
J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

ABSTRACT: Contemporary digital systems must necessarily
be based on the “System-on-Chip” (SoC) concept. Especially
in relation to the aerospace industry, these systems must
overcome some additional engineering challenges concerning
reliability, safety and low power. An interesting style for
aerospace SoC design is the GALS (Globally Asynchronous,
Locally Synchronous) paradigm, which can be used for Very
Large Scale Integration – Deep-Sub-Micron (VLSI_DSM)
design. Currently, the major drawback in the design of a
GALS system is the asynchronous interface (asynchronous
wrapper – AW) when being implemented in VLSI_DSM.
There is a typical AW design style based on asynchronous
controllers that provides communication between modules
(called ports), but the port controllers are generally subjected
to essential hazard, what decreases the reliability and safety
of the full system. Concerning to this main drawback, this
paper proposes an AW with robust port controller that
shows to be free of essential hazard, besides allowing full
autonomy for the locally synchronous modules, creating fault
tolerant systems as much as possible. It follows the Delay
Insensitive (DI) model interacting with the environment in the
Generalized Fundamental Mode (GFM) without the need to
insert any delay elements. Additional delay elements, although
proposed by some previous work found in literature, are not
desirable in aerospace applications. The proposed interface
allows working on Ib/Ob mode, showing the DI model is more
robust than the QDI model and, therefore, it does not need
to meet isochronic fork requirements nor timing analysis.
Once an interface presenting similar properties was not found
in literature, the proposed architecture proved to have great
potential of implementation in practical VLSI_DSM designs,
including the aerospace ones, once it overcomes the main
engineering challenges of this kind of industry.

KEYWORDS: Aerospace systems, Reliability, Low power,
Asynchronous controllers, GALS.

An Asynchronous Interface with Robust
Control for Globally-Asynchronous Locally-
Synchronous Systems
Duarte Lopes de Oliveira1, Eduardo Lussari1, Sandro Shoiti Sato2, Lester de Abreu Faria1

INTRODUCTION

Contemporary digital systems are usually implemented
on Very Large Scale Integration (VLSI) and must necessarily
be based on the “System-on-Chip” (SoC) concept. The
reason for that is to satisfy the ever-growing demand for
higher performance, reusability and low-power requirements
(De Micheli, 2009; Muller-Glaser et al., 2004). Especially in
relation to the aerospace industry, these systems must overcome
some additional engineering challenges concerning reliability,
safety, high complexity and the unavailability of component
failure data, generating fault tolerant systems as much as
possible (Sues, et al., 2005; Bertuccelli, 2008). SoC circuits are
composed of functional modules, which can be the intellectual
property cores (IP-cores) from many different vendors.
These IP-cores are pre-designed, verified, tested and optimized
for high-performance, providing both cost and development
time reduction. Once SoC circuits are implemented in deep-
sub-micron (DSM) technologies (VLSI_DSM) (for example,
70 nm, 500M transistors for chip and f=2,5 GHz), delays
caused by wires prove to be big when compared to the gate
timing, and the difference between minimal and maximum
delays in the gates is significant (Jain et al., 2001; Martin
et al., 2006). Therefore, when SoC circuits are implemented
using only a global clock signal, they are subjected to speed
and power penalties (clock skew, distribution networks etc.),
thus making timing analysis very complex (Friedman, 2001).
Besides that, the harsh environment found in aerospace
applications, with high temperature variations, can make this
time analysis even more difficult.

doi: 10.5028/jatm.v5i1.191

1.Instituto Tecnológico de Aeronáutica – São José dos Campos/SP – Brazil 2.ETE Ferraz de Vasconcelos – São Paulo/SP – Brazil

Author for correspondence: Lester A. Faria | Praça Marechal Eduardo Gomes, 50 – Vila das Acácias | CEP 12228-901 São José dos Campos/SP – Brazil |
E-mail: lesteraf@gmail.com

Received: 14/11/12 | Accepted: 18/01/13

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

92
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

Asynchronous project methodologies (Martin
et al., 2006; Myers, 2004) can naturally eliminate such
challenges by removing the clock signal from the design.
Different classes of asynchronous circuits may be used
to implement SoCs, which can be built from completely
asynchronous modules, but these kinds of circuits are
not a widely accepted solution. The main reasons for that
refusal are: a) lack of reliable tools for asynchronous design;
b) difficulties from hazard-free designing and testing;
c) limited culture on asynchronous design; and d) lack of
asynchronous IPs (Hardt et al., 2000).

The aerospace industry imposes many additional
challenges to the design of dedicated systems, such as the
high complexity of systems; main power generation systems;
missions’ profiles and environment; high demand for new
technologies; high reliability and safety requirements;
unavailability of component failure data; component sizes;
and especially tight schedules, what leaves no room for
errors. Any problem in an aerospace system leads to big losses
of aircrafts (or spacecraft), crews, missions and revenues. In
this context, reliability and robustness are important, leading
to lower maintenance cost and lower failure frequency.
The objective is always to maximize system performance,
while satisfying constraints that ensure a reliable operation
(Sues et al., 2005; Bertuccelli, 2008).

Concerning to this special situation and the features of
both synchronous and asynchronous systems, intermediate
solutions were proposed between “totally synchronous” and
“totally asynchronous”, such as the Globally Asynchronous,
Locally Synchronous methodology (GALS). The term GALS was
first used by Chapiro (1984), in his PhD thesis. A GALS
system consists of many synchronous functional modules
that communicate in the asynchronous form. In this paper,
we refer to the GALS systems as digital systems partitioned in
functional modules (that may be IPs), which carry their own
individual clock signals and are unrelated between modules.
An asynchronous communication scheme is provided
for the communication between different modules with
different clock domains. In order to handle the asynchronous
communication between these modules, an interface circuit
has to be added around each one of the synchronous modules,
which is called an asynchronous wrapper (AW). The AW term
was first used by Bormann et al. (1997). This local interface
may be built by using local clocks, FIFOs, asynchronous
controllers (Input Ports, Output Ports) etc. Techan et al. (2007)

show different styles for asynchronous interfaces dedicated
to GALS systems. Figure 1 shows a generic interface with a
synchronous module as an example.

