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Evaluation of nacelle drag using 
Computational Fluid Dynamics 
Abstract: Thrust and drag components must be defined and properly 
accounted in order to estimate aircraft performance, and this hard task is 
particularty essential for propulsion system where drag components are 
functions of engine operating conditions. The present work describes a 
numerical method used to calculate the drag in different nacelles, long and 
short ducted. Two- and three-dimensional calculations were performed, 
solving the Reynolds Averaged Navier-Stokes (RANS) equations with a 
commercial Computational Fluid Dynamics (CFD) code. It is then possible 
to obtain four drag components: wave, induced, viscous and spurious drag 
using a far-field formulation. An expression in terms of entropy variations 
was shown and drag for different nacelle geometries was estimated.
Keywords: CFD, Drag, Engine, Nacelle, Propulsion.

INTRODUCTION 

Evaluation of the performance of an aircraft during its 
development process is done using different tools. One 
starts with statistical databases during the conceptual 
phase; proceeds to CFD or analytical tools during 
preliminary design together with wind tunnel tests, 
and ends up in the certification phase, with the actual 
performance measurement on the aircraft.

The ability to accurately predict the aerodynamic drag, 
more specifically the correct contribution of each drag 
component, could represent a strategic commercial 
advantage. For example, the addition of some drag counts 
could represent passenger limitations in some commercial 
airplane routes; consequently, the direct operation costs 
(DOC) increase, making the airplane less attractive for 
potential customers.

The major aircraft performance parameters are drag and 
lift, which together with an engine deck can be used 
to evaluate other major aircraft characteristics: range, 
climb rate, maximum speed, maximum payload and so 
forth. When comparing lift and drag estimations using 
CFD, the lift can be more easily estimated given that it 
is one order of magnitude greater than drag. Even though 
some advances were made during the last decade, drag 
estimation using CFD still lacks behind the accuracy of a 
wind tunnel, with challenges like the accurate prediction 
of large separation regions and of laminar to turbulent 
boundary layer transition.

The knowledge on the physical components of the drag 
is important for the prediction of scale effects on aircraft 
drag. The aerodynamic drag of an aircraft flying at 

transonic speeds can be separated into viscous (or profile) 
drag, induced drag and wave drag.

•	 Viscous drag consists of skin friction and form 
drag actuating inside the boundary layer due to the 
viscosity.

•	 Induced drag is produced by a modification on the 
pressure distribution due to the trailing vortex system 
that accompanies the lift generation.

•	 Wave drag, in transonic and supersonic flight speeds, 
is related to shock waves that induce changes in the 
boundary layer and pressure distribution over the 
body surface.

DRAG BOOKKEEPING 

The generally accepted method to obtain the installed 
nacelle drag is to calculate it by subtracting the clean 
aircraft drag from the drag of the aircraft with nacelles 
(Flamm and Wilcox, 1995). However, this technique does 
not allow the separation of the various drag components 
that contribute to the total installed nacelle drag, which 
include: interference drag (from the nacelle on the wing 
and from the wing on the nacelle) and the external and 
internal nacelle drag. According to Flamm and Wilcox 
(1995), another disadvantage of this technique is that the 
data accuracy is reduced because the strain-gauge balance 
must be selected to measure the drag of the entire model 
instead of only the nacelles. A workaround to this problem 
was developed by Bencze (1977) by mounting the aircraft 
model on a strain-gauge balance and support mechanism, 
whereas the nacelles were mounted on an independent 
balance and model support mechanism. Therefore, it was 
possible to determine the interference drag components 
after measuring the aircraft and nacelle drag separately. 
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Additionally, this improves the accuracy of the nacelle 
drag measurements since the strain-gauge balances are 
sized to measure only the nacelle drag. However, this 
technique is limited in the sense that the nacelle pylon is 
not modeled.

