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Neste trabalho, nós introduzimos um novo método da função de base radial por regressão de 
mínimos quadrados (RBF-PLS) com elevada exatidão e precisão nos estudos quantitativos da 
relação entre a estrutura-propriedade de compostos orgânicos (QSPR). Três métodos QSPR foram 
comparados para a predição dos coeficientes de partição no sistema n-octanol-água (K

o/w
) (de 

alguns compostos orgânicos). A regressão linear múltipla (MLR), a regressão parcial dos mínimos 
quadrados (PLS) e a regressão base radial com funções pelo método de mínimos quadrados (RBF-
PLS) foram empregadas para construir os modelos lineares e não-lineares e predizer o valor de 
K

o/w
. Os descritores teóricos foram calculados por Dragon e por Gaussian 98 e foram explorados 

pelas regressões parciais, codificando diferentes aspectos topológicos, geométricos e eletrônicos 
das estruturas moleculares. A raiz quadrada dos erros médios previstos (RMSEP) para as etapas 
de testes e da previsão teórica por modelos de MLR, de PLS e de RBF-PLS foram 0,4022; 0,4128; 
0,3050; 0,3564; 0,0364 e 0,0533 respectivamente. Também, o erro padrão relativo previsto (RSEP) 
para os testes e de previsão teórica por MLR, PLS e RBF-PLS foram de 13,24; 13,60; 10,04; 
11,74; 1,197 e 1,757 respectivamente. Os dados mostram que o RBF-PLS produziu resultados 
melhores do que PLS e MLR.

In this work, we introduce a new method ability radial basic function-partial least square (RBF-
PLS) with high accuracy and precision in QSPR studies. Three quantitative structure-propertty 
relationship (QSPR) methods have been compared for the prediction of n-octanol-water partition 
coefficients (K

o/w
) of some organic compounds. The multiple linear regressions (MLR), partial least 

square (PLS) and radial basis function-partial least squares (RBF-PLS) models were employed to 
construct linear and nonlinear models to predict of K

o/w
. The theoretical descriptors that calculated 

by Dragon and Gaussian 98 were explored by stepwise regressions, encoding different aspects of 
the topological, geometrical and electronic molecular structures. The root means square error of 
prediction (RMSEP) for training and prediction sets by MLR, PLS and RBF-PLS models were 
0.4022, 0.4128, 0.3050, 0.3564, 0.0364 and 0.0533, respectively. Also, the relative standard error 
of prediction (RSEP) for training and prediction sets by MLR, PLS and RBF-PLS models were 
13.24, 13.60, 10.04, 11.74, 1.197 and 1.757 respectively. The resultant data explained that RBF-
PLS produced better results than PLS and MLR. 

Keywords: quantitative structure-activity relationship, n-octanol-water partition coefficients, 
MLR, PLS, RBF-PLS 

Introduction

If a third substance is added to a system of two 
immiscible liquids in equilibrium, the added component 
will distribute itself between the two liquid phases until the 
ratio of its concentrations in each phase attain a certain value 

so called the distribution constant or partition coefficient. 
The measurement of liquid-liquid partition coefficients 
is extremely important in: (i) fundamental chemistry for 
studying inorganic and/or organic complex equilibria; (ii) 
industrial chemistry for optimization of production and 
waste treatment; and (iii) food chemistry for purification and 
extraction of sugars, fat or caffeine.1 The n-octanol/water 
partition coefficient is the ratio of the concentration of a 
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chemical species in n-octanol to that in water for a two-phase 
system at equilibrium. The logarithm of this coefficient, 
log K

o/w
 has been shown to be one of the key parameters in 

quantitative structure-property relationship (QSPR) studies. 
Also, the n-octanol-water partition coefficient is a measure 
of the hydrophobicity and hydrophilicity of a substance. 
Hydrophobic interactions are very importance in many 
areas of chemistry, including enzyme-ligand interactions, 
drug-receptor interactions, transport of drug to the active 
site, the assembly of lipids in biomembranes, aggregation of 
surfactants, coagulation and detergency, etc.2,3 Hydrophobic 
“bonding” is actually not bond formation at all, but rather 
the tendency of hydrophobic molecules or hydrophobic parts 
of molecules to avoid water because they are not readily 
accommodated in the highly ordered hydrogen bonded 
structure of water.4 Hydrophobic interactions are favored 
thermodynamically because of increased entropy of the 
water molecules that accompanies the association of non-
polar molecules which squeeze out water. The hydrophobic 
“bonding” resulting from an unwelcome reception of non-
polar molecules in water involves van der Waals forces, 
hydrogen bonding of water molecules in 3D structure 
and other interactions.5 Distribution coefficient could be 
measured for basic, acidic and neutral compounds. There 
are various methods to determine liquid-liquid partition 
coefficients and especially K

