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Abstract: In this paper, different feedback linearization 
schemes are studied to address the motion planning problem 
of fixed-wing unmanned aerial vehicles. For a unmanned aerial 
vehicle model with second-order dynamics, several schemes 
are studied to make the vehicle (i) fly over and (ii) make a 
loitering around the objective position. For each scheme, 
comparisons are made to illustrate the advantages and 
disadvantages. Lyapunov stability analysis is used to prove the 
stability of the proposed schemes, and simulation results for 
some case studies are included to show their feasibility.

Keywords: Feedback linearization, Unmanned aerial 
vehicle, Motion planning. 
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INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have 
gained increasing attention for various missions such as 
remote sensing of agricultural products (Costa et al. 2012), 
forest fire monitoring (Casbeer et al. 2006), search and rescue 
(Almurib et al. 2011), transmission line inspection (Li et al. 
2013) and border monitoring (Beard et al. 2006). To this date, 
various approaches have been employed to address the motion 
planning of UAVs to reach, fly over or loiter around an objective 
position. As an example, in Frew et al. (2008) and Lawrence 
et al. (2008), vector fields with a stable limit cycle centered 
on the target position were constructed. In the mentioned 
studies, the authors employed a Lyapunov vector field guidance 
(LVFG) law to bring the UAV to an observation “orbit” around 
the target. Also, in Gonçalves et al. (2011), a vector field approach 
was used to bring several non-holonomic UAVs to a static 
curve embedded in the 3-D space. In Gonçalves et al. (2010), 
vector fields were determined such that a robot converged to 
a time-varying curve in n-dimensions and circulated it. In 
Hsieh et al. (2008), decentralized controllers were proposed 
to bring a number of robotic agents to generate desired simple 
planar curves, while avoiding inter-agent collision. In Hsieh 
et al. (2007), the controllers were modified such that the robots 
converged to a star-shaped pattern and, once on the objective 
curve, circulated it. In Bonyan Khamseh et al. (2014), based 
on the concept of flight corridor, a decentralized coordination 
strategy was proposed to bring a team of fixed-wing UAVs to 
a circular orbit, while avoiding inter-UAV collision.  In Hafez 
et al. (2013), model predictive control was used to create a 
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dynamic circular formation around a given target. By means of 
simulations, it was shown that the system was stable, but formal 
stability analysis was not provided. In Marasco et al. (2012), 
the same approach was improved to address encirclement of 
multiple targets, without stability analysis.

It is also possible to employ feedback linearization to simplify 
the equations of motion in motion planning problems (Lawton 
et al. 2003; Fan and Zhiyong 2009; Kanchanavally et al. 2006). 
As an example, in Lawton et al. (2003), feedback linearization 
was employed to study the formation control of the end-
effector position of a team of non-holonomic robots. Having 
obtained simpler double-integrator equations, control laws were  
designed and formation control was achieved. Stability of 
the system was proven by means of Lyapunov stability theory. In 
Fan and Zhiyong (2009), for a multi-agent system, the authors 
proposed a dynamic feedback linearization scheme to describe 
the equations of motion of each agent by third-order integrators. 
Then, a formation control law with inter-agent damping was 
developed, and asymptotic stability of the system was verified 
using Lyapunov stability analysis. In Kanchanavally et al. (2006), 
the specific problem of 3-D motion planning of UAVs via feedback 
linearization was studied. In that study, a non-holonomic UAV 
equipped with a fixed-angle camera was considered. The footprint 
of the camera was defined as the system output, and it was shown 
that it converged to an objective position. Similar to the previous 
papers (Lawton et al. 2003; Fan and Zhiyong 2009), the stability 
of the system was studied by means of Lyapunov stability theory. 
Yet, an important drawback of Kanchanavally et al. (2006) is that 
it did not include the constraints of minimum and maximum 
forward velocity of fixed-wing UAVs. Therefore, the UAVs came 
to rest, i.e. zero forward velocity, once the camera footprint 
converged to the target position.