GALS systems have been successfully used in many
implementations, including the Application Specific
Integrated Circuit (ASIC) (Gurkaynak et al., 2006; Amini
et al., 2006; Miller et al., 2005) and Field Programmable
Gate Array (FPGA) (Jia et al., 2005; Kumala et al., 2006;
Yuan et al., 2005). Currently, FPGA devices have shown
to be a common choice for implementing digital circuits
(Muller-Glaser, 2004), growing considerably in recent
years. High-performance FPGAs, with up to 50 million
gates, can be easily found nowadays, therefore allowing
complex digital systems, such as GALS, to be programmed
on them (De Micheli, 2009) and to be implemented in
CMOS technology, DSM.

Asynchronous interfaces that use communication
ports are of main interest, once they allow removing the
asynchronous handshake scheme from the synchronous
modules, allowing the synchronous module to be developed
using standard techniques of synchronous design. Although
the GALS methodology has solved problems related to the
global clock signal, the communication between modules is
already performed in the asynchronous paradigm, therefore
being subjected to all its inherent problems.

IMPLEMENTATIONS OF PORTS: DIFFERENT
APPROACHS

Different kinds of ports have been synthesized in the
logic synthesis style (Myers, 2004). As an example,
the ports proposed by Amini et al. (2006) have been
specified in Signal Transition Graph (STG), which is a
Petri-net-like speficification (Chu, 1987), being synthesized

Locally
Synchronous

Module

Local clock
generator

Output port
controller

Input port
controller

Asynchronous Wrapper
Data_in Data_out

Figure 1. Asynchronous wrapper.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

93
An Asynchronous Interface with Robust Control for Globally-Asynchronous Locally-Synchronous Systems

in the Petrify tool (Cortadella et al., 1997). These ports must
meet the isochronic fork requirement (Myers, 2004), but the
realization of this requirement in VLSI_DSM presents a high
level of difficulty. Furthermore, the STG specification, as
well as its synthesis method, is not familiar to synchronous
paradigm designers.

The ports proposed by Muttersbach et al. (2000),
Muttersbach (2001), Reddy Ravi (2001) and Pontes
et al. (2007) were specified in Extended Burst-Mode (XBM)
and Burst Mode (BM). These ports were implemented,
respectively, in 3D (Yun et al., 1999) and minimalist (Fuhrer
et al., 1999) tools. They interact with the environment in the
generalized fundamental mode (GFM), requiring a timing
analysis and being subjected to essential hazard, especially
in the DSM technology. Concerning to this last drawback,
the insertion of delay elements may be a possible solution
(VLSI_DSM), but it degrades the testability and cycle-time
of the system. The insertion of delay elements is not adequate
when implementing GALS in FPGA as well, because these
devices (FPGAs) are not designed to favor the insertion of
delay elements.

AVOIDING ESSENTIAL HAZARD IN PORTS
CONTROLLERS: INCREASING THE SYSTEM’S
RELIABILITY

The XBM specification is quite interesting when
describing port controllers, once it is not only “familiar”
to synchronous paradigm designers, but also because the
method that synthesizes ports described by XBM shows
to be simpler when compared to the synthesis by STG
(Myers, 2004). Yun et al. (1999) and Nowick (1993)
proposed the insertion of delay elements on the feedback
wires in order to avoid essential hazard in burst-mode
controllers. Oliveira et al. (2008) proposed a sufficient
condition that guarantees essential hazard-free operation
on burst-mode controller without the need for extra delay
elements, when mapped on VLSI_DSM or any type of
LUT-based FPGA. The absence of delay elements is highly
desirable when considering FPGA devices (difficulties in
implementing this kind of elements) and, furthermore,
in aerospace applications, in which the harsh environment
must change the behavior of electronic components.

This paper proposes robust port controllers for
asynchronous interfaces used in GALS style. They are
completely free of essential hazard and are described

in the XBM specification. The robust controller design
for asynchronous interfaces is proposed as a solution
to the increasing demand for high reliablility aerospace
electronic systems. The paper also shows that the
method proposed by Oliveira et al. (2011) to synthesize
BM controllers free of essential hazard is improved for
XBM controllers. These proposed ports are implemented
in the following architectures: “Huffman machine with
feedback output” and “standard RS”. The use of both
architectures enables a better performance of the system,
besides being more reliable and providing safer operation
for aerospace applications. A new AW for GALS with
robust ports is also proposed. Once it is known that a
major drawback in the design of asynchronous wrapper
is the synthesis of these ports, the proposed AW proved
to be very important and robust. These ports are easily
implemented both in VLSI_DSM and LUT-based FPGA.
Other advantages of this wrapper are: 1) total autonomy
to the locally synchronous modules, when interacting
with the proposed AW; and 2) its ports interact with the
environment in the mode Ib/Ob, thus not requiring timing
analysis and being more robust than the GFM mode. In
this mode, a new input burst is immediately accepted
when all signals of output burst change their values. All of
these achieved features make the proposed architecture
a good option for aerospace implementations, once it
increases the reliability of the full system, overcoming
some of the main challenges in this kind of industry.

