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ABSTRACT
For the aircraft, the engine is its core component. Once the engine fails, the flight safety will be seriously affected; therefore, 

it is necessary to diagnose the failure in time. This paper briefly introduced three aircraft engine fault diagnosis algorithms based 
on support vector machine (SVM), random forest, and particle swarm optimization-back-propagation (PSO-BP) and carried out 
a simulation experiment on the performance of the three algorithms in MATLAB software. The results showed that the PSO-BP-
based diagnosis algorithm had the highest recognition accuracy and the SVM-based diagnosis algorithm had the lowest, both 
for artificial fault data and real fault data. The PSO-BP-based diagnosis algorithm took the least average recognition time, and the 
SVM-based diagnosis algorithm took the longest time.
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INTRODUCTION

Since its invention, the aircraft, a flying device, has become more and more sophisticated, intensive, intelligent and efficient in 
its overall structure with the progress of technology (White and Karimoddini 2020). It can be said that a large number of advanced 
modern technologies have been applied in modern aircraft. The application of these technologies allows aircraft to fly faster and 
higher and to provide better service to users. However, the precise structure and its use environment also make the safety and 
reliability of aircraft subject to more stringent challenges (Li 2020). The working environment of aircraft, especially passenger 
aircraft, is generally in the stratosphere at high altitude. In case of failure, especially engine failure, flight safety will definitely be 
affected. In mild cases, the flight may make an emergency landing, which will affect operational efficiency; in severe cases, the flight 
may stop or explode, causing loss of life and property (Ali et al. 2010). Therefore, accurate fault diagnosis of an aircraft engine is 
an important means to maintain safe aircraft operation. Zhao et al. (2020) proposed an improved extended least square support 
vector machine (e-LSSVM), and verified the effectiveness of the method in aero-engine fault diagnosis through experiments. Based 
on the advantages of an artificial immune system, Ma et al. (2015) put forward an intelligent diagnosis method for aero-engine 
wear faults and verified the effectiveness of the method by experiments. Zhao et al. (2017) proposed a flight state partition-based 
sensor fault diagnosis method to improve the fault diagnosis accuracy of aero-engine and verified the effectiveness of the method 
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through simulation. This paper briefly introduced three aircraft engine fault diagnosis algorithms based on support vector machine 
(SVM), random forest, and particle swarm optimization-back-propagation (PSO-BP) and carried out a simulation experiment 
on the performance of the three algorithms in MATLAB software. The main goal of this paper is to rapidly detect aircraft engine 
faults with an intelligent algorithm. The basic process is to collect relevant data that can reflect the engine condition and then 
use intelligent algorithms to identify the collected data. This paper proposes the PSO-BP algorithm to identify the engine data 
and compares it with SVM and random forest algorithms. The final results verified the effectiveness of the PSO-BP algorithm for 
diagnosis of engine faults.

BRIEF INTRODUCTION OF AIRCRAFT ENGINE AND FAULT DIAGNOSIS

The original aircraft was relatively simple in structure. Its engine used the expansion thrust generated by the rapid combustion 
of fossil fuels in a confined space, which drives the piston to produce reciprocating motion, and the reciprocating motion power 
drove the propeller through transmission devices such as belt and gear to provide lift airflow to realize flight (Furse et al. 2021). 
As the demand for aircraft flight speed increases, turbojet engine appears, and its structure is shown in Fig. 1, including inlet, 
compressor, combustion chamber, turbine, and nozzle. The turbine is the center of gravity of the whole jet engine. The structure of 
the turbine mainly includes a rotating shaft, a rotor, and working blades connected to the rotor (Yang et al. 2016). The performance 
of aircraft engines has been greatly improved with the progress of electronic and material technology, but it also makes the structure 
more complicated and maintenance more difficult.

Figure 1. A schematic diagram of aircraft engine structure.