In this paper, several feedback linearization schemes are 
studied to address the problem of motion planning of fixed-
wing UAVs flying with constant forward velocity. The objective 
here is that the UAV (i) flies over or (ii) loiter around a static 
objective position, without coming to rest.

FEEDBACK LINEARIZATION SCHEMES

In the following subsections, a UAV with an on-board 
camera will be considered. For a fixed-angle forward- 
looking camera, the results were presented in Kanchanavally 
et al. (2006), where the UAV finally came to rest. Due to minimum 

forward velocity constraint, that method is not applicable to fixed-
wing UAVs. Here, we define several schemes such that the footprint 
of the on-board camera converges to an objective position while 
the UAV either flies over or loiters around the objective position 
with constant forward velocity.

UAV with Forward-Looking Camera, 
Scheme #1

In the first scheme a fixed-wing UAV with variable-angle 
forward-looking camera is considered. In the control affine 
form, considering a simplified rigid-body model, the dynamic 
equations of motion of the system are given by:

where: rx, ry and rz represent x, y, and z positions of the 
UAV; υ and υz represent the constant velocity υ in the x – y 
horizontal plane and the velocity υz in the z-direction; θ and ω 
represent the heading angle and angular velocity of the UAV; 
ϕ and υϕ represent the angle and angular speed of the camera, 
respectively. The UAV constants are given by m (UAV mass), 
I (UAV moment of inertia about z-axis) and J (camera 
moment of inertia about its rotation axis). The input vector 
is u = [u1 u2 u3]T. 

In the model given by Eq. 1, it has been assumed that 
the forward velocity in the x – y plane, i.e. υ, is constant. 
With this simplification, if one initially chooses the forward 
velocity to satisfy υmin ≤ υ ≤ υmax, one can conclude that 
the minimum and maximum forward velocity constraints 
will be automatically satisfied throughout the mission. 
Also, since the camera is not mounted with a fixed angle, 
one can come up with scenarios in which the UAV does 
not come to rest when the camera footprint converges to 
the objective position. As it can be seen from Eq. 1, the 
camera dynamics has been assumed to be second-order 
and completely decoupled from the UAV dynamics. For a 
forward-looking camera, one can consider the following 
output for the system (Kanchanavally et al. 2006):

(1)
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where: L = rzcotϕ. 
As schematically shown in Fig. 1, the first two elements of 

Γ represent x and y positions of the footprint of the forward-
looking camera. Also, the third element represents the altitude 
of the UAV. An important advantage of this scheme, compared 
to Kanchanavally et al. (2006), is that ϕ is not constant here 
and is considered one of the system state variables.

Assuming relative degree of ri for the i-th elements of Γ, 
after ri times differentiation, one finds:

and A3 = 0. 
Also:

where: Lf Γi is the Lie derivative, i.e. Lf Γi  =  ∂Γi/∂x and gi is 
the i-th column of the matrix g. Also, A ∈ R3×1 and B ∈ R3×3, 
where the elements of A are given below. For the system given 
by Eq. 1 and with output given by Eq. 2, one can obtain the 
vector of relative degree as [r1 r2 r3] = [2 2 2]. 

One can verify that det(B) = –(x5)2 cos x7/m·I·J sin3 x7 . This 
determinant can be zero if x5 = 0 or cos x7 = 0. In order to show 
that x5 ≠ 0, we define the error as:

where: R is the reference signal and, for a stationary reference 
signal, one will have R = 0. Assuming E3 (0) > −R3, one can 
rewrite the third row of Eq. 4 as:

Therefore:

