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Abstract: Design candidates obtained from optimization 
techniques may have meaningful information, which 
provides not only the best solution, but also a relationship 
between object functions and design variables. In 
particular, trade-off studies for optimum airfoil shape 
design involving various objectives and design variables 
require the effective analysis tool to take into account a 
complexity between objectives and design variables. In this 
study, for the multiple-conflicting objectives that need to 
be simultaneously fulfilled, the real-coded Adaptive Range 
Multi-Objective Genetic Algorithm code, which represents 
the global and stochastic multi-objective evolutionary 
algorithm, was developed for an airfoil shape design. 
Furthermore, the PARSEC method reflecting geometrical 
properties of airfoil is adopted to generate airfoil shapes. 
In addition, the Self-Organizing Maps, based on the neural 
network, are used to visualize trade-offs of a relationship 
between the objective function space and the design 
variable space obtained by evolutionary computation. 
The Self-Organizing Maps that can be considered as 
data mining of the engineering design generate clusters 
of object functions and design variables as an essential 
role of trade-off studies. The aerodynamic data for all 
candidate airfoils is obtained through Computational Fluid 
Dynamics. Lastly, the relationship between the maximum 
lift coefficient and maximum lift-to-drag ratio as object 
functions and 12 airfoil design parameters based on the 
PARSEC method is investigated using the Self-Organizing 
Maps method. 

Keywords: Aerodynamics, Adaptive Range Multi-Object 
Genetic Algorithm, PARSEC, Self-Organizing Map, 
Computational Fluid Dynamics.
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INTRODUCTion

An engineering design needs trade-off studies and 
corresponding analyses on the relationship between objectives 
and design variables to simultaneously fulfill various goals, 
since industrial design problems involve multiple conflicting 
requirements. In particular, the typical aerodynamic design 
process in aerospace engineering is iterative, being necessary 
a number of design to achieve the balanced emphasis from the 
diverse inputs and outputs. Solutions to this problem require 
a compromise between the different objectives. 

A traditional way to meet the optimum aerodynamic 
design is classically based on a trade-off study via design 
variables determined by designers’ intuitions. It requires a 
time-consuming process in order to classify proper candidates 
satisfying the multiple objectives from tremendous solutions 
in a case of high dimensions. Another attractive way is to 
identify the proper candidates during a trade-off study from 
a suitable criterion represented as non-dominated solutions, 
which are more dominant than any other, called Pareto 
solutions (Fig. 1). These problems are typically included in 
the multi-objective (MO) optimization areas to determine 
the best design which fulfills the requirements. For the MO 
optimization, the Evolutionary Algorithms (EAs), which 
perform a population-based search evolving the population 
in a cooperative search towards the Pareto front, may be 
treated as a standard tool (Deb 2001). Moreover, the MO 
optimization is not depended on the weight factors applied 
in cases of single object optimization in order to reduce the 
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number of object functions. Then, there has been growing 
interests in the use of global optimization methods in a wide 
range of design problems, as well as aerodynamic shape 
optimization. Lian and Liou (2005) and Liang et al. (2011) 
applied the evolutionary algorithm to the MO optimization 
of transonic compressor blade. Anderson et al. (2000) applied 
genetic algorithms (GAs) to the MO optimization of missile 
aerodynamic shape design. Yang et al. (2010, 2012) adopted 
the EAs to maximize the range of a canard-controlled missile. 
In the same way, Jung et al. (2009) and Jung and Kim (2013) 
employed EAs, but to reduce the shock wave strength on the 
upper surface of the airfoil in the transonic regime and to 
maximize the lift coefficient as well as the lift-to-drag ratio. 
Besides, Choi et al. (2015) developed the multidisciplinary 
design optimization system to take into account the fluid-
induced structural deformation for a flexible wing and propose 
the better design concept for the wing. The system consists 
of the evolutionary algorithm and surrogate model in order 
to avoid the time-consuming problem due to the need for a 
massive computational resource. 

