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ABSTRACT
Aircraft fuels, called jet propulsion, are used in several areas of activity within aeronautics. There are jet fuels based on kerosene, 

that is, those obtained commercially, and there are synthetics produced in the laboratory. All of these fuels are included within the 
so-called propellants. In this article, Jet propulsion-8 (JP 8) fuel was used as the basis for data analysis, and thus two temperature 
ranges were analyzed. The first range, from 300 to 2500 K, was analyzed for specific heat, enthalpy and entropy. Based on theoretical 
and experimental data, artificial neural networks (ANNs) were developed to identify these properties in other working conditions, 
that is, at other temperatures.
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INTRODUCTION

Fuel is a substance that, when reacts with oxygen, releases energy. Therefore, there are several fuels, and among the best-known 
are those derived from petroleum, such as gasoline and diesel, which are normally used in land motor vehicles. Another type of 
fuel used in motor vehicles is nonpolluting fuels, such as electric cars.

In this context, there are also fuels that are used in aircraft. Most are based on kerosene, which is also a derivative of oil, 
and they have uses and characteristics that can be very different. Such characteristics are linked to the fact that these fuels are 
classified as propellants, that is, they are substances that, alone or in combination with others, are burned in a large mass of 
gaseous products at high temperature, which, escaping through the chamber discharge piston combustion, provide by reaction, 
the engine impulse.

These propellants may have commercial and/or military uses. Those for commercial use are employed in commercial or 
transport aircrafts and are based on kerosene, derived from petroleum, which has the name QAV-1. Those for military use have 
other names, such as jet propulsion-8 (JP-8). The jet propulsion-4 (JP-4) was used by the United States Air Force until 1995 and, 
after that, replaced by JP-8, as it is less flammable and less dangerous (Center 2008).

The JP-8 has 81.20% isoparaffins, 0.30% oils, 4.90% naphthalene and 13.00% aromatic compounds (Pires et al 2018). Among 
them, 16.90% is C9H12, 62.55% is C11H24 and 21.05% is C10H20 (Xu et al. 2015).
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State-of-the-art
The study of propellants is something that is being done a lot nowadays, because more and more are looking for cheap 

and easily manufactured fuels. As they are flammable fuels, it is not possible to work at high temperatures in the laboratory. 
Therefore, the study at high temperatures simulates certain fuels at very high combustion rates, where in a laboratory it would 
not be able to reach.

Therefore, it is possible to study a variety of temperatures and select within them the one that is the most interesting. The use 
of neural networks helps in this process, where it is possible to train a network to analyze and give results close to the experimental 
ones and also at temperatures that it is not possible to work with.

So, with that the range of temperatures to be studied for future fuels is huge.

THEORY

Artificial neural network
The work on artificial neural networks, usually called “neural networks”, has been motivated since the beginning by the 

recognition that the human brain processes information in an entirely different way from the convectional digital computer 
(Haykin 2001). They allow the projection of values on a laboratory scale and on pilot scale in the various areas studied worldwide. 
Thus, the human nervous system can be seen as a three-stage system, as show in Fig. 1 (Arbib 1987).

Stimulus ResponseReceptors Effectors
Neural 

Network/
Brain

Figure 1. Block diagram representation of nervous system.

The center of the system is the brain, represented by the neural network, which continuously receives information, perceives 
and makes appropriated decisions. Two sets of arrows are shown in Fig. 1. Those from left to right indicate the forward transmission 
of the information-carrying signal through the system. Arrows pointing from right to left indicate the presence of feedback in the 
system. The receptors convert stimuli from the human body or the external environment into electrical impulses that transmit 
information to the neural network. The actuators convert electrical impulses generated by the neural network into discernible 
responses as outputs from the system (Haykin 2001).

In practice, however, neural networks cannot provide a solution working individually. Instead, they need to be 
integrated into a consistent system engineering approach (Haykin 2001). Thus, a complex problem is decomposed into 
a number of relatively simple tasks, and a subset of tasks is assigned to neural networks that coincide with their ability 
to solve such problem.

The use of neural networks offers the following useful properties and capabilities:
• Nonlinearity;
• Input-output mapping;
• Adaptability;
• Responses to evidence;
• Contextual information;
• Fault tolerance;
• Very large-scale integration;
• Uniformity of analysis and design;
• Neurobiological analogy.
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Activation function
There are several activation functions that can be used and the choice depends on the purpose and complexity of the neural 

network. For this, it is necessary to analyze the problem involved in order to choose the best activation function. Table 1 shows 
the most frequently used.

Table 1. Activation functions.