DIFFERENT STYLES OF GALS DESIGN
Once the synchronous modules of a GALS system

operate at different frequencies and/or different phases, the
communication between them is subjected to metastability
(Ginosar, 2003). Metastability occurs when a specific signal
violates the setup time or the hold time of the memory
element, and during any time the output voltage assumes an
intermediate value that leads the circuit to achieve a random
logic value. Metastability may occur in a timing window
defined by the sum of “setup” and “hold” times. So, the GALS
design style is determined according to the treatment of
metastability, since there different ones in literature. Techan et
al. (2007) propose specific taxonomy to classify these styles, in
which they basically can be classified into three main styles:
a) weak synchronous interface; b) pausible clock interface;
and c) asynchronous interface.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

94
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

WEAK SYNCHRONOUS INTERFACE
This style has three variants: a) heterochronous;

b) mesochronous; and c) plesiochronous. In the heterochronous
style (footer), the clocks of the synchronous modules run
on different nominal frequencies (Techan et al., 2007).
On the other hand, in the mesochronous style (from
Greek, meso means average), the clocks show the same
average frequency, but with different unknown phases,
which are generated by the same oscillator (Techan et al.,
2007). Finally, in the plesiochronous style (from Greek,
plesio means “almost equal”), the clocks operate with
equal nominal frequency, but being generated by different
oscillators (Techan et al., 2007). These styles always require
timing analysis, starting from the knowledge of the clocks
and using FIFO as a base, phase adjusters and, sometimes,
synchronizers. The advantage of these styles is to enable
low latency and high frequency clocks. On the other hand,
there is the need for a rigorous timing analysis. Figure 2
shows a mesochronous interface that uses a phase adjuster
(timing recovery circuit – TRC).

PAUSIBLE CLOCK INTERFACE
This style, firstly proposed by Chapiro (1984), tackles

the problem of metastability by interrupting the clock
signal. When data are ready for transmission, the clock is
interrupted, enabling data synchronization. The synchronous
modules have pausible clock signals. Most often, these clocks
are locally generated using a ring oscillator and a mutual-
exclusion circuit, or arbitrator, which properly generates the
pause and restart of the clock (Yun et al., 1999). The potential
advantages of this style are the robustness in the treatment
of metastability and power reduction. On the other hand,
the weakness of this style is the possibility of “deadlock” and
“jitter” (Mullins et al., 2007). Different architectures have been
proposed for pausible clocks, for example, the one involving
FIFO (Techan et al., 2007). Figure 3 shows an architecture
involving pausible clock as an example.

ASYNCHRONOUS INTERFACE
This style uses circuits known as synchronizers and

handshaking signals. The synchronous modules have clocks
running freely at different frequencies, without any prior
knowledge about their timing. Data are synchronized from one
clock domain to another. Some examples of data synchronizers
are the well known “two registers”, or “double latches” (Mullins
et al., 2007), or some other more elaborated synchronization
schemes, such as the “synchronization pipeline” (Sjogren
et al., 2000) and “FIFOs” (Dobkin et al., 2006). The proposed
synchronizers do not totally eliminate failure due to
metastability, once the probability of failure different of zero
percent remains (Dobkin et al., 2006). The “two register”
synchronizer presents as advantages its simplicity and
robustness, but as a disadvantage there is an increasing area,
power, and especially a high penalty in latency times, which
leads to an increase of two clock cycles. Figure 4 shows the
architecture of asynchronous interface as an example.

Common Clock Reference

Sending
Module

Receiving
ModuleTRC

Delay_wire1

Clock

Delay_wire2

Delay_data
Data Data_sync

Clock’

Figure 2. Mesochronous with TRC.

Locally
Synchronous

Module Output
Port

S_Req

S_Ack

A_Req

A_Ack

C
0

1

Clock
Req_S

Ack_S

Data_out

Delay_1

Delay_3

Delay_2Mux

Figure 3. Pausible clock for FPGA described by Techan
et al. (2007).

Figure 4. Asynchronous interface based on FIFO.

Locally
Synchronous

Module 1

Locally
Synchronous

Module 2
FIFO

Clock1 Clock2

Rd_clkWd_clk

Rd_enWr_en

Full Empty
Rd_valid

Data Data

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

95
An Asynchronous Interface with Robust Control for Globally-Asynchronous Locally-Synchronous Systems

COMMUNICATION CONTROLLERS (PORTS)
GALS systems require asynchronous communication

links, which can require two kinds of communication
protocols: two or four stages handshaking. The ports can
work as active (generating the “request” signal) or passive
(generating the “acknowledge” signal). In GALS design
there are two types of communication controllers: a) port
of “demand”, b) port of “poll” (inquiry). In the port of
demand, the data being transferred are immediately
required after the communication. Therefore, in this
type of controller the clock must be immediately stopped
(paused) and reactivated (restarted) when communication
is done. In the port of poll, the clock is not stopped
immediately. It defines when it is “safe” to send the data.
The clock is stopped (paused) only in cases when there
is the need for additional time, in order to troubleshoot
eventual metastability.

XBM-EHF SPECIFICATION: CONDITION
BM is a kind of specification based on a state transition

graph which was first proposed by Davis et al., (1979),
later formalized by Nowick (1993), and improved by Yun
et al. (1999) as XBM. It allows multiple input changes and
is usually used to describe Mealy Asynchronous Finite
State Machines (FSM). These machines interact with the
environment in GFM. In GFM, a new input burst can only
occur if the controller is stable (with no activity in the ports
or in the lines). The XBM specification supports the BM
specification, introducing two kinds of input signals: a)
conditional signal that is sensitive to level, showing non-
monotonic behavior; and b) “directed don’t care signals”
that can activated concurrently with the output signals.

In this paper, the XBM specification is illustrated
with the benchmark Biufifo2dma of the HP (see Fig. 5),
with four inputs (cntgt1,dackn, fain,ok), two outputs
(dreq,frout) and initial state 0. The description fain-
dackn+/ frout+ in transition 4→3 means that the output
(frout: 0→1) will follow the input burst (fain: 1→0 AND
dackn: 0→1). Signals not enclosed in angle brackets and
ending with + or — are “terminating”. Signals enclosed in
angle brackets are “conditionals”, which are level sensitive
with non-monotonic behavior. The input signals dackn,
fain and ok are transition sensitive signals (TSS). The
level sensitive signal cntgt1 is used to describe the mutual
exclusion between transitions 2→5 and 2→4. The “directed

don’t care signal” fain* in transition 2→4 means that fain
may either change its value or remain in its previous value.
All state transition should have at least one signal called
“compulsory”. A compulsory signal is an input signal that,
in the previous state transition, is not directed to don’t care.