In the following paragraphs it will be shown that the 
absolute value of E3monotonically decreases and converges 
to zero. Therefore, noting that R3 > 0, it will be easy to see that 
u’(t) is always positive. With Γ3(0) > 0, from Eq. 6, one can 
conclude that Γ3(t) > 0 and therefore x5 ≠ 0, i.e. the altitude 
cannot be zero. Also, for cos x7 = 0, one must have x7 = kn + π/2. 
It means that the objective position is exactly underneath 
the UAV actual position. This is an important drawback which 
can lead to the failure of this scheme. Yet, due to discretization, 
control errors and other real-world phenomena, this is not a 
concern in practical situations. In our simulations, no problem 
was encountered due to this drawback. Also, det(B) → ∞ if 
x7 → kπ. Yet, x7 → kπ means that L → ∞. In practice, it is not 
a legitimate concern because Γ3(0) > 0 and also the UAV 
cannot be infinitely far from its target (x7 ≠ kπ). Therefore it 
is concluded that det(B) =  –(x5)2 cos x7/m·I·J sin3 x7 ≠ 0 for 
practical applications.

In order to study the error dynamics, we differentiate 
Eq. 4 to obtain:

Figure 1. The UAV and its camera footprint in scheme #1.
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Similar to Kanchanavally et al. (2006), if we define 
u = B–1(–A – Γ + υ) and , it is easy to see that:

where: K ∈ R 3×3 and eigenvalues of K have negative real parts. 
In order to study the error dynamics given by Eq. 8, one 

may consider the following Lyapunov function:

The time derivative of the above positive definite V is given by:

Therefore the error converges to zero. Regarding the 
internal dynamics with a vector of relative degree of [2 2 2], 
one needs to propose two more transformations to complete the 
diffeomorphism. The internal dynamics is given by Eq. 11:
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Figure 2. The UAV and its camera footprint in scheme #2.

For the given output, one can verify that [r1 r2 r3] = [2 2 2]. 
Therefore, an equation identical to that given in Eq. 3 is 
obtained, in which:

One can verify that det(B) = –(x5)2 cos x7/m·I·J sin3 x7. 
This determinant can be zero if x5 = 0 or cos x7 = 0. With the 
reasoning given in the previous subsection (see Eqs. 4 – 6), one 
can conclude that x5 ≠ 0, i.e. the altitude cannot be zero. For a 
UAV with constant forward velocity and a side-looking camera, 
the only possible motion where the error goes to zero is when the 
UAV loiters around the objective position, with a fixed loitering 
radius. Therefore, with a non-zero loitering radius, it is easy to 
conclude that cos x7 ≠ 0. Also, det(B) → ∞ if x7 → kπ. Yet, x7 → kπ 

For a UAV with a forward-looking camera, the only possible 
motion where the error goes to zero is when the UAV flies on a straight 
line over the objective position. Therefore, as t → ∞, x4 → 0. With 
x4 → 0, it is easy to conclude that x3 will be bounded and therefore it 
is not going to cause undesirable effects. Simulation results verifying 
the feasibility of this approach will be given in “Simulations” section.

UAV with Side-Looking Camera, Scheme #2
In this subsection, a UAV with variable-angle side-

looking camera is considered. The equations of motion of this 
configuration are identical to those given in Eq. 1 and therefore 
are not repeated here. For a side-looking camera, the output 
is given by:

∙

(7)

(8)

(12)

(9)

(10)

(11)

where the first two elements of Γ represent x and y positions 
of the footprint of the camera (see Fig. 2). 
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means that L → ∞, which is not common in practical scenarios. 
Therefore, it is concluded that det(B) = –(x5)

2 cos x7/m∙I∙J sin3 x7 ≠ 0 
for practical applications, and thus the system given by 
Eq. 1 with output given by Eq. 12 is input-output linearizable.

For this scheme, the Lyapunov stability analysis is identical to 
that given by Eqs. 7 – 10. Therefore, it can be concluded that the 
error dynamics asymptotically converges to zero. Regarding 
the internal dynamics with a vector of relative degree of [2 2 2], 
one needs to propose two more transformations to complete 
the diffeomorphism. The internal dynamics is given by  and  
in Eq. 13:

where the first element of Γ is the square of the distance 
of the UAV from the origin of the coordinate system, i.e. the 
stationary objective position. 