The split between internal and external nacelle drag is also 
important because while the propulsion specialists are 
busy developing an engine and measuring thrust at static 
conditions, aerodynamic specialists are busy developing 
an airframe and measuring drag at wind-on conditions, 
usually in separate organizations and at different locations 
(SAE, AIR1703). The engine streamtube usually defines 
what is treated as drag and what is thrust loss: the flow 
outside the streamtube produces drag, while what is inside 
the streamtube produces thrust loss (Fig. 1). Nevertheless, 
the exact definition of the thrust/drag bookkeeping system 
depends on the agreement between the engine and airframe 
manufacturers and on the details of the propulsion system.

illustrated the drag decomposition from CFD due the 
entropy variations in the flow as well as the identification 
of a spurious contribution due to numerical dissipation 
of the flow solver algorithm and a proper definition of 
the boundary layer and shock region. Brodersen et al. 
(2004) presented the drag computation with the standard 
near-field method integrating the surface pressure forces 
and shear stresses, and also a drag breakdown into its 
physical components, such as viscous, wave, and induced 
drag, applying a far-field approach so that all results are 
compared to experimental data. Tognaccini (2005), using 
a far-field formulation, proposed a thrust-drag accounting 
system given a numerical solution of the viscous subsonic 
or transonic flow around an aircraft configuration in 
power-on condition.

A very simple and useful explanation to understand 
the near-field and far-field methods is to consider the 
aerodynamic drag as a force exerted by the flow field in 
the opposite direction of the body movement. In the same 
way, by the law of the action and reaction, the body reacts 
with a force with the same strength and opposite direction. 
The drag in the body perspective (near-field) comes from 
forces due to pressure distributions over the body surface 
and due to skin friction. Alternatively, the drag force 
calculated in the flow field perspective (far-field) comes 
from three natural phenomena: shock waves, vortex sheet 
and viscosity.

The most common method to predict drag consists of 
the integration of pressure and shear stress acting on the 
surface analyzed, so-called near-field technique. In this 
method, the form drag can be successfully determined 
only if the pressure distribution along the surface is known 
with great accuracy. For numerical solutions of RANS 
equations, the problem is mainly related to the presence 
of numerical artificial dissipation, which produces a 
spurious drag, and this one becomes negligible only for 
highly dense grids. Another problem of this method is that 
the near-field drag only allows the distinction between 
pressure and friction drag.

An alternative way to calculate aerodynamic forces 
through surface integration is to compute the forces 
around a surface enclosing the body. The advantage of 
this technique is that the shear stress contribution may 
be neglected if the control surface is located outside the 
viscous layer; however, an additional term (momentum 
flux) must be included in the analysis. In this method, the 
drag is determined from the momentum integral balance 
by considering fluxes evaluated on a surface far from the 
body. Oswatitsch (1956) derived a formula of the entropy 
drag considering first-order effects, in which the drag is 
expressed as the flux of a function depending only on 
entropy variations. However, this technique can bring 

Figure 1:	 Airflow inside and around the nacelle.

Besides wind tunnel tests, another way to evaluate 
nacelle drag is using empirical methods and analytical 
correlations (based on wind tunnels tests), like ESDU 
81024 “Drag of axis-symmetric cowls at zero incidence 
for subsonic Mach numbers”. However, one disadvantage 
of this method is that it is seldom the case in actual design 
to have an axisymmetric nacelle lofting and flow at null 
angle of attack.

Another alternative is to perform the drag extraction 
using Computational Fluid Dynamics (CFD) tools. A lot 
of research has been developed on this subject and the 
AIAA CFD Drag Prediction Workshop (DPW) has been 
an opportunity for worldwide CFD researchers to share 
information about their drag prediction methods since 
2001.

Due to the many advantages of drag extraction with CFD, 
many authors have written about this subject: Sloof (1986) 
and van der Vooren and Sloof (1990) contain a review 
of fundamentals of physics of CFD drag extraction, 
while van Dam (1999) presents an extended and detailed 
overview of the state of the art on drag prediction 
methods. Chao and van Dam (1999 and 2006) presented 
an airfoil and wing drag prediction and decomposition 
with a wake integration technique which is very close to 
the far-field formulation. Paparone and Tognaccini (2002) 
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uncertainties if the region integrated is not defined in a way 
that the spurious drag is eliminated from the calculation.