The traditional engine diagnosis method is regular manual maintenance, and different parts are exchanged and maintained 
according to the designed working life. This method is simple and regular; however, it is impossible to avoid sudden failures only 
by regular maintenance, and differences between different engine bodies and flight environments make the occurrence of failures 
more uncertain (Ma et al. 2015). Monitoring and diagnosis need to be realized by collecting data from sensors; the intensive and 
intelligent aircraft engine makes sensors collect massive data. An appropriate fault diagnosis algorithm is needed in order to 
diagnose faults quickly.

FAULT DIAGNOSIS ALGORITHM

Support vector machine-based diagnosis algorithm
The diagnosis algorithm that can be applied to aircraft fault detection is essentially a classification algorithm. It takes data 

in the samples to be detected as the recognition features and divides the samples into corresponding categories, i.e., fault types.
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Firstly, the SVM model (Sevil and Dogan 2015) is trained with the training sample set to calculate the “hyperplane” of the 
sample in the vector space. The optimization problem is as follows (Eqs. 1 and 2):

Solution:	 � (1)

Condition:	 � (2)

where xi is the feature vector, yi is the category label of sample i, w is the weight, b is the bias term, C is the penalty parameter, 
and δi is the non-negative relaxation variable of sample i (Loza et al. 2015). When solving the optimization problem (Eq. 1), the 
problem is transformed into a dual universal function by constructing a Lagrange function, and the decision function is obtained 
after solution (Eq. 3):

	 � (3)

where αi is the Lagrange coefficient (Kiran et al. 2018), l is the sample size, and K(xi, xj) is a kernel function. When it is applied to 
aircraft engine fault diagnosis, a decision function is obtained by carrying out fitting training on the engine fault training samples. 
Finally, the engine fault samples to be detected are classified by the decision function.

Diagnosis algorithm based on random forest
The basic flow of the random forest algorithm for aircraft engine fault identification is shown in Fig. 2 (Li et al. 2017). 

Firstly, decision trees are constructed by using the training samples, and the random forest is formed to obtain the classification 
rules. Then, the engine data to be detected are classified based on the constructed random forest. The specific steps are as follows:

Input training samples

Merge decision 
trees into a 

random forest

Input data to be 
detected into 

the random forest

Record the classification 
results of decision trees 
and take the one with 
the most votes as the 

standard

Construct decision 
trees with the 

resample samples

Resample training 
samples and 

obtain sample sets

Figure 2. Flow chart of aircraft engine fault identification based on the random forest algorithm.

1.	 Firstly, the training samples are input, and the training samples are resampled to form a new sample set X. The number of 
samples in X is also n, but there are duplicate samples in X as the samples are obtained by resampling (Song and Jiang 2016). 
Resampling is performed many times, and m new sample sets are obtained (m is determined according to demands). Every 
sample set X is the training sample of a decision tree.

2.	 The decision tree is constructed based on the sample set X obtained by resampling. The branching feature of the branch node 
in the decision tree is randomly selected from the sample feature attributes. One branch node can only choose one attribute, 
the branch growth is maximized, and the pruning operation is not carried out.

3.	 Every sample set X constructs one decision tree, and all the decision trees form a random forest.
4.	 The samples to be detected are classified by the random forest.
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Diagnosis algorithm based on PSO-BP
Back propagation (BP) neural network can fit the nonlinear law well (Lu et al. 2016). For the BP network in the training 

process, the most important thing is adjusting hidden layer parameters. In the traditional BP network, the parameters are 
adjusted step by step according to the set learning rate. On the one hand, the adjustment speed is slow; however, when there are 
many layers in the network, the differences will be weakened layer by layer when they propagate backward, resulting in little 
change in the parameters, and there will be an illusion that the learning has been completed. In order to reduce the influence of 
prematurity as much as possible, this study used the PSO algorithm to improve the reverse learning method of BP (Yuan et al. 
2017). The parameters that need to be adjusted in the BP network in the training process are regarded as a group of coordinates 
of the particles. More than one particle represents more than one parameter optional scheme. The optimal particle is searched 
in the solution space to replace the parameter adjustment of the traditional BP network. Compared with the traditional BP 
algorithm, which uses the learning rate to adjust parameters step by step, the PSO algorithm makes particles fly in the solution 
space, and the parameters of each layer are adjusted synchronously, which will not weaken layer by layer. Also, the particle flight 
search will not adjust the fixed step size, but search for the globally optimal particle, which not only improves the learning speed 
but also avoids “premature” (Li 2020).