Linear f(x) = ax

Sigmoidal f(x) = 1
1+e-x

Hyperbolic tangent f(x) = e
x – e-x

ex + e-x

Softmax f(x) = exi
∑j exj

Exponential Rectilinear Unit f(x) = max (0, x)

Softplus f(x) = ln (1 + ex)

Learning/training algorithms
Learning and training algorithms serve to “teach” the neural network how to work with the data. Thus, it is able to predict 

values and make approximations closest to the real value. There are two types of learning algorithms, the so-called supervised 
and the unsupervised.

Unsupervised learning is used when the desired answer is not known, that is, there is no output value. It is possible to map 
the input data and bring it close to the expected output value. The most cited algorithms to date in this category are:
• Additive Grossberg (AG) (Haykin 2001);
• Adaptive resonance theory (ART) (Carpenter and Grossberg 2010);
• Symmetric and asymmetric Hopfield (Sousa 2014);
• Bidirectional associative memory (BAM) (Sousa 2014);
• Temporal associative memory (TAM) (Vieira and Araujo 1997);
• Competitive learning – SOM by Kohonen (Haykin 2001).

There is also supervised learning, where the output values are known. This type of learning is widely used when there is a 
theoretical or experimental data, so it is possible to compare and even calculate errors between those values. It also allows to map 
the input data to get close to or equal to the expected output data. The most cited algorithms in this category are:
• Boltzmann machine (BM) (Haykin 2001);
• Recurring real-time learning (Oliveira and Siqueira 2013);
• Adaptive logic network (ALN);
• Back propagation (BP) (Haykin 2001);
• Cauchy machine (CM);
• Kalman filter (EKF) (Aguirre 2015).

Multilayer artificial neurons (multilayer perceptron)
Typically, the network consists of a set of sensory units (source nodes) that constitute the input layer, one or more 

hidden layers of computational nodes and an output layer of computational nodes. The input signal propagates forward 
through the network layer-by-layer (Haykin 2001). Figure 2 shows the representation of a multilayer perceptron 
(Coutinho et al. 2016).

Multilayer perceptron has been successfully applied to solve several complex problems through their supervised 
training with a very popular algorithm, known as error propagation algorithm. This algorithm is based on the error 
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correction-learning rule (Haykin 2001). One of the mostly used algorithms nowadays (and that will be used in this article) 
is the multilayer perceptron network trained by the retro propagation algorithm. The learning by retro propagation of 
error consists of two steps.

Input layer
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•
• •

•
•

•
•
•

•
•
•

•
•
•
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0
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Figure 2. Representation of a multilayer perceptron.

The descending gradient
The descending gradient is a technique used in learning algorithms that involves calculating derivatives of the 

objective function to find the point with the greatest possible slope in the direction of the minimum error. Such variables, 
to be optimized, are shifted in a negative direction, that is, this will reduce the value of the objective function and give 
the best possible optimization. This method can have two points, the gradient with and without the moment factor 
(Rodríguez 2011).

MATLAB

MATLAB is a high-performance interactive software focused on numerical calculation. It also integrates numerical analysis, 
matrix calculation, signal processing and graph construction in an easy-to-use environment, where problems and solutions are 
expressed only as they are written mathematically, unlike traditional programming.

EXPERIMENTAL

The experimental part was based on the article by Xu et al. (2015). In the mentioned work, the authors obtained, experimentally, 
physical-chemical properties, such as enthalpy, entropy, specific heat, variation of enthalpy, heat of formation and Gibbs free energy 
for several types of aircraft fuels, such as jet fuel-A (JET-A), jet propulsion-5 (JP-5) and JP-8, and also alternative fuels from some 
companies, such as Gevo and Virent. The percentage of components that each fuel has is also determined. The experimental data 
are shown in Table 2.
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Table 2. Jet propulsion-8 fuel experimental data. Retrieved from Xu R, Wang H, Colket M, Edwards M 
(2015) Thermochemical properties of jet fuels [Internet]. Stanford: Stanford University. p. 6.

T 
(K)

Cp 
(cal/mol-K)

S 
(cal/mol-k)

H(T)-H(298) 
(kcal/mol)

Hf 
(kcal/mol)

Gf 
(kcal/mol)

