of gates and wires of the architectures, the activation of 
the next state belongs to the cube essential. As essential cube 
is EHF according to lemma 1.2, then the implementations on 
both architectures are EHF.

ASYNCHRONOUS WRAPPERS: ARCHITECTURE
The main objective of the proposed architecture is to 

provide a weak interface interaction between the locally 
synchronous module (LSM) and the asynchronous interface. 
Figure 10 shows the two different variables, “data available” 
and “data accept”, as the only ones used for communication 
between LSM and the interface. When data available=‘1’,  data 
is ready to be transmitted, while when data accept=‘1’ the  

data was received. Our architecture is based on the architecture 
proposal described by Reddy Ravi (2001).

Figure 11 shows the architecture of the proposed 
output communication control, which implements 
the  weak interaction between the interface and the LSM, 
while Figs.  12  and  13 show the proposed input and output 
asynchronous wrapper, respectively, with the insertion of a 
gated clock generator. Finally, Fig. 14 shows the full proposed 
AW that receives and transmits data. 

Figure 8. Part of BM specification: a) transition 0→1; b) 
flow map;  c) transition 1→2;d) flow map. 
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Figure 11. Communication control of output. 
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GATED-CLOCK GENERATOR
In this paper, a gated-clock generator (GCG) composed 

basically by two synchronizers and a gated-clock is 
also  proposed. Figure 15 shows the timing diagram of the 
proposed GCG with the activation and deactivation of signal 
GCLK. While Fig. 16 shows the architecture of GCG, Fig. 17 
shows the topology of the gated-clock and Fig. 18 shows 
the topology of its synchronizer. The stopping (pause) of the 
GCLK signal occurs when RCLK switches 0→1 and after two 
clock cycles the signal “Stop” switches 0→1, thus determining 
the stopping (interruption) of signal GCLK. 

DESIGN: PORTS (AFSM)
The input/output ports used in the proposed AW 

were previously proposed by Muttersbach et al. (2000) 
and Muttersbach (2001). They are described in the XBM  
specification (as shown in Figs. 19 and 20). The  
XBM specification of the input/output ports meets  
the essential signal concept, therefore XBM_EHF.  
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Figure 14. Proposed asynchronous wrapper: with I/O.
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PROCEDURE: SYNTHESIS OF PORTS
The ports designing method starts from the XBM 

description and is synthesized in four steps:
•	 Use the algorithm of Yun et al. (1999) and derive the 

minimum set of XBM flow charts; 
•	 Encode XBM flow tables using the adjacency diagram 

(Unger, 1969); 
•	 For each coded XBM flow table, insert the essential super-

states, as seen in the previous section; 
•	 Perform the logic minimization, logic-hazard-free, 

for each “non-input” signal in the “standard RS” and 
“machine Huffman with output fed back” architectures 
(Oliveira et al., 2008).

Figure 21 shows the state flow map of the output port, 
with the introduction of a state signal ‘Z’ to solve conflicts, 
while Fig. 22 shows all the minterms (black and blue) used 
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in logic coverage, which ensure the output port to be free of 
essential hazard. The output port was implemented in the 
architectures “Huffman machine with output feedback” 
and “standard RS”. Figures 23-26 show the logic coverage 
free of logic hazard using the Karnaugh maps. Finally, Figs. 
27 and 28 show, respectively, the logic circuits of output 
and input ports.
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DISCUSSION & SIMULATION

Oliveira  et al. (2011) present a list of advantages of the 
GALS system, which leads to the conclusion that GALS 
design can play a relevant role in the future of digital design in 
all kind of applications, including aerospace ones. However, 
a major drawback to this use is the asynchronous interface. 

Focusing on this kind of application, the proposed hazard-
free asynchronous interface proved to have a great potential, 
being highly desirable for the aerospace industry, once it 
overcomes the main challenges of this industry, thus increasing 
the reliability of the full system. In the treatment of essential 
hazard, our ports support any type of mapping either for  
VLSI_DSM or PLDs devices. It follows the Delay Insensitive 
model (DI) (Myers, 2004), restricted to interact with the 
environment in GFM, but without the insertion of any delay 
elements. This interface allows working in Ib/Ob mode, 
showing that the DI model is more robust than the QDI model, 
therefore not needing to meet isochronic fork requirements. 
An interface presenting similar properties was not found in 
literature. Figures 29 and 30 show simulations of I/O ports of 
the proposed AW, which show that the proposed architecture 
satisfies the XBM specification, are hazard-free and robust. 
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Figure 28. Logic circuit: input port hazard-free.
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CONCLUSION

GALS systems implemented in VLSI_DSM are an 
interesting design style for SoCs, however, typical problems 
concerning the asynchronous interface, especially for AW 
design, proves to be major drawbacks. In relation to aerospace 
applications, in which reliability and safety are major 
constraints, these drawbacks are prohibitive. Concerning 
this situation, a new architecture to AW was proposed 
in order to overcome the previously discussed problems, 
showing to be a good option for those designers who need 
to implement GALS in VLSI_DSM, including for aerospace 
applications, once it improves the reliability of the system, 
thus eliminating essential hazards. The achieved results 
showed that the proposed architecture is completely free 
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Figure 29. Simulation of input port.
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of essential hazard and allows full autonomy for the locally 
synchronous modules. It follows the DI model, interacts 
with the environment in GFM without the need to insert any 
delay elements, as suggested by the previous papers found in 
literature, and allows working in Ib/Ob mode, proving to be 
more robust than the QDI model and, therefore, not needing 
to meet isochronic fork requirements nor requiring timing 
analysis. Since an interface presenting similar properties was 
not found in literature, the proposed architecture showed to 
have a great potential of implementation in all VLSI_DSM 
systems, including the aerospace ones, in which the harsh 
environment imposes additional challenges to the designers. 
Future work leads to a robust asynchronous interface for the 
implementation of GALS, involving FIFO and an application 
aimed for software-defined radio.
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