Before using the BP algorithm improved by the PSO algorithm for engine fault diagnosis, the basic training process is shown 
in Fig. 3, and the specific steps are as follows:

Input training 
samples

Adjust 
parameters 
with the PSO 

algorithm

Output results
Algorithm 

terminates?

Perform forward 
calculation in 

BP with training 
samples

Initialize BP 
and PSO 

algorithms
Y

N

Figure 3. The training process of the PSO-BP-based fault diagnosis algorithm.

1.	 Training samples are input. Back propagation and PSO algorithms are initialized. The PSO algorithm mainly initializes 
population size and particle parameters. In this study, each particle in the population represents a BP parameter, and it 
will be substituted into the BP algorithm for a calculation to obtain a fitness for subsequent PSO adjustment; therefore, the 
population size should not be too large.

2.	 The parameter scheme represented by PSO particles are brought into the BP network to make a forwarding calculation on the 
input training samples, and the formula is shown in Eq. 4:

	 � (4)

where y is the output, β is the adjustment item of each layer, f(∙) is the activation function, w is the weight between layers, xi is 
the sample input.
3.	 After the forward calculation of the BP network, the algorithm is judged. If the algorithm meets the termination conditions, 

the training will be stopped; if it does not, the next step of the PSO adjustment will be carried out.
4.	 When the algorithm does not reach the termination condition, the population is iterated once using the formula of the PSO 

algorithm. The iteration formula is shown in Eq. 5:

	 � (5)
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where vi (t+1) and xi (t+1) represent the speed and position of particle i after one iteration, vi(t) and xi(t) are the speed and position 
of particle i before iteration, w- is the inertia weight of particles, c1 and c2 are learning factors, r1 and r2 are random numbers 
between 0 and 1, Pi(t) is the optimal position that particle i that has experienced, and Gg(t) is the best position that the particle 
swarm has experienced. The parameters represented by the particles after one iteration are substituted into the BP network for 
forward calculation again.

Steps 2, 3, and 4 are repeated until the algorithm reaches the termination condition. The trained algorithm can be used in 
aircraft engine fault diagnosis.

SIMULATION EXPERIMENT

Experimental environment
In this study, a comparative simulation experiment was carried on the above three fault diagnosis algorithms using 

MATLAB software in a laboratory server, configured with Windows 7 system, i7 processor, and 16 G memory (Gao et al. 2017).

Experimental data
This study took the fault data of Airbus 340-300 (engine type: CFM56-5C) as the subject of the simulation experiment. 

The normal and fault detection data of the aircraft were from AVIC Civil Aircraft Maintenance Co., Ltd. These samples 
contained characteristic data for aircraft engine diagnosis and corresponding normal or fault type tags. There were four 
types of characteristic data for diagnosis in each sample, which were high-pressure compressor speed (NH), low-pressure 
compressor speed (NL), exhaust gas temperature (EGT), and fuel flow (FF) (Zhao et al. 2017). The reason for choosing these 
four characteristics is that they could reflect the changes in the engine most directly after the engine failure and were easier to 
collect data, i.e., the cause of the failure could be inferred backwards based on the four characteristics of the change due to the 
failure. The types of engine faults in the fault data are shown in Table 1. There were 500 engine normal data samples and 800 
engine fault data samples, 100 for each fault.

Table 1. Types of engine faults.