A TSS input signal in a XBM specification is
considered as a context signal in a transition A→B if it
does not change its value during such transition (it is not
on the label). On the other hand, it is considered as a
trigger signal if it is labeled during this transition. The
input burst of each state transition can be represented
by an input transition cube (ITC). For example, the
ITC in state transition 0→1 on Fig. 5 is cntgt1, dackn,
fain, ok=2102 (the number 2 means“don’t care”). In this
example, ok is a trigger signal, while dackn and fain are
context signals (whose values are 1 and 0, respectively).

Definition 1.1: Let A and B be a pair of total states in a
XBM specification, and Ib/Ob be the input/output burst for the
A→B transition. Let Es be one “terminating” input (Es ∈ Ib).
Es is considered as an essential signal if it is a context signal
on all transitions that address state A and is a trigger signal on
the transition A→B.

For instance (see Fig. 5), there is not an essential signal
in state transitions 0→1, 4→3 and 3→2 because they are
trigger signals on transitions 5→0, 2→4 and 2→5. Signal
ok is essential on transition 1→2, because it is a context
signal on transition 0→1. On transitions 2→4 and 2→5,
dackn is essential signal.

Lemma 1.1 – (proof is presented by Oliveira et al. (2008))
A XBM specification is essential hazard-free (XBM-EHF)
only if for each state transition labeled by Ib/Ob, if Ob≠∅, there
must be, at least, one essential signal.

 0

3

4

1

2

5

ok+ / frout+

fain+ /
dreq+ frout-

ok- fain- dackn+ /

<cntgt1->
fain* dackn- / dreq- <cntgt1+>

fain* dackn- / dreq-

fain- dackn+ /
frout+

fain+ /
dreq+

Figure 5. Extended burst-mode specification of Biufifo2dma.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

96
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

As an example, Fig. 6 shows the HP-mp-for-pkt benchmark
described by a BM specification. On all transition labels there
is at least one essential signal. Therefore, it is a BM-EHF
specification. Figure 7 shows the state flow map of HP-mp-
for-pkt. As shown by Oliveira et al. (2008), which applies the
rule generalized Ungle to check for essential hazard, this states
flow map is subjected to essential hazard. The essential hazard
depends on the code that the don’t-care assumes, when held
the logic coverage free of logic hazard.

ESSENTIAL CUBE CONDITION
Lemma 1.1 is a necessary and sufficient condition

for an essential-hazard-free specification, but not for
hazard-free implementation. The super-state concept will
guarantee the latter condition. According to Oliveira et
al. (2008), the concept of super-state is presented. It is

used to obtain an implementation EHF. To simplify the
implementation EHF, in this article we generalize the concept
of super-state introducing the idea of essential cube.

Definition 1.2: Consider an input burst Ib (a, b, ..n) and
an output burst Ob (x, y,..m). We call a super-state the set of
single total states defined by all 0/1 combinations of a subset
SIb of the input burst signals, keeping all the remaining input
signals and all the output signals constant.

Definition 1.3: Consider a XBM-EHF specification and
a super-state F of the state transition T, so that FÎ XBM-EH,
whereas T is labeled by Ib/Ob. We call essential cube of
transition T all the total states related to the 0/1 combinations
of input burst and output burst (Ib/Ob). Whereas the states
not reachable in the cube T are encoded with the value of
context signals, and trigger signals are don’t-care.

A super-state XBM flow map is derived from a XBM-
EHF specification by applying definition 1.2 to all total
states. The essential cube is composed of 2N states, in which
N is the total number of input signals plus the output
signals that are labeled in a state transition. Figures 8a-d
are part of the flow map for the BM specification described
in Fig. 6. Cells in blue are used to compose super-states and
essential cubes (applying the definition 1.3). For example,
the 0→1 transition (see Fig. 8a,b and 9a,b) creates super-
state 1 composed of two total states: AckPB Req Ackout
Allockoutbound Ack AllocPB RTS=[0010001, 0000001].
State 0010001 is the final total state. Figure 9b shows
the essential cube of the state transition 0→1, in which the
next total states in blue are not reachable and belong to
the essential cube. Due to the delays of gates and wires, the
state totals which not are reachable can become reachable.
For example, the 1→2 transition (see Fig. 8c,d and 9c,d)
creates super-state 2, composed of four total states: AckPB
Req Ackout Allockoutbound Ack AllocPB RTS= [1000010,
1100010 ,0100010,0000010]. State 0100010 is the final total
state. Figures 9b,d respectively, show the essential cubes of
the transitions 0→1 and 1→2. Lemma 1.2 and theorem 1.1
show the robustness of our controls.

Lemma 1.2 – Let T (B→A) be a state transition of XBM-
EHF specification labeled by Ib/Ob and let an input signal any
Is ∈ Ib and an output signal any Os ∈ Ob. If T is described by
an essential cube, then in whatever order and whatever the
time of arrival of Is and Os activation the total generated states
belong to the essential cube T, and they all lead to the final
total state A.

Ackout+ /
Allocoutbound - TRS+

Allocoutbound + Ack -

Ackout - Req+ /
TRS -AllocPB +

AckPB - Req- /

AckPB+ /
AllocPB - Ack +

0

1

2

3

Figure 6. BM-EHF Specification.