Nevertheless, the evolution path for MO optimization is 
far more unclear than that for single-objective optimization, 
since the population converges in a cooperative search towards 
the Pareto front and not to a single optimum. In addition, the 
design and optimization of engineering systems in aerospace 
domain involve multiple objectives with large number of design 
variables and constraints. Consequently, design problems 
with multiple objectives pose many challenges even beyond 
optimization. A few of these challenges include visualization 
of the Pareto set of solutions and contribution to a trade-off 

decision. In particular, a visualization model, which represents, 
in an efficient way, the interactions among the high-dimensional 
data, is useful to understand the behavior of the system. In this 
study, the Self-Organized Map (SOM), by Kohonen (1995), is 
employed to visualize the results of MO optimization for airfoil 
shape design exploration.

The SOM is one of the neural network models (Hollmen 
1996), and the algorithm is based on unsupervised and 
competitive learning. It provides a topology preserving 
mapping, which means that nearby points in the input space 
are mapped to nearby units in the SOM from the high-
dimensional space to map units. Map units, or neurons, 
usually form a 2-D lattice, thus the SOM is a mapping from 
high dimensions to two dimensions. Therefore, the SOM can 
serve as a cluster analysis tool for high-dimensional data. 
The cluster analysis will help to identify design trade-offs. 
Obayashi and Sasaki (2002, 2003) applied the SOM to analyze 
766 Pareto solutions of the supersonic wing obtained from 
the EAs. Jeong et al. (2005) employed the SOM with the 
purpose of data mining for an aerodynamic design space. 
Büche et al. (2002) applied the SOM for Pareto optimization 
of airfoils. Parashar et al. (2008) utilized the SOM for design 
selection from the Pareto data obtained via MO design 
exploration of airfoil.

In this study, an aerodynamic airfoil shape design has been 
conducted to increase the maximum lift coefficient and the 
maximum lift-to-drag ratio using the Adaptive Range Multi-
Object Genetic Algorithm (ARMOGA) proposed by Sasaki 
and Obayashi (2005) and the PARSEC method (Sobieczky 
1999). The PARSEC airfoil generator based on the explicit 
mathematical functions is used for 2-D curve definition of 
airfoils. Furthermore, the Computational Fluid Dynamics (CFD) 
tools are employed to obtain the aerodynamic characteristics 
of candidate airfoils. In this study, the ARMOGA and PARSEC 
codes were developed (Yang et al. 2010, 2012; Jung et al. 2009; 
Jung and Kim 2013; Choi et al. 2015), and an integrated system 
code combining the in-house and commercial codes was also 
developed. Twelve PARSEC parameters were chosen as design 
variables for each side of the airfoil surfaces. To alleviate an 
amount of computational time, parallel computing was utilized 
to simulate the flow field around airfoils. Figure 2 shows the 
optimization system.

Lastly, the SOM was applied to map entire solutions assessed 
during the evolution of the optimization. The resulting 160 
Pareto solutions were obtained and analyzed to reveal trade-offs. 

Dominant solutions

Non-dominant
solutions

Optimal
solutions

L/Dmax

CLmax

Figure 1. Trade-off of two-objective maximization problem, which 
is represented by non-dominated and dominated solutions.



J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 2, pp.193-202, Apr.-Jun., 2016

195
An Implementation of Self-Organizing Maps for Airfoil Design Exploration via Multi-Objective Optimization Technique 

AN INTEGRATED OPTIMIZATION SYSTEM 
FOR AIRFOIL DESIGN EXPLORATIONS 
oPtiMiZAtion Module

In general, EAs are based on the binary system which consists 
of the values 0 and 1 in order to express the chromosome. In 
the case of large values of design variables, the binary-based 
EAs require an amount of digits. Consequently, the computer 
resources are heavily used. As an alternative of the binary-based 
EAs, the real-coded ARMOGA (Sasaki and Obayashi 2005) 
may be attractive, since it allows the use of computer resources 
by using the real numbers with respect to design variables. 
Th e ARMOGA introduces the range adaptation to change the 
search region according to the statistics of better solutions. For 
the range adaptation, Arakawa and Hagiwara (1998) originally 
proposed a normal distribution representing the design space 
in binary-coded Adaptive Range Genetic Algorithms (ARGA) 
for single-objective problem. Oyama et al. (2001) extended the 
binary-coded to real-coded ARGA for design optimization. 
Th en, the ARGA was extended to MO optimization problems 
in order to treat multiple solutions and maintain their diversity, 
unlike single-objective problems. 

