
Article 
J. Braz. Chem. Soc., Vol. 26, No. 6, 1111-1114, 2015.

Printed in Brazil - ©2015  Sociedade Brasileira de Química
0103 - 5053  $6.00+0.00 A

http://dx.doi.org/10.5935/0103-5053.20150073

*e-mail: elchem@rbcmail.ru

Interrelation Between the Interaction Parameter and the Width of the Adsorption 
Voltammetric Peak

Vladimir D. Ivanov*

Institute of Chemistry, St. Petersburg State University, 26 Universitetskii pr.,  
Petrodvorets, 198504 St. Petersburg, Russia

It is known that the width of adsorption of a voltammetric peak is defined by lateral interactions 
in adsorption layer, so the peak width may be a key to intensity of these interactions. Correlation 
between the width of the peak and interaction parameter G has been examined in details. It is 
impossible to find the exact equation setting G as a direct function of peak width. Approximate 
equations are proposed to calculate G from the peak width with high accuracy in a wide range of 
G values. G value can be useful not only for characterization of lateral interactions in adsorbed 
layer (for finding adsorption isotherm parameters), but also for quick estimation of adsorption of 
electroactive substance.
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Introduction

Interpretation of a peak shape is a chemometrics 
problem common within the fields of chromatography, 
spectroscopy, and voltammetry.1 In voltammetry of 
surface-confined species this problem is simplified, as 
the peak shape is controlled primarily by the interactions 
within adsorption layer, or within a thin layer of solid 
particles confined to the electrode. At these conditions, an 
adsorption voltammetric peak is observed, with its height 
proportional to potential scan rate, v. The shape of this 
peak is determined by the interaction parameter G, which 
is a quantitative measure of lateral interactions. Surely, 
other parameters such as total adsorption of electroactive 
substance could play its role. However, the role of G will be 
mostly outlined here, presuming formation of a monolayer 
of adsorbed substance in the most cases. This situation is 
familiar for anyone dealing with adsorption voltammetric 
techniques. 

It is well known that an adsorption peak width at half 
of its height δ (hereafter width) is closely related to G.2,3 
The simplest expression of this relation has been given in 
an excellent review by Honeychurch and Rechnitz:2 

δ = 90.5 – 55.51·G	  (1)

Parameter G affects the electrochemical equilibrium 
of the adsorbed redox system, so the well known Nernst 
equation should be modified in this case:2 
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where x is the molar fraction of redox forms in adsorption 
layer (indices O and R correspond to oxidized and 
reduced forms), Ep is the peak potential. Other notations 
have their usual meaning. This equation may be deduced 
from different models, and it is relevant not for adsorbed 
monolayers only, but also for modified electrodes, 
electroactive organic polymers, and inorganic insertion 
compounds.3-8 More elaborated models give almost similar 
relationships.9 

Surely, the meaning of the interaction parameter is 
an important question. Actually, this is a kind of formal 
parameter that could help to simplify and unify the 
treatment of adsorption peaks of different origin. For some 
solid state electrochemical systems (such as Prussian Blue), 
G can be defined as:7

=
RT

w
G 	 (3)

where w is a coefficient in the equation of the enthalpy of 
mixing of oxidized and reduced forms (ΔGm):7
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It is much more difficult to explain the meaning of 
G in the case of adsorption monolayer or adsorption 
submonolayer, because there is a subtle interplay between 
the energies of adsorption interactions and the energies 
of lateral interactions within the monolayer. Any reader 
interested in this subject could be addressed to the excellent 
article written by Laviron.3

Since equation 1 is valid for G < 1 only,2 it causes 
a definite error when used for very narrow peaks with 
G > 1. As it will be shown later, any linear equation does 
not fit exactly the G, δ relationship for high negative G as 
well. Therefore, it is of importance to set a new equation 
applicable for a wider range of the interaction parameter.

Methodology

Almost all the calculations were performed with 
MS Excel. G values were taken in the range of –10-1.975 
with an increment of 0.025. Dimensionless peak width 
was calculated from G as described later on in the article. 
Then different functions proposed for reverse calculation 
of G were examined, their parameters were fitted using 
Solver add-in.

Results and Discussion

 Exact dependence of δ on G needs to be found for 
setting such an equation. The current-potential relationship 
for adsorbed redox system is given by the equation:2,3 
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where A is the electrode area, ΓO is adsorption of the 
oxidized form, ΓT is the total adsorption of redox system (of 
both oxidized and reduced form), and Ψ is a dimensionless 
current:2,3
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The symbol φ denotes the dimensionless potential:2 
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The derivative in equation 6 can be found from 
equation  2, so the dimensionless current can be finally 
expressed as: 
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The dimensionless current reaches its maximal value 
Ψmax at E = Ep and xO = xR = 0.5:
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Calculation of δ requires a φ value corresponding 
to Ψ  = 0.5Ψmax. It may be found from modified Nernst 
equation  2 if relevant xO is known. It is evident from 
equations 8 and 9 that a quadratic equation has to be solved 
to find xO satisfying Ψ = 0.5Ψmax. Using equation 2 with the 
value obtained leads to the final expression:
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where δφ is the dimensionless peak width:

δδϕ
RT

nF= 	 (11)

Equations 10 and 11 allow one to calculate the 
dependence of δφ on G. The highest possible limit of G is 
quite definite, and it is equal to 2; systems with larger G 
are thermodynamically unstable.2,3 However, none of the 
adsorption models implies a certain limit for high negative G 
values; the system with G as low as –9 has been reported.10 
So all the calculations here are made for 1.975 > G > –10, 
as the maximal range plausible in experiment.