It can be readily seen that [r1 r2 r3] = [3 2 2]. Therefore, in 
a compact form, one can write:

For a UAV loitering around a given objective position with 
constant (finite) forward velocity, x4 will be bounded and cannot 
go to infinity. Also, in a loitering motion, x3, i.e. the heading 
angle, can be shown by 2kπ + θ’ where θ’ is a finite value and 
therefore the internal dynamics will not cause undesirable effects 
in our approach. Simulation results regarding this scheme will 
be given in “Simulations” section.

An important drawback of this method is that one cannot 
explicitly control the final loitering radius of the UAV. Therefore, 
in the next scheme, we try to explicitly define the loitering 
radius as one of the system outputs.  

UAV with Side-Looking Camera, Scheme #3 
In this section, we modify the equations of motion given 

in Eq. 1 in a manner that a new useful scheme is obtained. In 
the control affine form, the new dynamic equations of motion 
are given by Eq. 14:

Here, the main difference is that L and L are explicitly 
considered to be state variables. One may define the system 
output as:

where:

One can verify that det(B) = –2υc/m∙I (x1 sin x3 – x2 cos x3). 
An important disadvantage is that this determinant can be 
zero if x1 sin x3 − x2 cos x3 = 0, i.e. when the UAV is either flying 
radially inward or radially outward. Yet, if the heading of the 
UAV does not fall within this region, the UAV can converge to 
a loitering motion around the origin of the coordinate system. 
On the other hand, the advantage of this scheme is that, 
depending on the value of R1, i.e. the first element of the reference 
signal, one can come up with scenarios in which the UAV converges 
to a loitering radius either smaller or greater than the initial 
one. Also, a second advantage is that one can explicitly control 
L, as R3. Therefore, for R3 < 2 √R1, R3 = 22 √R1 and R3 > 2 √R1, 
one can define scenarios in which the UAV loiters around the 
origin while the camera footprint sweeps a circle with the radius 
smaller than, equal to or greater than √R1. This is schematically 
shown in Figs. 3a to 3c.

Regarding the stability of the system, if we define the error as:

∙

(13)

(15)

(16)

(14)

(17)

for a stationary reference signal, one will have R = R = 0 . 
Differentiating Eq. 17, one has:

∙ ∙ ∙



J. Aerosp. Technol. Manag., São José dos Campos, Vol.8, No 1, pp.63-72, Jan.-Mar., 2016

68
Khamseh HB

Now, if we define u = B–1(–A – Γ + υ) and υ = KE, it is easy 
to see that:

where: K is a matrix with eigenvalues which have negative 
real parts. 

In order to study the error dynamics given by Eq. 19, one 
may consider the following Lyapunov function:

Figure 3. Three different scenarios in scheme #3.
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The time derivative of the above positive definite V is given by:

Therefore the error dynamics is asymptotically stable. 
Regarding the internal dynamics with a vector of relative degree 
of [3 2 2], one needs to propose one more transformation to 
complete the diffeomorphism. The internal dynamics is given 
by η8 in Eq. 22:

For a UAV loitering around a given objective position 
with constant (finite) forward velocity, x4 will be bounded and 
cannot go to infinity. Therefore, the internal dynamics will not 
cause undesirable effects in our approach. Simulation results 
regarding this scheme will be given in “Simulations” section.

UAV with Side-Looking Camera and 
One Virtual Forward-Looking Camera, 
Scheme #4 

In this subsection, we modify the previous scheme in the 
sense that the UAV can loiter around the origin with a desirable 
radius while avoiding the singularity problem of scheme #3. 
Convergence to a loitering radius (i) smaller or (ii) greater than 
the initial radius is studied separately.