Th e whole process of the real-coded ARMOGA is exactly 
the same of Multi-Objective Evolutionary Algorithm (MOEA), 
except for the range adaptation. Th e main diff erence between 

the ARMOGA and the conventional MOEA is the introduction 
of the range adaptation. Th e key-role of ARMOGA is to adapt 
the population to promising regions during the optimization 
process, which enables effi  cient and robust search with good 
precision while keeping the string length small. Moreover, 
ARMOGA eliminates the need for prior defi nition of search 
boundaries, since it distributes candidates according to the 
normal distributions of the design variables in the present 
population. Th e details of ARMOGA can be found in Jung 
and Kim (2013), Choi et al. (2015) and Sasaki and Obayashi 
(2005). Figure 3 shows the diff erence among the general GAs, 
Multi-Objective Genetic Algorithm (MOGA), real-coded 
ARGA and ARMOGA. Th e developed ARMOGA code (Jung 
and Kim 2013; Choi et al. 2015), as an optimization module, is 
evaluated by applying it to the MO problems in Eq. 1. Th e test 
problem has the intent to minimize two objective functions as:

Design variables
Self-organizing Map

(commercial)

GRID
(commercial)

CFD
(commercial)

PARSEC
(in-houser)

PARSEC
(parameters)

Integrated system
(in-house)

Airfoil
coordinates

Aerodynamic
coe�cients

ARMOGA
(in-house)
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Initial population
GA
MOGA
ARGA
ARMOGA

Evaluation

Pareto solution

Selection

Crossover

Mutation
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Range adaptation

Sampling

Yes
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End

Final generation? Every N generation?
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Figure 2. Integrated system for optimization process based 
on the ARMOGA, PARSEC and CFD methods, as well as 
post process for an analysis between objectives and design 
variables based on the SOM.

minimize: F = [f1(x), f2 (x)],

where: f1(x) =  x1, f2(x) = 1+ x2 / x1

subjected to: 0.1 ≤ x12  ≤ 1, 0 ≤ x2 ≤ 5.

Figure 3. Comparisons of fl owcharts between the binary-
based GA (black solid and dotted lines), MOGA (black and red 
solid lines) and real-coded ARGA (black solid and dotted lines 
and blue solid line), ARMOGA (black, blue and red solid lines).

(1)
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Population sizes and generations are set at 40 and 50, 
respectively. Also, the tournament selection, uniform crossover, 
and 4% of mutation are applied to the developed code. The search 
performance of the developed ARMOGA code is evaluated in 
terms of closeness, reasonable spread, and many samplings 
in the Pareto front as shown in Fig. 4. From the comparisons 
between the exact solutions and the present results, the accuracy 
and diversities of Pareto solutions of the developed ARMOGA 
code are guaranteed with many samples of Pareto front.

various optimization problems. Values of the participation 
coefficients (design variables) are used to determine the 
contribution of the shape functions. 

Sobieczky (1999) chose basic parameters to characterize 
an airfoil in a 6th-order polynomial function — the PARSEC, 
which is a very common and highly effective method for airfoil 
parameterization. It uses 11 basic parameters to completely 
define the airfoil shape. In addition, the basic parameters 
include the physical meaning, such as leading edge radius, 
maximum thickness, and so on. In this study, a modified 
PARSEC approach was adopted, allowing the independent 
definition of the leading edge radius, for both upper and lower 
surfaces (Arias-Montaño et al. 2012). 