o/w
 appeared recently.6-9 Many 

studies on the modeling of log K
o/w

 values using topological, 
topographic, quantum chemical and other descriptors have 
been reported where log K

o/w
 values have been the response 

variable to explore suitability of the descriptors/schemes 
in QSPR studies.10-16 There are some reports about the 
applications of MLR17-20 and artificial neural network,21-24 
modeling to predict the n-octanol/water partition coefficient 
of organic compounds. Some of papers, about application 
of QSPR techniques in the development of a new and 
simplified approach to prediction of compounds properties 
were published.25-29 Experimental determination of K

o/w
 is 

often complex and time-consuming and can be done only for 
already synthesized compounds. For this reason, a number of 
computational methods for the prediction of this parameter 
have been proposed. In this work, a QSPR study is performed 
to develop models that relate the structures of some acidic, 
basic and neutral organic compounds to their n-octanol-water 
partition coefficients. The radial basis function-partial least 
squares (RBF-PLS) method was used for predicting the log 
K

o/w
 of mentioned organic compounds. 

Theoretical background

About RBF-PLS, let us denote the matrix containing 
independent variables by X. For m objects and n 

variables its dimensionality is m×n. Matrix Y, describing 
the belongingness of m objects to g classes has the 
dimensionality m×g and contains only ones and zeros. 
The principle of RBF-PLS can be summarized as 
follows: Instead of applying PLS2 to the X and Y data 
matrices containing the initial data, it can be applied to 
the matrices A and Y, where A is the so called activation 
matrix defined as:

 (1)

where Q is the radial basis function, characterized by the 
center and width parameters. 

In the linear PLS2 model30,31 the centered data matrices 
A and Y are projected onto the low dimensional score 
matrices of T and U respectively:

A = TP' + E'  (2)

Y = UC' + F ' (3)

where the matrices P and C represent the regression 
coefficients (loadings).

When the C weights are not normalized, the linear 
inner relation between the scores matrices T and U can be 
presented as: 

U = T + H  (4)

and then

Y = TC' + F*  (5)

where E, F, F* and H matrices contain residuals. 
An optimal number of factors are established using the 

cross-validation procedure.31,32 All independent variables 
are scaled to the range [0, l]. 

As known, PLS is a method for building regression 
models on the latent variable decomposition relating two 
blocks, matrices X and Y which contain the independent 
x and dependent y variables respectively. These matrices 
can be simultaneously decomposed into a sum of f latent 
variables as follows:

X = TPT + E = ∑ t
f
p'

f
 + E  (6)

Y = UQT + F =∑ u
f
q'

f
 + F  (7)
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which T and U are the score matrices for X and Y 
respectively. Also, P and Q are the loadings matrices for 
X and Y respectively and finally E and F are the residual 
matrices. Two matrices are correlated by the scores T and 
U for each latent variable as follows:

u
f
 = b

f
t
f
  (8)

where b
f
 is the regression coefficient for the f latent variable. 

The acidity constant of the new samples can be estimated 
from the new scores T ' which are substituted in equation 
(9), leading to equation (10). Applications of PLS have 
been discussed by some researchers.31,34

Y = TBQT + F  (9)

Y
new

 = T ' BQT  (10)

The general purpose of multiple linear regressions 
(MLR) is to quantify the relationship between several 
independent or predictor variables and a dependent variable: 

y = b
1
x

1
 + b

2
x

2
+ b

3
x

3
 + … + b

m
x

m
 + ε  (11)

where m is the number of independent variables, b
1
, …, b

m
 

the regression coefficients and y is the dependent variable. 
Multiple linear regression (MLR) techniques based on 
least-squares procedures are very often used for estimating 
the coefficients involved in the model equation.35

Experimental

Materials and methods

Data set
Experimental n-octanol-water partition coefficients 

(K
o/w

) data of some neutral, basic and acidic organic 
compounds were taken from reference 36. Several review 
articles describing the various methods used to determine 
liquid-liquid partition coefficients and especially K

o/w 

appeared recently.37-40 Names of these compounds and 
their experimental n-octanol-water partition coefficients 
are shown in Table 1. As can be seen, this set contains in 
total namely 61 n-octanol-water partition coefficients data. 
Also the calculated n-octanol-water partition coefficients 
for these compounds by MLR, PLS and RBF-PLS methods 
are tabulated in Table2. The n-octanol-water partition 