Fault number Fault type Fault number Fault type

1 Combustion chamber fault 2 TCC system fault

3 BETA angle deviation 4 High-pressure turbine fault

5 Efficiency reduction of the low-
pressure compressor 6 Efficiency reduction of the high-

pressure compressor

7 Air bleed valve fault 8 First-grade turbine fault

The main cause of the combustion chamber fault was that the high temperature generated by the combustion of fuel resulted 
in the structural stress changes, and moreover the carbon buildup generated by combustion changed the shape of the nozzle fuel 
outlet, leading to abnormal combustion and aggravating the combustion chamber fault. The Torque Converter Clutch (TCC) 
system fault referred to the failure of the lightweight, high-speed C compiler used to execute the command file in the aircraft 
engine system. The BETA angle deviation refers to an abnormal opening and closing of the BETA angle in the engine. The high-
pressure turbine fault was an abnormal change in the structure of the high-pressure turbine in the engine. Efficiency reduction 
of the low-pressure compressor and high-pressure compressor meant that the low-pressure and high-pressure compressors of 
the engine could not reach the normal working efficiency. The air bleed valve fault means that the valve used to control the air 
outlet in the engine was not flexible enough to open and close on command. The first-grade turbine fault meant that the structure 
of the first-grade turbine in the engine has changed badly and was not working properly. One sample of each type of fault is 
shown in Table 2.
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Table 2. Typical fault samples.

Number 1 2 3 4 5 6 7 8

NL 0.2 0.8 0.2 0.7 1.2 0.5 –0.7 –1.7

NH 0.2 5.3 0.5 0.4 0.5 –0.1 –0.4 0.7

EGT 17 86 9 5 1 –2 –5 –2

FF 3.5 16.2 2.5 2.5 2.7 2.5 –2.5 –2

Standard output

0.9 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.9 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.9 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.9 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.9 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9

Experimental setup
Through the orthogonal test, the relevant parameters of the SVM-based algorithm were finally confirmed as follows: sigmoid 

kernel function, penalty parameter = 1, and slack variable = 0.5. As to the random forest-based diagnosis algorithm, the number 
of decision trees was set as 100. The relevant parameters of the PSO-BP-based diagnosis algorithm were: sigmoid activation 
function (Wong et al. 2016), PSO population size = 30, learning factors = 1.5, the maximum number of iterations = 2000, and 
inertia weight = 0.8.

Experimental project (1): firstly, the fault diagnosis effects of the three algorithms were preliminarily compared using the artificial 
fault data set. The artificial fault data were obtained by adding interference to the normal data, and its formula is shown in Eq. 6:

	 � (6)

where Xnoise is the artificial fault data after adding interference, Xnormal is normal data, k is data dispersion, σ is the standard deviation 
of the normal data set, and rand() is the random number in [0,1]. When fault data were generated using Eq. 6, the types of artificial 
faults were distinguished according to the value of k. In this study, the value of k was set as 0.1, 0.2, and 0.3; then, there were three 
kinds of artificial faults, 200 for each kind of fault. 60% of the normal samples and the samples of three kinds of faults were taken 
as the training set, and the remaining 40% were taken as the test set.

Experimental project (2): the three diagnosis algorithms were verified using real fault samples. 60% of the normal data and eight 
kinds of real fault data (780 samples) were taken as the training set, and the remaining 40% (520 samples) were taken as the test set.

Experimental results
Before testing the real fault data set with the three algorithms, the artificial fault data set was used for preliminary performance 

verification. The artificial fault data used for the preliminary verification of the algorithm recognition performance formed by 
adding interference to the normal data, and the interference mode is as described above. According to different dispersion degrees 
of the interference data, three fault types were constructed. Finally, the algorithm was tested by the normal data and fault data, and 
the results are shown in Fig. 4. The k = 0.0 meant that there was no interference, i.e., normal data. It was seen from Fig. 4 that the 
accuracy of the PSO-BP algorithm was the highest, with a comprehensive accuracy of 98.3%, the accuracy of the random forest 
algorithm was the second, with a comprehensive accuracy of 85.7%, and the accuracy of the SVM algorithm was the lowest, with 
a comprehensive accuracy of 79.2%, whether for normal engine data or for artificial engine fault data.
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Figure 4. The recognition performance of three diagnosis algorithms on an artificial fault data set.