Thus, a total of 12 variables were used. Figure 5 illustrates 
the original (a) and modified (b) PARSEC approaches based 
on the 11 and 12 basic parameters, respectively. The PARSEC 
approach adopted here uses a linear combination of shape 
functions to define the upper and lower surfaces. These linear 
combinations are given by:
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Figure 4. The whole Pareto set (a) and non-dominated Pareto 
front (b) with respect to the test problem (Jung and Kim 2013).

Airfoil Generation Module
In order to generate airfoil shapes, there are types of 

parametric models to represent wing section geometry 
in literature. The Bezier curve is one of the most popular 
parameterization techniques. A Bezier curve is controlled by 
its defining points in a plane. It passes through initial and final 
control points, but it is not necessary for Bezier curve to pass 
through each intermediate control point which is defining the 
shape of the airfoil (Derksen and Rogalsky 2010). 

Hicks and Henne (1978) proposed the shape functions with 
small or moderate perturbations of baseline airfoil for solving 

upper: Zupper = Σ anx(n–1/2) , 

and lower: Zlower = Σ bnx(n – 1/2)

where: an and bn are coefficients determined as a function 
of the 12 described geometric parameters, solving two systems 
of linear equations. 

A main reason for modifying the original PARSEC approach 
is to obtain the two leading edge radiuses of PARSEC parameter 
from coordinate data of the digitized reference airfoil, since the 

Figure 5. Original (a) and modified (b) PARSEC methods.
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leading edge radiuses of lower and upper sides of airfoil are not 
exactly equal to one constant value. The PARSEC coefficients 
for the upper side of the reference airfoil can be obtained by 
using Eq. 3, and the x and z coordinate values are presented 
by a vector form:

airfoil can be obtained by the same manner using Eqs. 3 to 8. 
Figure 6 shows a comparison between the originally digitized 
airfoil shape and the re-generated airfoil shape using the 
PARSEC parameters. As a result, an applicability of the modified 
PARSEC approach is guaranteed. Finally, the values of PARSEC 
parameters of the reference airfoil become standard values to 
allocate the minimum-maximum ranges of design variables 
for airfoil shape designs.

Z = AX

where:

The PARSEC coefficients can be obtained by transposing 
and inverting the matrix X in Eq. 4:

A = (XT X)–1 (XT Z).

Then, the PARSEC parameters are determined by Eqs. 5 to 8. 
The value of xup can be defined by the differential of Eq. 2. 
Iterative methods, such as the Newton-Raphson, can be utilized 
to obtain the value of xup from Eq. 5:  

The value of zup is determined by substituting the value of 
xup obtained in Eq. 5 into Eq. 2; then, for a curvature of upper 
surface, the second differential of Eq. 2 at the xup is applied to 
determine the value of zxxup. The leading edge radius, rle, is 
simply defined by Eq. 6 as:

Finally, a trailing edge shape is determined by α and β:

The PARSEC coefficients for the lower side of the reference 
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Figure 6. A comparison of originally digitized coordinate 
values (red line) and regenerated coordinate values (blue 
line) by PARSEC method.

CFD Module
Although a prediction of aerodynamic coefficients can be 

archived by using various techniques, such as semi-empirical 
and panel methods, those which can exactly capture the shock 
waves and flow separations are still included in the CFD 
domains. In addition, compressible and turbulent flows can be 
successfully explained by the Navier-Stokes equations. In this 
study, the classical Reynolds-Averaged Navier-Stokes (RANS) 
equation is employed as the governing equations. The CFD 
solver is formulated by a finite volume method and solved 
using an implicit time marching procedure. For the spatial 
discretization, Roe’s approximate Riemann solver and Van 
Leer’s monotone upstream-centred schemes are employed.  
Van Albada’s limiter is adopted in order to prevent the generation 
of oscillation and preserve the monotonicity. For the temporal 
discretization, an implicit scheme is employed to accelerate the 
convergence. The Spalart-Allmaras turbulent model is chosen 
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dz/dx = Σ an(n – 0.5) xn – 1.5 = 0.