Table 1. Data set and their n-octanol-water partition coefficients (K
o/w

)

No. References compound log K
o/w

Class No. Compound name log K
o/w

Class

1 2-Butanone 0.3 N 32 3-Chlorobenzoic acid 2.7 A
2 4-Acetylpyridine 0.5 B 33 Toluene 2.7 N
3 Aniline 0.9 B 34 1-Naphthol 2.7 A
4 Acetanilide 1.0 N 35 2,3-Dichloroaniline 2.8 B
5 Benzyl alcohol 1.1 N 36 Chlorobenzene 2.8 N
6 4-Methoxyphenol 1.3 A 37 Allyl phenyl ether 2.9 N
7 Phenoxyacetic acid 1.4 A 38 Bromobenzene 3.0 N
8 Phenol 1.5 A 39 Ethylbenzene 3.2 N
9 2,4-Dinitrophenol 1.5 A 40 Benzophenone 3.2 N
10 Benzonitrile 1.6 N 41 4-Phenylphenol 3.2 A
11 Phenylacetonitrile 1.6 N 42 Thymol 3.3 N
12 4-Methylbenzyl alcohol 1.6 N 43 1,4-Dichlorobenzene 3.4 N
13 Acetophenone 1.7 N 44 Diphenylamine 3.4 B
14 2-Nitrophenol 1.8 A 45 Naphthalene 3.6 N
15 3-Nitrobenzoic acid 1.8 A 46 Phenyl benzoate 3.6 N
16 4-Chloraniline 1.8 B 47 Isopropylbenzene 3.7 N
17 Nitrobenzene 1.9 N 48 2,4,6-Trichlorophenol 3.7 A
18 Cinnamic alcohol 1.9 N 49 Biphenyl 4.0 N
19 Benzoic acid 1.9 A 50 Benzyl benzoate 4.0 N
20 p-Cresol 1.9 A 51 2,4-Nitro-6-sec-butyl phenol 4.1 N
21 cis-Cinnamic acid 2.1 A 52 1,2,4-Trichlorobenzene 4.2 N
22 trans-Cinnamic acid 2.1 A 53 Dodecanoic acid 4.2 A
23 Anisole 2.1 N 54 Diphenyl ether 4.2 N
24 Methyl benzoate 2.1 N 55 Phenanthrene 4.5 N
25 Benzene 2.1 N 56 N-Butylbenzene 4.6 N
26 3-Methylbenzoic acid 2.4 A 57 Fluoranthene 4.7 N
27 4-Chlorophenol 2.4 A 58 Dibenzyl 4.8 N
28 Trichloroethene 2.4 N 59 2,6-Diphenylpyridine 4.9 N
29 Atrazine 2.6 B 60 Triphenylamine 5.7 N
30 Ethyl benzoate 2.6 N 61 DDT 6.2 N
31 2,6-Dichlorobenzonitrile 2.6 N

A: acidic compounds; B: basic compounds; N: neutral compounds.
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Table 2. Calculated n-octanol-water partition coefficients (K
o/w

) by MLR, PLS and RBF-PLS methods

No. Actual Prediction Recovery (%)