Theoretical drag characteristics

The integral of force balance in the free stream direction 
can be formulated as:

⋅ =+ −uV ( )
= +

r tp p i ndSx
S S S S Sairc in out lat




 −⎡⎣ ⎤⎦∞
+ +
∫ 0	 (1)

where:

p: density;

u: velocity component in freestream direction;

V: velocity vector;

p: pressure;

p
∞
: freestream pressure;

τ : viscous stress vector in freestream direction;

Sairc: aircraft surface;

Sin: inlet surface;

Sout: outlet surface;

Slat: lateral surface.

Figure 2 shows a sketch of the domain and respective 
control volume.

The right-hand side integral in Eq. (2) represents the reaction 
forces of the airplane while the left-hand side stands for the 
total force exerted by the fluid. In the CFD terminology, when 
the integration is performed using the left-hand side integral 
in Eq. (2), the near-field method is employed. Conversely, 
when the integration of the right-hand side in Eq. (2) is 
computed, the far-field method is considered.

Far-field formulation

The far-field drag extraction method used is based on 
the Van der Vooren and Destarac (2004) method, which 
assumes that viscous and wave drag effects can be 
considered confined within control volumes and that all 
entropy changes come from these two phenomena.

The key now is to transform the right-hand side of Eq. (2) 
into an entropy variation function and in separated drag 
contributions. This formulation can be borrowed from 
Tognaccini (2005) reference, resulting in the following 
equation:
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Δs: s - s
∞
 (entropy variation);

R: gas constant;

γ: ratio of specific heats;

M
∞
: freestream Mach number.

In order to perform analyses on two-dimensional nacelle 
geometries, the equation from Tognaccini (2005) can be 
simplified to an axisymmetric reference system by taking 
into account that dV = r.dr.dq. This leads to:
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Where r is the distance from the engine axis of symmetry.

Figure 2:	 Integration domain. 

Equation (1) can be decomposed into two surface integrals as:
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Volume selection

A solution to minimize the spurious drag in the far-field 
technique is to limit the integration volume. The definition of 
the integration boundaries can be made using the definition 
of the boundary layer and shock wave regions explained by 
Paparone and Tognaccini (2002). They propose a boundary 
layer and wake region sensor that simply relates the laminar 
and turbulent viscosity, defined as:

Fv
l t

l

=
+μ μ
μ

	 (7)

where:

μl: laminar viscosity;

μt: turbulent or eddy viscosity.

The value of Fv is large in the boundary layer and 
wake while in the remaining part of the domain it is 
approximately equal to one. Thus the viscous region is 
selected by defining it with Fv > (1.1*Fv∞), where Fv∞ is 
the free stream value of the boundary layer sensor.

The selection of the shock wave region relies on a sensor 
based on another non-dimensional function:

F V p
a pshock = ⋅∇

∇



	 (8)

where:

a: local sound speed.

This sensor is negative in expansion zones (no shock 
waves) and positive in compression regions. Cells with 
negative values of Fshock are excluded from the shock wave 
region.

By using the Rankine-Hugoniot relations, it is possible to 
estimate the Mach number downstream of the shock (Fcw), 
and this value is used as cutoff to define the shock wave 
region establishing the follow correlation:

F Fshock cw> 	 (9)

CFD ANALYSES

The CFD analyses were performed using CFD++, a 
commercial CFD code based on finite-volume formulation 

that can deal with arbitrary mesh types. The Reynolds-
Averaged Navier-Stokes three-dimensional equations were 
solved for the compressible flow using implicit, second-
order interpolation, centroid-based polynomials and pre-
conditioned relaxation. The turbulence model employed 
was the realizable k-e. The domain initial conditions were 
identical to the far-field boundary conditions, in which 
a characteristic-based velocity inflow/outflow was set, 
thereby prescribing aircraft speed, temperature, turbulence 
intensity and length scale.