rle = a2 / 2.

dz/dx = Σ an(n – 0.5) = tan (α – β/2),

dz/dx = Σ an(n – 0.5) = tan (α + β/2).
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to close the RANS for the turbulence flow. Also, no-slip and 
Riemann invariant conditions are applied on the solid surface 
and the far fields for the boundary conditions, respectively. An 
ideal gas equation is employed to close the system of equations. 
A hybrid grid, which consists of the quadrature (prism layer) 
and trigonal grid for boundary layers and far field, is adopted to 
capture the flow separation near the solid surface and efficiently 
reduce the computation resource and calculation time. For the 
CFD simulation, the commercial codes FLUENT, GAMBIT, and 
TGRID are used. Even though the commercial codes are applied to 
simulate the flow fields around airfoils, a validation is essential 
to guarantee the reliability in the methodologies of the present 
research. In this study, a NACA 0012 airfoil is chosen to validate 
the presented approaches. Figure 7 shows the grid topology, which 
has approximately 45,000 cells with 26 prism layers, around the 
NACA 0012 airfoil. Figure 8 shows comparisons of the present 
and experimental data (Abbott and von Doenhoff 1959). The grid 
sensitivity has been fully evaluated controlling the number of prism 
layers and cells. At the fixed Y+ ~ 1.0 and growth rate, the various 
numbers of prism layers have been tested with comparisons of the 
experimental test results at zero angle of attack. As the number 
of prism layers increased, the drag coefficients decreased. A 

variation of drag coefficients due to the total number of prism 
layers showed a ten-percent deviation between the coarse and fine 
meshes by the numerical experiments. Finally, the total number 
of prism layers is fixed as 26, being the height of the first layer for 
the viscous flow in the boundary layer aligned to Y+ ~ 1.0, and 
the growth rate of prism layer is 1.2. The present CFD approaches 
are applied to obtain the aerodynamic coefficients during the 
airfoil shape design exploration. 
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Figure 7. Grid generation around NACA 0012 airfoil. 

Figure 8. Validation of the present CFD approaches using the 
experimental data of NACA 0012 airfoil at Re = 0.9e+07. 

SELF-ORGANIZING MAP

A SOM is a type of artificial neural network (ANN) which 
can be learned without supervision to project a high-dimensional 
space onto a low-dimensional map. The projection from high- 
to low-dimensional map preserves the topology of the data 
so that similar items will be mapped to nearby locations on 
the map. This allows identifying the clusters groupings with a 
certain type of input pattern. Further examination may then 
reveal which features the members of a cluster have in common.
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The SOM consists of components called nodes or neurons. 
Each node is directly associated with a weight vector. In addition, 
the weights between the input vector and the array of neurons are 
adjusted to represent features of the high-dimensional data on the 
low-dimensional map. The adjustment depends on the distance 
between the input vector and the neuron. Based on the distance, 
the best-matching unit and its neighbors become closer to the 
input vector. Repeating this learning algorithm, the weight vectors 
become smooth not only locally but also globally. Thus, the sequence 
of close vectors in the original space results in a sequence of the 
corresponding neighboring neurons in the 2-D map. Interestingly, 
the number of map nodes is significantly smaller than the number 
of items in the dataset, and it is not possible to represent every input 
item from the data space on the map. Therefore, the objective of the 
SOM is to achieve a correlation between the similarity of items in 
the dataset and the distance of their most alike representatives on 
the map. In other words, items that are similar in the input space 
should be mapped to nearby nodes on the grid. The further details 
of SOM are described in Kohonen (1995) and Hollmen (1996). 
In this study, the SOMs are generated by using the commercial 
software ViscoveryÒ SOMine (Viscovery 2016).