Convergence to a Loitering Radius Smaller than 
the Initial One

In this scenario, it is initially assumed that the UAV is 
equipped with a virtual forward-looking camera. From geometry, 
one can find two tangent lines (and their corresponding 
tangency points) between the initial position of the UAV and 
the circle with the reference radius. In the first phase, the UAV 
can choose one of the tangency points as its virtual objective 
position and fly over it, according to scheme #1, discussed 
earlier. Assuming that the UAV flies over the tangent line, its 
heading will be perpendicular to the radius of the objective 
circle as it reaches the virtual objective position. As the UAV 
reaches the tangency point, it switches to scheme #3. The 
advantage here is that, in the second phase, it is ensured that 
the heading of the UAV is far from inward-outward direction 
and therefore scheme #3 can bring the UAV to loiter around the 
objective position, with desirable radius. This is schematically 
shown in Fig. 4.

The details of feedback linearization, control laws and 
stability analysis of scheme #1 and scheme #3 were discussed in 
the previous subsections and are not repeated here. Simulation 
results of this scheme will be given in “Simulations” section.

∙ ∙
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Figure 4. Scheme #3, convergence to a loitering radius 
smaller than the initial one.

Figure 5. Scheme #3, convergence to a loitering radius 
greater than the initial one.

Mass 
(kg)

Moment of 
inertia — z-axis 

(kg∙m2)

Moment of 
inertia of the 

camera (kg∙m2)

Forward 
velocity 
(m/s)

1 0.01 0.001 10 

Table 1. Characteristics of the light fixed-wing UAV.

Convergence to a Loitering Radius Greater than 
the Initial One

Similar to the previous subsection, we assume that the UAV 
is equipped with a virtual forward-looking camera and a side-
looking camera. The scenario proposed here consists of three 
phases, as shown in Fig. 5.

In the first phase, based on scheme #1, the UAV flies to 
a virtual objective position which is on the extension of the 
line connecting the origin to the initial position of the UAV. 
Let’s denote the UAV distance from the origin by d and the 
desired loitering radius by R*. At the end of the first phase, 
when d is relatively greater than R*, the UAV finds the tangent 
lines from its current position to the circle with the radius 
R*. With d relatively greater than R*, one can assume that, 
in the second phase, based on scheme #1, the UAV flies on 
the tangent line to reach the tangency point (second virtual 
objective position). Once at this point, the UAV has reached 
the reference radius and switches to scheme #3. In the third 
phase, based on scheme #3, the UAV loiters around the 
origin with R1 = R*. The details of feedback linearization, 
control laws and stability analysis of scheme #1 and scheme 
#3 were discussed in the previous subsections and are not 
repeated here. Simulation results of this scheme will be given 
in “Simulations” section.

Simulations

In this section, some case studies are developed to verify 
the feasibility of the proposed schemes. A light fixed-wing UAV 
is considered, with its characteristics given in Table 1. In the 
simulations, where applicable, the initial condition of the UAV is 
assumed to be [−1,800 m   2,500 m   240 deg  1 deg/s  300 m  10 
m/s  10 deg  1 deg/s]T . For the first scheme, the reference signal 
is assumed to be [100 m  −20 m  500 m]T. For the described 
case study, simulations were carried out and the results are 
shown in Fig. 6.

As it can be readily seen from Fig. 6, after the initial 
transition, the UAV has aligned its motion such that it flies almost  
over the objective position on a straight line. Once on this line, 
the objective position is monitored by merely controlling the 
angle of the camera (see Fig. 7).

As it was expected, in this scheme, the camera angle will 
approach zero as the UAV flies toward the objective position. 
As the UAV flies away from the objective position, the camera 
angle will approach π, as t → ∞.

Figure 6. UAV trajectory obtained from scheme #1.

Figure 7. Forward-looking camera angle obtained from 
scheme #1.
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For the second scheme, the reference signal is assumed 
to be [−50 m −50 m 500 m]T. For the described case study, 
simulations were carried out and the results are shown in Fig. 8.