After the preliminary recognition performance test with the artificial fault set, the real fault data were used for performance 
verification. Artificial fault data formed by adding interference. Although the randomness of interference increased by random 
numbers, artificial pseudo-random made the randomness limited. Different fault types were distinguished obviously, and the 
characteristics of the same fault type were similar, i.e., the characteristics of artificial data were too ideal and not in line with 
reality. Compared with the artificial fault data, the real fault data in different fault types and within the same fault type not only 
had a larger dispersion degree in data characteristics but also had stronger randomness and greater diagnosis difficulty. It was seen 
from Fig. 5 that in the face of different kinds of real faults, the PSO-BP-based diagnosis algorithm had the highest recognition 
accuracy, with a comprehensive recognition accuracy of 97.0%. The accuracy of the random forest algorithm was the second, 
with a comprehensive recognition accuracy of 79.0%; the accuracy of the SVM algorithm was the lowest, with a comprehensive 
recognition accuracy of 66.8%.
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Figure 5. The recognition performance of three diagnosis algorithms for real fault data.

For aircraft engines, once there is a fault, the flight safety will be greatly shaken. Especially in the flight process, in the face of sudden 
failure, the sensor needs to make a judgment in time after receiving relevant data. Therefore, the recognition time of the diagnosis 
algorithm was also a part of measuring algorithm performance. As shown in Fig. 6, it took 0.982 and 1.121 s for the SVM-based 
diagnosis algorithm to identify artificial faults, 0.521 and 0.612 s for the random forest-based diagnosis algorithm to identify 
artificial faults, and 0.231 and 0.323 s for the PSO-BP-based diagnosis algorithm to identify real faults. As can be seen from Fig. 6, 
whether it was an artificial fault or a real fault, the PSO-BP-based diagnosis algorithm took the least time, and the SVM-based 
diagnosis algorithm took the most time; whatever the algorithm was, it always took more time to identify the real fault data.
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Figure 6. The average time consumption of three algorithms for fault data identification.

CONCLUSION

This paper briefly introduced the SVM, random forest, and PSO-BP-based fault diagnosis algorithms for aircraft engines 
and carried out a simulation experiment on the performance of the three algorithms in MATLAB software. The experimental 
data used for simulation included the artificial fault data obtained by adding interference to the normal data and the real 
fault data obtained from AVIC Civil Aircraft Maintenance Co., Ltd. The final simulation results are as follows: (1) in the 
recognition of artificial fault data, the comprehensive recognition accuracy of the PSO-BP-based diagnosis algorithm was 98.3%, 
the comprehensive accuracy of the random forest-based diagnosis algorithm was 85.7%, and the comprehensive accuracy of the 
SVM-based diagnosis algorithm was 79.2%; (2) in the recognition of real fault data, the comprehensive recognition accuracy of 
the PSO-BP-based diagnosis algorithm was 97.0%, the comprehensive recognition accuracy of the random forest-based diagnosis 
algorithm was 79.0%, and the comprehensive recognition accuracy of the SVM-based diagnosis algorithm was 66.8%; (3) in 
terms of the average time consumption of fault data recognition, the average time of the PSO-BP-based diagnosis algorithm 
was the shortest, and the average time of the SVM-based diagnosis algorithm was the longest; the three algorithms took more 
time to identify the real fault data.

In this paper, the faults of the engine were determined by the PSO-BP algorithm based on the collected data, and its effectiveness 
was verified by comparing it with two other intelligent algorithms. The shortcoming of this study is that the type of the engine 
used in the experiment was single, and the variety of data for determining engine faults was low. The future research direction 
is to increase the types of data used to determine engine faults and to generalize the intelligent algorithm so that it can diagnose 
more types of aircraft engines.
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