APPLICATION AND RESULTS

Considering the airfoil shape design for aerodynamic 
performances better than that of a reference airfoil, one needs 
to know the aerodynamic characteristics of the reference airfoil 
in order to efficiently identify and preserve the elite populations in 
Pareto solutions. Figure 9 shows the aerodynamic characteristics of 

a reference airfoil, with the aerodynamic characteristics being 
obtained by the CFD solver; the same grid topology and 
CFD methods applied for validations of NACA 0012 airfoil 
are adopted. Flow conditions are Mach numbers 0.2 and 0.6, 
sea-level and 25,000 ft altitudes, and Reynolds numbers 1.1e+07 
and 1.8e+07. These represent the landing and cruise conditions 
of the reference airfoil. 

For the ARMOGA operation, the population size and the 
generation are set at 16 and 10, respectively. Also, tournament 
selection, uniform crossover, and 4% of mutation are applied to 
the developed ARMOGA code. Every third generation is selected 
for the adaptive range distributions of populations. Maximum 
and minimum ranges of design variables are allocated to ± 20% 
of PARSEC parameter of the reference airfoil. Furthermore, 
the maximum lift-to-drag ratio and maximum lift coefficient, 
which are the representative aerodynamic coefficients for cruise 
and landing conditions, are selected as object functions. Under 
the basic concept of maximum lift-to-drag ratio and maximum 
lift coefficient, the maximum functions (Jung and Kim 2013) 
in object functions are adopted to efficiently search the elite 
populations. The maximum function can be dealt with weight 
factors for the optimization strategy in Eq. 9: 

maximize: F = [f1(α), f2(α)].

where: f1(α) = L/D + max {[L/D –(L/D)0], 0}

f2(α) = CLmax + max {[CLmax – CLmax, 0], 0},

subjected to: α1 = αstall of Ref. Airfoil @ M = 0.2 ,

α2 = α(L/D)max of Ref. Airfoil @ M = 0.6

where: L/D is the lift-to-drag ratio; CLmax is the maximum 
lift coefficient; (L/D)0 and CLmax,0 are the maximum lift-to-drag 
ratio and lift coefficients of the reference airfoil at specified 
angles of attack for a reduction of computational resource and 
calculation time; αstall of Ref. Airfoil @ M = 0.2 is the stall angle of 
attack of reference airfoil at the Mach number 0.2. 

Equation 9 explains that, if the maximum lift coefficient 
and lift-to-drag ratio of candidate airfoils are higher than that 
of the reference airfoil at specified angles of attack, it may be 
considered that the candidate airfoils are more excellent than the 
reference airfoil in a whole range of angles of attack. Figure 10 
shows the optimization results. The bold line indicates the 
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Figure 9. Aerodynamic characteristics of reference airfoil at 
M = 0.2 and 0.6, sea-level and 25,000 ft altitudes and 
Re = 1.1e+07 and 1.8e+07 (Jung and Kim 2013). 
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non-dominated solutions and the red circle, the reference 
airfoil. C1 and C2 are outstanding airfoils which show better 
performances than the reference airfoil. For instance, C2 has a 
higher lift coefficient than those of the reference and C1 airfoils. 
Regarding the maximum lift-to-drag ratio, C1 has a slightly 
higher value than C2. The outstanding airfoils indicate that 
their aerodynamic performances are better than those of the 
reference airfoil. Also, they can be taken into account for 
the CL and L/D curves, respectively. In Fig. 11, the aerodynamic 
characteristics with respect to the outstanding airfoils show 
a better performance in a whole range of angles of attack at 
given Mach numbers. In addition, the present approach with 
specified angles of attack in object functions can be considered 
an efficient searching strategy.