As it can be seen from Fig. 8, the UAV has successfully 
converged to a loitering motion around the objective 
position. Also, as expected, the camera angle converges to 
a fixed value in the loitering motion (see Fig. 9).

The initial conditions of the third scheme are assumed to 
be identical to those of the first scheme. Here, the reference 
signal is assumed to be [R0 500 m 30 deg]T, where R0 is 
the square distance of the UAV from the origin, at the initial 
time. Similar to the previous scenarios, simulations were 
carried out and the results are shown in Fig. 10.

Also, in this scheme, it is possible for the UAV to 
converge to a loitering circle with radius smaller/greater 
than the initial one. For the loitering radius of 1,500 and 
4,500 m, simulations were carried out and the results are 
shown in Figs. 11 and 12, respectively. It can be seen from 
Figs. 11 and12 that the UAV has successfully converged 
to a loitering motion around the origin in both scenarios. 
Yet, it must be reminded that scheme #3 can fail if the UAV 
flies in the radial direction. Thus, it is recommended that 
one employs scheme #4 if a loitering motion is desirable. 

It is important to note that scheme #4 includes scenarios 
where the loitering radius can be smaller/greater than the 
initial distance of the UAV from the origin.

To verify the feasibility of scheme #4, a case study is 
developed in which the UAV is at the same initial condition 
as before. In the first example, let’s assume that the UAV is 
desired to loiter around the origin with a radius of 1,500 m, 
a value smaller than its initial distance to the origin. For this 
case study, simulation results are shown in Fig. 13.

Figure 8. UAV trajectory obtained from scheme #2.

Figure 9. Side-looking camera angle obtained from scheme #2.
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Figure 10. UAV trajectory obtained from scheme #3 — 
first example.

Figure 11. UAV trajectory obtained from scheme #3 — 
second example.

Figure 12. UAV trajectory obtained from scheme #3 — 
third example.
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In Fig. 13, the first and the second phases of the path are 
shown in red and blue, respectively (see Fig. 4). As it can be 
seen from the figure, the UAV has successfully converged to 
the desired reference signal. In the second case study, assume 
that the UAV is desired to loiter around the origin with a 
radius of 4,000 m, a value greater than its initial distance to 
the origin. For this case study, simulation results are shown 
in Fig. 14, where the first and the second phases of the path 
are shown in red and the last phase is shown in blue (see 
Fig. 5). As it can be seen from Fig. 14, the UAV has successfully 
converged to a loitering motion around the origin with the 
desired loitering radius.

Conclusion

In this paper, several feedback linearization schemes were 
studied to make a fixed-wing UAV, with constant forward velocity, 
(i) fly over or (ii) loiter around a stationary objective position. 
Throughout the paper, advantages and disadvantages of each 
scheme were discussed. A main drawback of the proposed schemes 
is that they do not take account of the maximum angular velocity 
constraint of fixed-wing UAVs. In scheme #1, the proposed method 
failed if the UAV was exactly above the objective position. Scheme 
#2 was disadvantageous in the sense that the loitering radius 
cannot be explicitly controlled. This was improved in scheme 
#3. Yet, the method in scheme #3 failed when the UAV had to 
fly radially inward or radially outward. However, if the heading 
of the UAV did not fall within this region, the UAV converged 
to a loitering motion around the origin. In scheme #4, the UAV 
had to be far enough from the objective circle. In this manner, 
one could assume that the UAV reaches the tangency point with 
its heading far from inward-outward direction, and therefore 
scheme #3 could bring the UAV to loiter around the objective 
position, with desirable radius. It is important to note that, in 
scheme #3 and scheme #4, the switching from a control strategy 
to another was given as an equality-type condition. Therefore, 
for real-world implementation, thresholds must be defined, 
and the equalities must be replaced by appropriate inequalities.
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Figure 13. UAV trajectory obtained from scheme #4 — first 
case study.

Figure 14. UAV trajectory obtained from scheme #4 — 
second case study.
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