298. 54.325 121.203 0 -65.114 5.628

300. 54.646 121.567 0.109 -65.201 6.103

400. 70.216 139.447 6.362 -69.298 30.505

500. 84.305 156.662 14.102 -72.747 55.869

600. 96.474 173.139 23.158 -75.53 81.865

700. 106.672 188.8 33.331 -77.719 108.278

800. 115.244 203.619 44.438 -79.415 134.97

900. 122.926 217.64 56.35 -80.682 161.848

1000. 130.845 230.993 69.031 -81.49 188.844

1100. 135.847 243.702 82.369 -81.894 215.899

1200. 140.409 255.721 96.185 -82.066 242.981

1300. 144.555 267.126 110.437 -82.037 270.068

1400. 148.31 277.979 125.083 -81.836 297.146

1500. 151.7 288.329 140.087 -81.489 324.205

1600. 154.75 298.218 155.412 -81.021 351.237

1700. 157.485 307.684 171.026 -80.452 378.236

1800. 159.931 316.756 186.899 -79.802 405.199

1900. 162.115 325.462 203.004 -79.088 432.125

2000. 164.064 333.828 219.314 -78.324 459.011

2100. 165.803 341.876 235.809 -77.525 485.858

2200. 167.361 349.626 252.469 -76.699 512.667

2300. 168.766 357.097 269.277 -75.855 539.437

2400. 170.044 364.307 286.218 -74.999 566.171

2500. 171.224 371.272 303.282 -74.134 592.868

RESULTS AND DISCUSSION

Jet propulsion-8 was tested at three different temperatures for data prediction. The temperatures were chosen at random; 
the results were interpolated according to the values provided (Table 2), and the information for these tests is shown in Table 3.
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Table 3. Neural network test data.

Test 1 2 3

T (K) 350 1050 1850

Cp (cal·mol–1·K) 63.63 138.62 167.53

S (cal·mol–1·K) 128.96 239.73 327.08

ΔH (kcal·mol–1) 3.29 78.55 202.91

Hf (kcal·mol–1) –64.10 –81.17 –81.39

Gf (kcal·mol–1) 28.28 227.83 463.88

In the tests for neural networks, four prediction analyses were made, where the learning functions and the activation 
function of the first layer were analyzed, thus, 20 analyses were performed based on the number of neurons. These analyses 
followed a criterion, starting with 25 neurons, then 24 neurons, 23 neurons and so on until reaching 6 neurons, where the 
stop criterion for the analyses was made, since the minimum number of neurons must be equal to the sum of the output data 
plus one. In this case, the output data are: the specific heat, the entropy, the enthalpy variation, the formation enthalpy and 
the Gibbs free energy.

These data were obtained through predetermined factors and their performance was based on the calculation of the percentage 
of local and global errors, always based on the best global error with the fewest possible neurons as a stopping criterion.

For all tests, the same training and error function and the same number of layers were used, in this case, two layers. The training 
function used was trainlm, which refers to the Levenberg–Marquardt algorithm, considered the standard function in the 
MATLAB toolbox and evaluated by as the fastest method of training feedforward neural networks and with excellent performance 

(Friderichs et al. 2013).
To calculate the global error, the mean squared error (MSE) function was used, which corresponds to the mean square 

error. Local errors were calculated according to Eq. 1 (calculation of local error), where the interpolated values were adopted as 
experimental values and the theoretical value obtained by the MATLAB program.

 ABS (Theoreutical Value-Ecperimental Value)
Experimental Value

Local error =  (1)

The other parameters were changed, such as the learngdm and learngd learning function, which correspond to the descending 
gradient function with and without moment factor and activation function in the first layer. In the second layer, the purelin 
function was maintained, which corresponds to a first-degree function, where these functions aim to guide and approximate the 
experimental result to the real result.

For the first prediction, the learngdm learning function and the activation functions tansig and purelin (Table 4) were used 
and the results obtained for the first test are shown in Table 5. Table 6 shows the percentage of local error.

Table 4. First prediction of neural networks.

Training function (algorithm) Trainlm

Learning function Learngdm

Error calculation MSE

Number of layers 2

Activation function (1st layer) Tansig

Activation function (2nd layer) Purelin
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Table 5. Results of the first forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 63.62 138.24 167.49

S (cal·mol–1·K) 128.23 239.63 327.24

ΔH (kcal·mol–1) 3.29 78.81 203.08

Hf (kcal·mol–1) –64.47 –81.19 –81.39

Gf (kcal·mol–1) 28.09 228.34 464.10

Table 6. Local errors of the first forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 0.03% 0.28% 0.03%

S (cal·mol–1·K) 0.57% 0.04% 0.05%

ΔH (kcal·mol–1) 0.19% 0.33% 0.08%

Hf (kcal·mol–1) 0.58% 0.01% 0.25%

Gf (kcal·mol–1) 0.68% 0.22% 0.05%

For the second forecast, the learngdm learning function was maintained, but the activation function of the first layer was 
changed to logsig (Table 7), where the objective was to compare results in the exchange of a tangential function for a logarithmic 
function (Table 8) and the local errors in Table 9.

Table 7. Second forecast of neural networks.