Appling the design variables and object functions as input 
vectors to the SOM, a feature between the design variables and object 
functions can be shown to identify the critical design  parameter. 
Figures 12 and 13 show the maps of object functions and the 
corresponding design variables obtained by the SOM. In Fig. 12, 
high-value areas that simultaneously fulfill the maximization of 
object functions in the maps are captured with black solid lines. 
Then, the dominant PARSEC parameters for object functions 
are investigated by those corresponding areas in the maps of the 
design variables. Maps with black solid line in Fig. 13 show 
the dominant PARSEC parameters for increasing the maximum lift 
coefficient and maximum lift-to-drag ratio; the other parameters 

Figure 10. Pareto set (blue circle) with a reference solution 
(red circle) and non-dominated Pareto solutions (blue circle 
and black line).
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Figure 11. Comparisons of lift and lift-to-drag ratio curves among 
reference (blue line) and outstanding (C1: green line and C2: red 
line) airfoils at M = 0.2 and 0.6, sea-level and 25,000 ft 
altitudes and Re = 1.1e+07 and 1.8e+07 (Jung and Kim 2013). 

Figure 13. SOM results for design variables captured with black 
solid lines that indicate highly effective PARSEC parameters.

Figure 12. SOM results for object functions captured with 
black solid lines that simultaneously fulfill the maximization of 
multi-object optimization problem: (a) maximum lift-to-drag 
ratio; (b) maximum lift coefficient. 

(a) (b)
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Lower (%) Upper (%) Shared (%)

rle xlo zlo zxxlo rle xup zup zxxup zte Δzte αte βte

8.07 6.24 4.64 13.28 −16.27 0.12 7.07 −10.50 −13.37 6.25 −7.94 1.50 

Table 1. A ratio between the averaged PARSEC parameters of outstanding airfoils and PARSEC parameters of reference airfoil. 

C: Candidate.

Figure 14. X-and y-coordinate values between the outstanding 
(C1: green line and C2: red line) and reference (black line) 
airfoils (Jung and Kim 2013).

y/C

x/C0 0.2 0.4 0.6 0.8 1

Reference
C1
C2

are less effective in given ranges (± 20% of PARSEC parameter of 
reference airfoil) of design variables. For instance, the leading edge 
radius (rle) and curvature (zxxup) at a maximum thickness position 
(xup) have a decrease tendency on the upper surface. Otherwise, 
for the lower surface, a curvature (zxxlo) at a maximum thickness 
position (xlo) has an increase tendency. The position of the trailing 
edge indicates a decrease tendency. Such analysis results via SOM 
may be evaluated by an assessment of design variables among the 
outstanding airfoils, which have superior characteristics than those 
of the reference airfoil. Figure 14 shows geometrical comparisons 
among the airfoils; although the maximum thickness of upper and 
lower surfaces may be considered as a dominant parameter, the ratio 
divided by PARSEC parameter of reference airfoil indicates that 
the maximum thickness is less effective than the aforementioned 

parameters, such as radius, curvature, and trailing edge position. It 
can be confirmed in comparisons of quantitative analysis presented 
in Table 1, where highly dominant parameters over than 10% 
in comparisons between the averaged PARSEC parameters of 
outstanding airfoils and PARSEC parameters of reference airfoil 
are exactly the same with the results of SOM analysis. Considering 
the minimum and maximum range of design variables within 
± 20% of PARSEC parameters of the reference airfoil, the para- 
meters over than 10% may be regarded as dominant to improve 
the aerodynamic characteristics of the reference airfoil. 

CONCLUSIONS

In this study, the SOM for aerodynamic airfoil shape design 
exploration via MO optimization technique is applied to investigate 
the dominant PARSEC parameters using the developed PARSEC, 
ARMOGA, and commercial codes. At given ranges of design 
variables, the dominant parameters obtained from the SOM 
results can be summarized to the leading edge radius of upper 
surface, curvatures at maximum thickness of both sides, and 
trailing edge position. Also, the SOM results are compared with 
the outstanding airfoils for quantitative evaluations. Thus the 
dominant parameters between the SOM results and outstanding 
airfoils are exactly matched. In the future, pitching moment and 
divergence drag Mach number of theoutstanding airfoils will 
be investigated to consider the controllability and critical flight 
speed. In addition, 3-D wing design will be explored by using 
the currently developed optimization system and the SOM.
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