 Ac kPB Req

0100

1000

0100

3 01000100

10
11
01
00

0001
00011000

Allocoutbound=1
0

0001
00

10
11
01
00

10110100101101

0010

0100

0010
0010

0001 00010001
0010

AllocPB TRS

Allocoutbound=0

Ackout=0 Ackout=1

1

2

10
11
01
00

1000

Allocoutbound=1

10
11
01
00 1000 0100Allocoutbound=0

Ack=0

Ack=0

Ack=1

Ack=1

Figure 7. State flow map: BM spec. subject to essential hazard.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

97
An Asynchronous Interface with Robust Control for Globally-Asynchronous Locally-Synchronous Systems

Proof: As a cube essential, T consists of 2N total states,
in which N is the sum of the signals that compose the input
burst (Ib) and the output burst (Ob). As the next states not
reachable in the transition B→A are encoded in the way in
which the signals of Ib and Ob are don’t-care, then whatever
combination of activations of the signals Is and Os in T, the
total states generated will belong to the cube essential T and
lead to final state A, therefore the cube essential is free of
essential hazard.

Theorem 1: The XBM-EHF specification has an EHF
implementation in the “Huffman machine architectures
with feedback output” or “standard RS” if ∀ state transition
T (B→A) ∈ XBM-EHF, all your activation is covered by the
cube essential T.

Proof: Lemma 1.2 says that if the XBM specification is
EHF, then whatever the state transition T ∈ XBM has a cube
essential T. As the context signals in T transition remains as
a constant value in all the next states, which are reachable
and not reachable in the cube essential, then regardless of the
delays of gates and wires of the architectures, the activation of
the next state belongs to the cube essential. As essential cube
is EHF according to lemma 1.2, then the implementations on
both architectures are EHF.

ASYNCHRONOUS WRAPPERS: ARCHITECTURE
The main objective of the proposed architecture is to

provide a weak interface interaction between the locally
synchronous module (LSM) and the asynchronous interface.
Figure 10 shows the two different variables, “data available”
and “data accept”, as the only ones used for communication
between LSM and the interface. When data available=‘1’, data
is ready to be transmitted, while when data accept=‘1’ the

data was received. Our architecture is based on the architecture
proposal described by Reddy Ravi (2001).

Figure 11 shows the architecture of the proposed
output communication control, which implements
the weak interaction between the interface and the LSM,
while Figs. 12 and 13 show the proposed input and output
asynchronous wrapper, respectively, with the insertion of a
gated clock generator. Finally, Fig. 14 shows the full proposed
AW that receives and transmits data.

Figure 8. Part of BM specification: a) transition 0→1; b)
flow map; c) transition 1→2;d) flow map.

0 1

01
01
01
01

1010
11
01
00

Allocoutbound TRS

0

1AllocPB=0Ack=0

AckPB=0
Req=0

(b)

0

1

Ackout+ /
Allocoutbount- TRS+

(a)

00

10
10

10
1001 01 01

10
11
01
00

101101

1

2

AckPB=0

Allocoutbound=0
Ack=0

(d)

AllocPB TRS
1

2

Ackout- Req+ /
TRS- AllocPB+

(c)

Ackout Req

Ackout

Locally
Synchronous

Module

Locally
Synchronous

Module

LCLK

Data
Available

Output

Interface

RT

AT

Asynchronous Wrapper

DATA

LCLK

Data
AcceptRR

AR

Asynchronous Wrapper

DATA

Input

Interface

(a) (b)

Figure 10. Locally synchronous module with weak interface:
a) output; b) input.

Figure 11. Communication control of output.

LCLK

Data
Available

Q

QSET

CLR

D
D Q

Q

Output
PORT
(AFSM)

R T

AT

R_CLK

A_CLK

En_ D

Latch

Reset

Communication control

Figure 9. Part of BM flow map with ESS and EC: a) 0→1;
b) 1→2.

Ackout 0 1

01

01

01

01

1010

11

01

00

Allocoutbound TRS

0

1AllocPB=0
Ack=0

AckPB=0
Req=0

00xx

00xx

00xx

(a1)

Essential
super state

Ackout 0 1

01

01

01

01

1010

11

01

00

Allocoutbound TRS

0

1AllocPB=0
Ack=0

AckPB=0
Req=0

00xx

00xx

00xx

(a2)

Essential Cube

Ackout Req 00

10

10

10

1001 01 01

10

11

01

00

101101

1

2

AckPB=0

Allocoutbound=0
Ack=0

(b2)

00xx

AllocPB TRS

00xx00xx

00xx00xx

00xx00xx

00xx

00xx

Ackout Req 00

10

10

10

1001 01 01

10

11

01

00

101101

1

2

AckPB=0

Allocoutbound=0
Ack=0

(b1)

00xx

AllocPB TRS

00xx00xx

00xx00xx

00xx00xx

00xx

00xx

Essential
super state

Essential Cube

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

98
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

GATED-CLOCK GENERATOR
In this paper, a gated-clock generator (GCG) composed

basically by two synchronizers and a gated-clock is
also proposed. Figure 15 shows the timing diagram of the
proposed GCG with the activation and deactivation of signal
GCLK. While Fig. 16 shows the architecture of GCG, Fig. 17
shows the topology of the gated-clock and Fig. 18 shows
the topology of its synchronizer. The stopping (pause) of the
GCLK signal occurs when RCLK switches 0→1 and after two
clock cycles the signal “Stop” switches 0→1, thus determining
the stopping (interruption) of signal GCLK.

DESIGN: PORTS (AFSM)
The input/output ports used in the proposed AW

were previously proposed by Muttersbach et al. (2000)
and Muttersbach (2001). They are described in the XBM
specification (as shown in Figs. 19 and 20). The
XBM specification of the input/output ports meets
the essential signal concept, therefore XBM_EHF.

Locally
Synchronous

Module

GCLK

Data
Available

 DATA TRANSMITTER

Q

QSET

CLR

DD Q

Q

Output
PORT

(AFSM)

R T

AT

Gated-Clock
Generator

R_CLK A_CLK

En_D

Latch

Reset

OUTPUT INTERFACE

CLK

Figure 12. Proposed output asynchronous wrapper.

Q

Q SET

CLR

D

Locally
Synchronous

Module

GCLK

Data
Accept

 DATA RECEIVER

DQ

Q
AR

R R

R_ CLK A_CLK

En_ D

Latch

Reset

INPUT INTERFACE

Input
PORT

(AFSM)

Gated-Clock
Generator

CLK

Figure 13. Proposed input asynchronous wrapper.