The drag extraction formulation was applied to three 
different cases, typically employed in the development 
and testing of an aircraft:

1)	 2D analysis of an isolated DLR-F6 nacelle;

2)	 3D analysis of a long-duct nacelle with different 
contraction ratios;

3)	 3D analysis of a wind tunnel model internal drag.

Two-dimensional DLR-F6 nacelle drag 

In order to test the drag assessment procedure, the DLR F6 
nacelle (AIAA, 2003) was chosen. This is a wind tunnel 
model, long-duct nacelle, from the wing-body-pylon-
nacelle configuration used on the “AIAA Drag Prediction 
Workshops”. This nacelle geometry is open to the general 
public and, therefore, can be used in the future to compare 
results from different authors. The original nacelle is a 
through-flow nacelle (TFN) approximately axisymmetric, 
which can be easily used to perform a two-dimensional 
analysis. Typical dimensions for the DLR-F6 wind tunnel 
model nacelle are given on Table 1, together with design 
parameters. 

Table 1: DLR-F6 nacelle dimensions and design parameters
Dimension (mm)

Length 180
Highlight diameter 55.1
Inlet throat diameter 49.4
Fan diameter 54.8
Max diameter 76.2
Exhaust diameter 50
Diffusion ratio 1.1
Contraction ratio 1.24

A hexahedral mesh was built around this nacelle, 
extending 10 nacelle lengths upstream, 20 lengths 
downstream and 20 fan diameters in the spanwise 
direction. Figure 3 shows a detail of the mesh, while 
Table 2 presents the mesh size. 
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An analysis of different Mach numbers were made at 
Reynolds number equal to 3 x 106, which was the same 
Reynolds number at which the DPW measurements were 
performed. The reference area is 0.1454 m2.

Figure 4 shows isocontours of entropy for the Mach 
0.6 case in the integration domain, which extends from 
the engine axis up to 1.57 times the nacelle maximum 
diameter, and from the nacelle leading to trailing edge. 
The integration diameter has also been varied, but when 
there are no shock waves over the nacelle, it does not 
affect the drag results even with diameters as low as 
5% greater than the maximum nacelle diameter. In the 
presence of the shock waves, the drag values were up 
to 0.6 drag counts lower, when reducing the integration 
domain.

Figure 3:	 Detail of the DLR-F6 axisymmetric mesh.

Figure 4:	 Isocontours of entropy on the integration domain, 
Mach 0.3 case.

Table 2: Mesh size
Total nodes number 48,969
Total elements number 49,489

A comparison between the near field and far-field drag 
methodologies for the DLR-F6 nacelle as a function of 
Mach number is presented on Fig. 5. The drag coefficient 
calculated with near field methodology is about one drag 
count higher than the far-field method for most speeds, 
while at the Mach number 0.85 both methodologies 
estimate approximately the same drag. At the low speeds, 
one of the reasons for the difference is that the nacelle 
has a finite trailing edge which is not accounted for in 
the fair field methodology. On the other hand, at Mach 
number 0.85 there is a shock wave on the nacelle exterior, 
which is more conservatively accounted for in the far-field 
methodology. Figure 6:	 Nacelle contours.

Figure 5:	 DLR-F6 nacelle drag coefficients as a function of 
Mach number.

Effect of the inlet contraction ratio on nacelle drag

The drag of an isolated nacelle is influenced by four 
major parameters: length, maximum diameter, nozzle 
diameter and contraction ratio. The length is a function 
of the engine length and the design of the inlet expansion 
rate and nozzle convergence rate, as well as the exhaust 
mixing length. The maximum diameter is defined by the 
engine accessories attached to the casing, which must be 
enveloped by the nacelle contours. The nozzle diameter 
is linked to engine performance and is fixed for a given 
engine. The contraction ratio is the ratio between the area 
of the inlet throat and the area of the highlight (the area 
contained inside the line that connects the inlet leading 
edge). This ratio affects both the cruise and takeoff 
performances. A small ratio produces a small cruise drag, 
but leaves the inlet sensitive to separation with high angles 
of attack and during crosswind operation on the ground.