Figure 1 shows a graphical representation of G as a 
function of δφ. For more profound analysis, a derivative of 
this dependence has been calculated numerically (Figure 2). 

Figure 1. Interaction parameter as a function of the peak width in 
dimensionless potential scale (see the text for explanation).
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The plot of G, δφ dependence looks perfectly linear for 
G < 0, but its derivative has a small but nearly constant 
slope, so it seems that a quadratic term should be added for 
perfect fitting at the highest negative G. The dependence 
for positive G is much more complex.

Let us build a function for reverse calculation of G from 
the peak width. It is impossible to find an exact solution, 
but an approximate equation with adjusted parameters can 
be chosen. The easiest way to set such a function is to make 
it linear. A practically linear dependence is observed for 
–5 < G < 0; linear fitting of this section gives an equation:

G = 1.62 – 0.461δφ	 (12)

This dependence practically coincides with equation 1 
when recalculated from dimensionless potential scale to 
millivolts and reversed (as δ,G dependence). This linear 
dependence is really perfect; its parameters have been 
fitted as 1.617 ± 0.001, and –0.4607 ± 0.001 (with a 95% 
confidence level). It means that equation 1 presented by 
Honeychurch and Rechnitz2 has excellent accuracy in some 
range of G values. But how wide is this range? The usability 
criterion of a fitted function should be based on the error the 
function brings about; it must be less than an experimental 
error. For digital data recording, it is reasonable to accept 
that accuracy of δ determination (Δδ) is 1 mV. So it is 
impossible to determine G value from δ with uncertainty 
(ΔG) less than:

δ
δ
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If the calculation error is less than ΔG, then the equation 
is suitable for a given G range; so ΔG value can be used as 

a tolerance limit. The same can be applied to calculations 
with dimensionless peak width.

Figure 3 represents the calculation error (the deviation 
of the calculated value Gcalc from the exact value) for 
equation 10 as a function of G. The tolerance limit ΔG 
is also given (n = 1 and 25 °C assumed for calculation of 
Δδ). It can be seen from Figure 3 that equation 10 is valid 
for –6.7 < G < 0.4 with high accuracy. The same G range 
may be assigned for equation 1. This is a great result, but 
possibly it is not suitable for all the situations that could 
be encountered in the experiment.

There is a simple way to make this equation even more 
precise. Figure 2 indicates a second order polynomial as 
a good choice for negative G region; fitting the data for 
–10 < G < –2 produces the equation:

G = 1.57 – 0.452δφ – 0.000431δφ
2	 (14)

It can be seen from Figure 3 that this equation is useful 
for any G < –0.3, and it is almost exact for G < –2. Values 
of G < –10 were regarded practically insignificant, and they 
were not tested. However, it seems that equation 14 is useful 
for much more negative G values as well.

Addition of an exponent to equation 14 is a suitable way 
to build an equation covering all the considered range of 
G. It allows one to keep a good fit obtained for negative G, 
and to achieve a reasonable correlation with the data for 
positive G. The resulting equation is:

G = 1.57 – 0.452δφ – 0.000431δφ
2 +  

0.352·exp(–0.891 × δφ)	 (15)

Figure 3 shows that this equation has a negligible error 
for any G < –1.5. For large positive G, the error rises rapidly, 

Figure 2. The first derivative of the dependence from Figure 1 calculated 
numerically. The inset: the same dependence for –10 < G < 0.7 only.

Figure 3. Calculation errors for the equations examined: (a) equation 12; 
(b) equation 14; (c) equation 15; (d) equation 16; (e) tolerance limit 
ΔG (dotted).
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but is still within the tolerance limit. It makes equation 15 
acceptable for the whole G range under consideration, 
–10 < G < 1.975. 

Equation 15 is more accurate compared with equation 12, 
and it is suitable for a wider range of interaction parameter, 
but it is much more complicated. It can be simplified for 
positive G because the quadratic term could be safely 
omitted for any G > –1.5. Equations 12 or 14 could be used 
instead of equation 15 in appropriate G domain, but none 
of them is precise for G > 0.4. An alternative to equation 15 
for positive G can be found by fitting the dependence with 
a second order polynomial:

G = 1.83 – 0.593δφ + 0.0214δφ
2	 (16)

This equation is useful for –0.2 < G < 1.6 (see Figure 3). 
The proposed approach does not take into consideration 

some effects that are possible at high negative or positive 
values of G. If G << 0, the interaction energy of Ox and 
Red forms within the adsorbed layer may be so high that 
they can form the dimerised species.11 An opposite situation 
may be at G tending to 2, with a trend to partial separation 
of the forms deviating from their stochastic distribution 
in the layer.12

Conclusions

It has been shown that interaction parameter G can be 
calculated with high precision from the width of adsorption 
voltammetric peak. However, are the G values obtained 
useful for anything behind an estimation of energy of lateral 
interaction? Yes, they are! Combining equations 3 and 9, 
one can easily estimate ΓT value from the peak height (Imax) 
if G is known:
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Usual estimation of ΓT requires peak integration:
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ΓT is an important characteristic; this is a measure of 
electroactive substance quantity loaded on the electrode. 
It is very often of analytical value. Its estimation through 
measuring peak width and height is surely much easier 
then a peak integration.
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