Figure 14. Proposed asynchronous wrapper: with I/O.

Locally
Synchronous

Module

DATA DATA

Gated-Clock
Generator

GCLK
Input

Control

Data
Accepts

Output
Control

Data
available

Asynchronous Wrapper

R1_CLK

A1_CLK

RR

AR

RT

AT
R2_CLK

A2_CLK

Latches

CLK

Stop

A_CLK

CLK

R_CLK

GCLK

Figure 15. Timing diagram: gated-clock generator.

Synchronizer-1 Synchronizer-2

Gated-Clock

GCLK

CLK

Stop-1 Stop-2

R1_CLK A1_CLK R2_CLK A2_CLK

Figure 16. Architecture of the proposed gated-clock
generator.

Q

Q

D
Latch

Stop1

GCLK

CLK

Stop2

Figure 17. Topology of the gated-clock

Q

QSET

CLR

D

Q

QSET

CLR

D

R_CLK

Stop

A_CLK

CLK

Figure 18. Topology of the synchronizer.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

99
An Asynchronous Interface with Robust Control for Globally-Asynchronous Locally-Synchronous Systems

PROCEDURE: SYNTHESIS OF PORTS
The ports designing method starts from the XBM

description and is synthesized in four steps:
•	 Use the algorithm of Yun et al. (1999) and derive the

minimum set of XBM flow charts;
•	 Encode XBM flow tables using the adjacency diagram

(Unger, 1969);
•	 For each coded XBM flow table, insert the essential super-

states, as seen in the previous section;
•	 Perform the logic minimization, logic-hazard-free,

for each “non-input” signal in the “standard RS” and
“machine Huffman with output fed back” architectures
(Oliveira et al., 2008).

Figure 21 shows the state flow map of the output port,
with the introduction of a state signal ‘Z’ to solve conflicts,
while Fig. 22 shows all the minterms (black and blue) used

0

1

2

34

5

6

7

En_D + RR+ /
 R_CLK +

A_CLK+ /
AR +

RR - /
R_CLK- AR -

A_CLK - RR* /

En _D - RR+ /
R _CLK+

A _CLK + /
A R +

RR - /
R _CLK - AR -

A _CLK - RR * /

Figure 19. XBM Specification: input port described by
Muttersbach et al. (2000) and Muttersbach (2001).

2

3

4

56

7

8

1

A _CLK + /
 R T-

A T- /
R _CLK -

A _CLK -
En _D - / RT +

A T+ / R _CLK +
A _CLK + / R T-

A T- /
R _CLK -

A_CLK - En_D + /
RT +

A T+ / R _CLK+
0

En _D + / RT +

Figure 20. BM Specification: output port described by
Muttersbach et al. (2000) and Muttersbach (2001).

A_CLK AT

101

111

111

110
110

00

10

11

01

00
10110100101101

000

010000

010011
011001

001

110

000000
R_CLK RT

Z=0

En_D=0 En_D=1
0 8

1

2

3

00

10

11

01

00
10110100101101

101

010

100

100

100100
R_CLK RT

Z=1

En_D=0 En_D=1

5

6

7

4

A_CLK AT

Figure 21. State flow map: output port subject to essential
hazard.

A_CL K AT

101
111

111

110
110

00

10
11
01
00

10110100101101
000

010000

010011
011001

001

110

000000
R_CLK RT

Z=0

En_D=0 En_D=1
0 8

1

2

3

00

10
11
01
00

10110100101101
101

010

100

100

100100
R_CLK RT

Z=1

En_D=0 En_D=1

5

6

7

4

A_C LK AT

00x
0x1

01x

10x
1x1

1x1

0x0

0x0

10x 10x
1x0

1x0

00x 00x

Figure 22. State flow map: output port essential hazard-free.

A_CL K ATR_CLK RT

R_CLK RT

x
x
x

x
x

00

10
11
01
00

10110100101101
0

00
00

00
0

1

00

Z=0

En_D=0 En_D=1

0 8

1

2

3

00

10
11
01
00

10110100101101
x

0

x

1

xx

Z=1

En_D=0 En_D=1

5

6

7

4

A_C LK AT

0
0

0

x
x

x

0

0

x x
x

x

0 0

F SET = En_D A_CLK AT R_CLK

Figure 23. Karnaugh map: coverage hazard-free of signal
Z (FSET).

in logic coverage, which ensure the output port to be free of
essential hazard. The output port was implemented in the
architectures “Huffman machine with output feedback”
and “standard RS”. Figures 23-26 show the logic coverage
free of logic hazard using the Karnaugh maps. Finally, Figs.
27 and 28 show, respectively, the logic circuits of output
and input ports.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

100
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

DISCUSSION & SIMULATION

Oliveira et al. (2011) present a list of advantages of the
GALS system, which leads to the conclusion that GALS
design can play a relevant role in the future of digital design in
all kind of applications, including aerospace ones. However,
a major drawback to this use is the asynchronous interface.

Focusing on this kind of application, the proposed hazard-
free asynchronous interface proved to have a great potential,
being highly desirable for the aerospace industry, once it
overcomes the main challenges of this industry, thus increasing
the reliability of the full system. In the treatment of essential
hazard, our ports support any type of mapping either for
VLSI_DSM or PLDs devices. It follows the Delay Insensitive
model (DI) (Myers, 2004), restricted to interact with the
environment in GFM, but without the insertion of any delay
elements. This interface allows working in Ib/Ob mode,
showing that the DI model is more robust than the QDI model,
therefore not needing to meet isochronic fork requirements.
An interface presenting similar properties was not found in
literature. Figures 29 and 30 show simulations of I/O ports of
the proposed AW, which show that the proposed architecture
satisfies the XBM specification, are hazard-free and robust.