In order to verify the effect of variations of the inlet 
contraction ratio on drag, a generic long-duct nacelle was 
employed and changes were made to its original geometry. 
Figure 6 shows the nacelle contours.
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For all geometries, the same the throat area was maintained, 
while the highlight diameter was changed in order to 
analyze the nacelle performance. Table 3 summarizes the 
different Contraction Ratios used.

Table 4: Mesh size
Total nodes number 752,92
Total elements number 776,648

Table 5: Flight condition
Mach number 0.86
Altitude (ft) 43
∆ISA 0

Figure 7:	 Full meshed domain.

Figure 8:	 Symmetry plane.

Figure 9:	 Nacelle mesh detail.

Figure 10:	 Shock wave sensor region.

Table 3: Nacelle contraction ratios
Contraction ratio

Nacelle A 1.200
Nacelle B 1.365
Nacelle C 1.300

In this work, due to the usage of structured meshes, it 
was possible to use the same mesh parameters for all 
geometries, making the results independent of mesh 
variations between the geometries. The meshes resolutions 
are shown in Table 4.

The Figures 7 to 9 illustrate the meshed domain and, in 
more details, the meshed nacelle surface and symmetry 
plane.

The three different nacelle contraction ratio geometries 
were simulated and post-processed in order to estimate 
all the components drag in the same flow condition, 
characterized as a cruise flight phase of an aircraft. The 
flight condition simulated is summarized in Table 5.

Figure 10 shows the region of the shock wave sensor 
and Fig. 11 shows the region selected by the boundary 
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Figure 11:	 Boundary layer sensor region.

Figure 13:	 Sensitive study of the interpolation cylinder radius’ 
effect on nacelle drag.

Figure 14:	 Comparative results of drag for the different 
geometries.

Figure 12:	 Nacelle and the cylinder integration volume.

layer sensor. It is important to highlight that the volumes 
selected by both sensors overlap partially, given that 
part of the shock wave can be immersed in the boundary 
layer. Thus it is necessary to apply both sensors together 
to define the volume where the drag will be calculated. 
Figure 11 shows the external side of the nacelle with 
shock waves on the inlet lip, the bottom region near the 
maximum diameter and near the trailing edge. It also 
shows a cross cut of the nacelle through the symmetry 
plane. It can be seen that the volume does not include the 
internal side of the nacelle (inlet and exhaust regions), 
which was excluded from the domain after applying the 
boundary layer sensor.

Given that the two-dimensional DLR-F6 nacelle integrated 
drag was not very much influenced by the integration 
volume, the drag accounting procedure was simplified 
and it was decided to use a cylindrical volume around 
the nacelle, shown on Fig. 12 in the drag computations, 
instead of the regions defined by the shock wave and 
boundary layer sensors,.

A sensitivity analysis of the drag as a function of the 
cylinder radius was performed and the Fig. 13 shows 
a sensitive study with different cylinders radii and 
the respective drag estimation.It can be observed that 
there is a small increase in drag with the increase in 
the integration cylinder radius. Nevertheless, the 
differences between drag values increase by less than 
1% though the integrated volume doubles from one 
case to the next.

According to the flight conditions indicated in Table 5 
and by using  Eq. (3) with a cylindrical volume of radius 
equal to 1 m, the results are comparatively summarized 
in Fig. 14, where Nacelle “B” is the comparison basis 
(i.e. 100%).

It is noted from Fig. 14 that the best drag performance 
of Nacelle “A” defines the geometry with the lowest 
drag and consequently contributes to the best aircraft 
performance. Further comparisons were made with 
the ESDU results and revealed that drag values agree 
within 10%.
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Figure 16:	 Entropy isocontours on the symmetry plane of the 
integration volume.