Training function (algorithm) Trainlm

Learning function Learngdm

Error calculation MSE

Number of layers 2

Activation function (1st layer) Logsig

Activation function (2nd layer) Purelin

Table 8. Results according to forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 63.55 138.63 167.50

S (cal·mol–1·K) 128.80 239.25 326.96

ΔH (kcal·mol–1) 3.21 78.48 203.02

Hf (kcal·mol–1) –64.11 –81.18 –81.37

Gf (kcal·mol–1) 28.31 227.82 463.85
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Table 9. Local errors according to forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 0.14% 0.00% 0.02%

S (cal·mol–1·K) 0.13% 0.20% 0.04%

ΔH (kcal·mol–1) 2.60% 0.10% 0.05%

Hf (kcal·mol–1) 0.01% 0.00% 0.23%

Gf (kcal·mol–1) 0.08% 0.00% 0.01%

When comparing the first forecast with the second forecast, it is noted that the local errors did not have a very large difference 
in values and, for the first forecast, the global error was 3.72 × 10–5 or, in percentage, 0.00372%, and the number of neurons used 
was seven. For the second forecast, the global error was 2.04 × 10–5 or 0.00204%, but the number of neurons needed for the 
best global error was eight. So, it can be said that when changing the activation function of the first layer, there was a decrease in 
the global error, but one more neuron was necessary for this.

For the third forecast, the learning function was changed to learngd and changes in the activation functions of the first layer 
were maintained, as in this case the results were observed in the change in the learning function and in the change in the activation 
function of the first layer (Table 10). The results are shown in Table 11 and the local errors in Table 12.

Table 10. Third forecast neural networks.

Training function (algorithm) Trainlm

Learning function Learngd

Error calculation MSE

Number of layers 2

Activation function (1st layer) Tansig

Activation function (2nd layer) Purelin

Table 11. Third forecast results.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 63.42 138.86 167.33

S (cal·mol–1·K) 128.64 239.75 326.97

ΔH (kcal·mol–1) 3.26 78.40 203.18

Hf (kcal·mol–1) –64.06 –81.30 –81.45

Gf (kcal·mol–1) 27.90 227.46 463.79

Table 12. Local errors third forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 0.34% 0.17% 0.12%

S (cal·mol–1·K) 0.25% 0.01% 0.03%

ΔH (kcal·mol–1) 1.17% 0.20% 0.13%

Hf (kcal·mol–1) 0.06% 0.14% 0.34%

Gf (kcal·mol–1) 1.35% 0.16% 0.02%
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For the fourth and last forecast, the activation function was changed back to logsig (Table 13) and the results and local errors 
are shown in Table 14 and 15, respectively.

Table 13. Fourth forecast neural networks.

Training function (algorithm) Trainlm

Learning function Learngd

Error calculation MSE

Number of layers 2

Activation function (1st layer) Logsig

Activation function (2nd layer) Purelin

Table 14. Fourth forecast results.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 62.55 138.80 167.47

S (cal·mol–1·K) 128.37 239.97 327.17

ΔH (kcal·mol–1) 3.79 79.01 202.60

Hf (kcal·mol–1) –63.42 –81.20 –81.27

Gf (kcal·mol–1) 28.18 228.60 463.21

Table 15. Local errors fourth forecast.

T (K) 350 1050 1850

Cp (cal·mol–1·K) 1.70% 0.13% 0.03%

S (cal·mol–1·K) 0.46% 0.10% 0.03%

ΔH (kcal·mol–1) 14.81% 0.58% 0.16%

Hf (kcal·mol–1) 1.06% 0.03% 0.11%

Gf (kcal·mol–1) 0.35% 0.34% 0.15%

Comparing the results of the third with the fourth forecast, similarities in the results of local errors are noted again. For the 
third forecast, the global error was 3.43 × 10–5 or 0.00343% with six neurons used. For the fourth forecast, the global error was 
1.80 × 10–5 or 0.00180% with the same six neurons used. It can be seen then that the error was greater when the function of the 
first layer was changed from tansig to logsig.

CONCLUSION

The results obtained were satisfactory because they meet the stopping criteria with the best overall error in the 10–5 range 
and the fewest possible neurons. The number of neurons is very important due to the propagation of error that can exist, since 
the greater the number of neurons used, the greater the propagation of error; however, the neurons used do not exceed eight. 
Therefore, comparing the four simulations, an increase in local and global error was observed due to the change in the learning 
function, therefore, the descending gradient function without the moment factor raises the value of errors. It was also observed 
that the change in the learning functions of the first layer, for all tests, raised the value of the errors too, so changing a function of 
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a tangential character to a function of a logarithmic character also interferes with the increase of the error. The best result between 
the simulations, taking into account the best global error with the fewest possible neurons, was the first prediction.
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