A_CL K ATR_CLK RT

R_CLK RT

0
0
0

0
0

00

10
11
01
00

10110100101101
x

x1
xx

0x
x

0

xx

Z=0

En_D=0 En_D=1

0 8

1

2

3

00

10
11
01
00

10110100101101
0

1

0

0

00

Z=1

En_D=0 En_D=1

5

6

7

4

A _C LK AT

x
x

x

0
0

0

x

x

0 0
0

0

x x

F RESET = En_D A_CLK AT R_CLK

Figure 24. Karnaugh map:coverage hazard-free of signal Z
(FRESET).

Figure 28. Logic circuit: input port hazard-free.

 RRA_CLK En_D

Z

AR

R_CLK

A_CL K ATR_CLK RT

R_CLK RT

0
1
1

1
1

00

10
11
01
00

10110100101101
0

10
11

10
0

1

00
Z=0

En_D=0 En_D=1
0 8

1

2

3

00

10
11
01
00

10110100101101
0

1

0

0

00
Z=1

En_D=0 En_D=1

5

6

7

4

A_CLK AT

0
x

1

0
x

x

x

x

0 0
x

x

0 0

R_CLK = AT + En_D Z R_CLK + En_D Z R_CLK

Figure 25. Karnaugh map: coverage hazard-free of signal
R_CLK.

A_CLK AT

1
1
1

0
0

00

10
11
01
00

10110100101101
0

00

01
11

1

0

00
R _CLK RT

Z= 0

En_D=0 En_D=1

0 8

1

2

3

00

10
11
01
00

10110100101101
1

0

0

0

00
R _CLK RT

Z= 1

En_D=0 En_D=1

5

6

7

4

A_CLK AT

x
1

x

x
1

1

0

0

x x
0

0

x x

RT = A _CLK (En _D Å Z)

Figure 26. Karnaugh map: coverage hazard-free of signal RT.

 ATA_CLK En_D

R_CLK

RT

Z

Figure 27. Logic circuit: free-hazard output port hazard-free.

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

101
An Asynchronous Interface with Robust Control for Globally-Asynchronous Locally-Synchronous Systems

CONCLUSION

GALS systems implemented in VLSI_DSM are an
interesting design style for SoCs, however, typical problems
concerning the asynchronous interface, especially for AW
design, proves to be major drawbacks. In relation to aerospace
applications, in which reliability and safety are major
constraints, these drawbacks are prohibitive. Concerning
this situation, a new architecture to AW was proposed
in order to overcome the previously discussed problems,
showing to be a good option for those designers who need
to implement GALS in VLSI_DSM, including for aerospace
applications, once it improves the reliability of the system,
thus eliminating essential hazards. The achieved results
showed that the proposed architecture is completely free

Name Value at
0 ps

reset
Aclk
Rr
En
Ar
Rclk
 /Rclk
Z
/Z

A 0
A 0
A 0
A 0
A 0
A 0
A 1
A 0
A 1

0 ps 20.0 ns 40.0 ns 60.0 ns 80.0 ns 100.0 ns 120.0 ns 140.0 ns 160.0 ns 180.0 ns 200.0 ns 220.0 ns

Figure 29. Simulation of input port.

Name

reset
At
Aclk
En
Rclk
Rt
 Z

0 ps
20.0 ns

40.0 ns 80.0 ns 120.0 ns 160.0 ns 200.0 ns 240.0 ns 280.0 ns 320.0 ns

Figure 30. Simulation of output port.

of essential hazard and allows full autonomy for the locally
synchronous modules. It follows the DI model, interacts
with the environment in GFM without the need to insert any
delay elements, as suggested by the previous papers found in
literature, and allows working in Ib/Ob mode, proving to be
more robust than the QDI model and, therefore, not needing
to meet isochronic fork requirements nor requiring timing
analysis. Since an interface presenting similar properties was
not found in literature, the proposed architecture showed to
have a great potential of implementation in all VLSI_DSM
systems, including the aerospace ones, in which the harsh
environment imposes additional challenges to the designers.
Future work leads to a robust asynchronous interface for the
implementation of GALS, involving FIFO and an application
aimed for software-defined radio.

REFERENCES
Amini, E., Najibi, M. and Pedram, H., 2006, “Globally asynchronous

locally synchronous wrapper circuit based on clock gating”, Emerging

VLSI Technologies and Architectures, IEEE Computer Society Annual

Symposium, Vol. 00, pp. 2-3.

Bertuccelli, L.F,, 2008, “Robust Decision-Making with Model

Uncertainty in Aerospace Systems”, Ph.D. thesis, MIT, September,

2008.

Bormann, D.S. and Cheung, P.Y.K., 1997, “Asynchronous Wrappers

J. Aerosp. Technol. Manag., São José dos Campos, Vol.5, No 1, pp.91-102, Jan.-Mar., 2013

102
Oliveira, D.L., Lussari, E., Sato, S.S. and Faria, L.A.

for Heterogeneous Systems,” Proc. Int. Conf. Computer Design
(ICCD), pp. 307-314.

Chapiro, D.M., 1984, “Globally-Asynchronous Locally-Synchronous
Systems”, PhD thesis, Stanford University, October, 1984.

Chu, T.A., 1987, “Synthesis of Self-Timed VLSI Circuits from Graph-
Theory Specifications”, Ph.D. thesis, Dept. of EECS, MIT, June, 1987.

Cortadella, J. et al., 1997, “Petrify: A tool for manipulating concurrent
specifications and synthesis of asynchronous controllers”, IEICE Trans.
Inf. Syst., Vol.E80-D, No. 3, pp. 315-325.

Davis, A.L. et al., 1979, “A data-driven machine architecture suitable
for VLSI implementation”, In C.L. Seitz, editor, Proc. of the Caltech
Conf. on Very Large Scale Integration, pp. 179-194.

De Micheli, G. 2009, “An Outlook on Design Technologies for Future
Integrated Systems”, CAD of Integrated Circuits and Systems, Vol. 28,
No.6, pp. 777-789.