Figure 17:	 Internal nacelle model drag coefficient as a function 
of Mach number.

Internal drag

As seen before, in turbofan engines, the nacelle drag 
is assumed to be that one produced outside the stream-
tube passing through the intake, therefore it includes the 
region from the inlet lip stagnation point to the nacelle 
trailing edge. The effect of the flow on the internal 
cowlings, supporting structures as well as the pylon 
portion scrubbed by the engine jet is regarded as a thrust 
loss. Additionally, when testing a wind tunnel model, it 
may present other structures that are not present on a real 
aircraft or engine test bench. Moreover, in case of short-
duct nacelles, parts of the pylon will be washed by the 
engine stream, thus being necessary its removal from the 
nacelle drag. Fig. 15 shows a typical short-duct nacelle 
wind tunnel model. 

case, such increment is not caused by shock waves, but 
by the increased separation at the junction between the 
bifurcation and the inlet duct.

CONCLUSIONS

A comparison of drag methodologies was performed 
for a two-dimensional case nacelle. Although a 
fair agreement on drag was found, some important 
differences still exist. The far-field methodology does 
not account for the trailing edge and is greatly affected 
by shock waves when compared to the near field 
methodology. It remains to be checked whether these 
differences would be this great if a three-dimensional 
analysis were made. Nevertheless, this methodology 
can be easily employed in optimization processes, in 
which calculating the absolute value of drag is not as 
important as reaching the minimum drag.

The far-field drag methodology was applied to the 
evaluation of nacelle drag, showing good agreement 
with ESDU results and enabling the calculation of more 
complex nacelle geometries drag. The use of sensors to 
split the boundary layer and shock regions from the rest 
of the domain allows the assessment of wave and form 
drag separately. However, the sensor definition impacts 
on the size of the integrated region, which could lead 

The use of CFD and the far-field formulation present an 
easy way to perform the split between the external and 
internal drags. A CFD analysis of the engine and pylon 
was performed for different Mach numbers, letting the 
Reynolds number vary and keeping the same sea level ISA 
condition. The mesh used was a hybrid tetra-prism with 
approximately 6 million elements. 

The integration volume chosen included only the internal 
nacelle, i.e. the inlet duct the core-cowl bifurcation and 
the external part of the core cowl that is inside the nacelle 
and its internal surface. The pylon was not included as 
well as the core-cowl downstream of the fan nozzle. 

Figure 16 shows a cross cut along the nacelle symmetry 
plane, with isocontours of constant entropy for the Mach 
0.75 case, showing the limits of the integration domain 
along with the main sources of internal drag.

Results of internal drag for the different Mach number 
cases are shown in Fig. 17 and are consistent with the 
expected drag levels. When compared to the DLR-F6 
nacelle’s two-dimensional results shown previously, 
there is a drag increase at the highest speeds. In this 

Figure 15:	 Typical short duct nacelle wind tunnel model.  
Source: Li, Li and Qin, 2000.
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to errors on the drag value. It is worth noting, however, 
that the intensity of the spurious drag is small, as well 
as its effect on the final result, in both two- and three-
dimensional cases. 

The separation of internal drag from the overall nacelle 
(or aircraft) drag was shown to be easily achievable within 
the post-processing of the results. An identical procedure 
can be used to analyze the effect of other problems 
and phenomena on the nacelle, eg.: nacelle inlet lip ice 
accretion, in case of ice-protection system failure or engine 
failure; effect of nacelle dents and other protuberances on 
drag. Even in turboprop engines, a similar method can 
be employed, evaluating the drag of its intricate shapes, 
propeller-induced swirl and generally poor aerodynamics 
of its installations.

It must be remarked that the cases analyzed were subject 
to completely turbulent flows, without any laminar region 
and that nowadays many manufacturers are researching 
nacelles that would allow laminar flow up to 20-30% of 
the nacelle length. In these cases, an additional validation 
of this methodology needs to be performed.
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