Dobkin, R., Ginosar, R. and Sotiriou, C.P., 2006, “High Rate Data
Synchronization in GALS SoCs”, TVLSI, Vol. 14, No. 10, pp. 1063-
1074.

Friedman, E.G., 2001, “Clock distribution networks in synchronous
digital integrated circuits”, Proc. IEEE, Vol. 89, No. 5, pp. 665-692.

Fuhrer, R.M. et al., 1999, “Minimalist: An environment for the
Synthesis, verification and testability of burst-mode machines”,
Technical Report, Columbia University, TR-CUCS-020-99.

Ginosar, R., 2003, “Fourteen ways to fool your synchronizer”, Proc.
of ninth Int. Symp. On Async. Circuits and Systems, Vancouver, British
Colombia, Canada, pp. 89-96.

Gurkaynak, F.K. et al., 2006, “GALS at ETH Zurich: Success or
Failure?”, Proc. 12th IEEE Int. Symposium on Asynchronous Circuits
and Systems, pp. 150-159.

Hardt, W. et. al., 2000, “Architecture Level Optimization for
Asynchronous IPs”, Proc. 13th Annual IEEE Int. Conf. ASIC/SOC,
pp.158-162.

Jain, A. et al., 2001, “A 1.2 GHz alpha microprocessor with 44.8
GB/s chip pin bandwidth”, IEEE Int. Solid-State Circuits Conf. Tech.
Dig., pp. 240–241.

Jia, X., Vemuri, R., 2005, “Using GALS architecture to reduce the
impact of long wire delay on FPGA performance”, Proc. of the Asia and
South Pacific Design automation Conf., pp. 1260-1263.

Krstic, M. et al., 2007, “Globally Asynchronous, Locally Synchronous
Circuits: Overview and Outlook”, IEEE Design & Test of Computers, Vol.
24, pp. 430-441.

Kumala, A. et al., 2006, “Reliable GALS Implementation of MPEG-4
Encoder with Mixed Clock FIFO on Standard FPGA”, Int. Conf. on Field
Programmable Logic and Application, pp. 1-6.

Martin, A.J. and Nystrom, M., “Asynchronous Techniques for System-
on-Chip Design”, Proc. of the IEEE, Vol.94, No. 6, pp. 1089-1120.

Miller, S.P. et al., 2005, “A Methodology for the Design and Verification
of Globally Asynchronous/Locally Synchronous Architectures”, NASA/
CR-2005-213912, pp. 1-35.

Muller-Glaser, K.D. et. al., 2004, “Multiparadigm Modeling in
Embedded Systems Design”, IEEE Trans. on Control Systems
Technology, Vol. 12, No. 2.

Mullins, R. and Moore, S., 2007, “Demystifying Data-Driven and
Pausible Clocking Schemes”, Proc. of ASYNC’07, pp. 175-185.

Muttersbach, J., Villiger, T. and Fichtner,W., 2000, “Practical Design
of Globally-asynchronous Locally-synchronous System”, Proc. IEEE 6th

Int. Symposium Advanced Research in Asynchronous Circuits and
Systems, pp. 52-59.

Muttersbach, J. 2001, “Globally-Asynchronous Locally-
Synchronous Architectures for VLSI Systems”, Ph.D. Thesis, ETH,
Zurich, 2001.

Myers, C.J. 2000, “Asynchronous Circuit Design”, Wiley & Sons, Inc.,
2004, 2nd edition.

Nowick, S.M, 1993, “Automatic Synthesis of Burst-Mode
Asynchronous Controllers”, PhD thesis, Stanford University, 1993.

Oliveira, D.L. et al., 2008, “Burst-Mode Asynchronous Controllers
on FPGA”, Int. Journal of Reconfigurable Computing, Vol. 2008,
pp. 1-10.

Oliveira, D.L. et al., 2011, “Synthesis of Robust Conrollers for GALS_
FPGA from Multi-Burst Graph Specification”, Proc. IEEE VII Southern
Conference on Programmable Logic (SPL), pp. 123-129.

Pontes, J. et al., 2007, “SCAFFI: an Intrachip FPGA asynchronous
interface based on hard macros”, 25th Int. Conf. on Computer Design,
pp. 541-546.

Reddy Ravi, A., 2001, “Globally-Asynchronous, Locally-Synchronous
Wrapper Configurations for Ponint-to-Point and Multi-Point Data
Comunication”, Masters of Science, University of Central Florida,
2001.

Sjogren, A.E. and Myers, C.J., 2000, “Interfacing Synchronous and
Asynchronous Modules within a High-Speed Pipeline”, IEEE Transactions
on VLSI Systems, Vol. 8, No. 5, pp. 573-583.

Sues, R.H. et al., 2005, “Reliability-Based MDO for Aerospace
Systems”, AIAA-2001-1521, pp. 1-8.

Techan, P., Greenstreet, M. and Lemieux,G., 2007, “A Survey and
Taxonomy of GALS Design Styles”, IEEE Design & Test of Computers,
Vol. 24, pp. 418-428.

Unger, S.H. 1969, “Asynchronous Sequential Switching Circuits”,
John Wiley & Sons Inc.

Yuan, L. et al., 2008, “Research on the Problems of Satellite Borne
FPGA Based Finite State Machine”, 2nd Int. Symposium on Systems
and Control in Aerospace and Astronautics (ISSCAA), pp. 1-4.

Yun, K.Y. and Dill, D.L., 1999, “Automatic Synthesis of Extended Burst-
Mode Circuits: Part I (Specification and Hazard-Free Implementation)
and Part II (Automatic Synthesis)”, IEEE Trans. on CAD of Integrated
Circuit and Systems, Vol. 18:2, pp. 101-132.

Yun, K.Y. and Donohue, R.P., 1999, “Pausible clocking-based
heterogeneous systems”, IEEE Transactions on VLSI Systems, Vol. 7,
No. 4, pp. 482-488.