RBF-PLS PLS MLR RBF-PLS PLS MLR

1 0.3 0.30784 0.20 0.03 102.61 68.06 8.94
2 0.5 0.53 0.36 0.27 106 72.8 54.9
3T 0.9 1.06 1.26 1.11 117.77 140.6 123.3
4 1.0 1.09 1.43 1.34 109 143.1 134.5
5 T 1.1 1.2 1.57 1.39 109.09 142.7 126.3
6 1.3 1.3 1.2 1.16 100 90.9 89.3
7 1.4 1.4 1.3 1.05 100 92.6 74.8
8 T 1.5 1.41 1.44 1.85 94 96.4 123.3
9 1.5 1.5 1.8 1.7 100 119.3 112.2
10 1.6 1.5885 1.64 1.05 99.28 64.8 66.05
11 T 1.6 1.5932 1.62 1.97 99.57 101.3 123.6
12 1.6 1.5857 1.76 1.88 99.106 110.3 117.9
13 1.7 1.6316 1.91 2.86 95.97 112.6 168.5
14 T 1.8 1.7647 1.54 1.04 98.03 85.9 57.7
15 1.8 1.7429 2.7 2.49 96.82 105.2 138.8
16 1.8 1.8106 1.9 1.74 100.58 104.5 96.6
17 1.9 1.9297 1.7 1.16 101.56 89.4 60.98
18 1.9 1.8844 1.14 1.94 99.17 59.9 102.2
19 T 1.9 1.9 1.6 1.63 100 84.9 86.14
20 1.9 1.8497 1.3 1.85 97.35 67.9 97.41
21 2.1 2.06 1.8 1.4 98.095 87.8 66.65
22 2.1 2.1392 1.84 1.9 101.86 87.8 90.60
23 T 2.1 2.1146 1.39 1.87 100.69 66.19 89.22
24 2.1 2.0322 1.32 2.25 96.77 63.1 107.38
25 2.1 2.1717 2.1 1.72 103.4 99.7 81.85
26 T 2.4 2.351 2.2 2.14 97.95 91.6 89.14
27 2.4 2.4183 2.16 2.19 100.76 90.1 91.3
28 T 2.4 2.406 2.4 2.13 100.25 100.0 88.6
29 2.6 2.6153 2.6 2.6 100.58 100.46 100
30 2.6 2.6116 2.76 2.46 100.44 106.1 94.7
31 2.6 2.5892 2.7 2.71 99.58 103.1 104
32 2.7 2.6858 2.6 2.6 99.474 96.5 96.0
33 2.7 2.73 2.15 2.17 101.11 79.7 80.53
34 T 2.7 2.6941 2.7 2.72 99.781 100 100.6
35 2.8 2.7949 2.76 2.73 99.818 98.7 97.5
36 T 2.8 2.8493 3.1 2.04 101.76 110.2 72.85
37 2.9 2.9701 3.0 3.00 102.41 103.2 103.5
38 3.0 3.0037 3.12 3.01 100.123 104.5 100.4
39 T 3.2 3.2106 3.36 3.34 100.33 105.1 104.3
40 3.2 3.1531 3.43 3.73 98.53 107.1 116.7
41 3.2 3.1928 3.1 3.05 99.77 96.2 95.35
42 T 3.3 3.3032 3.3 3.41 100.09 99.5 103.3
43 3.4 3.3802 3.3 3.4 99.41 98.3 100
44 3.4 3.4218 3.55 3.47 100.64 104.3 102.2
45 T 3.6 3.5709 3.01 3.7 99.19 83.6 102.8
46 3.6 3.66 3.72 3.7 101.66 103.2 102.8
47 3.7 3.7049 3.6 3.28 100.13 92.6 88.64
48 T 3.7 3.7055 3.42 3.71 100.14 98.2 106.6
49 4.0 4.0034 4.3 4.26 100.085 106.2 106.5
50 4.0 4.0 3.97 4.0 100.00 99.2 100
51 4.1 4.1153 4.0 4.0 100.37 97.5 97.6
52 4.2 4.11 4.1 4.18 97.85 74.7 99.5
53 T 4.2 4.2051 4.2 4.18 100.12 100 99.5
54 4.2 4.2084 3.74 3.80 100.2 89.2 90.5
55 4.5 4.4733 4.52 4.2 99.40 101 92.7
56 4.6 4.6014 4.4 3.5 100.03 95.4 76.2
57 4.7 4.6935 4.57 4.6 99.86 97.2 97.9
58 T 4.8 4.7942 4.17 3.7 99.87 86.87 77.08
59 4.9 4.9019 5.23 4.1 100.03 103 83.4
60 T 5.7 5.7015 5.16 5.63 100.02 90.7 98.7
61 6.2 6.2067 6.21 6.31 100.10 100.2 101.7

Compounds marked with T pertain to the test set.
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coefficients values for these compounds were obtained in 
the same instrumental conditions.

Descriptor generation and screening
The n-octanol-water partition coefficients (K

o/w
) of 

solutes in separation method are related to some structural, 
topological, electronic and geometric properties of solutes. 
The value of these molecular features can be encoded 
quantitatively by numerical values named molecular 
descriptors. These molecular parameters are to be used to 
search for the best QSPR model of n-octanol-water partition 
coefficients (K

o/w
). Figure 1 shows the normal distribution 

of logarithm K
ow

, which indicates that, the experimental 
values distributed normally and their frequency is 
completely reasonable. The 2D structures of the molecules 
were drawn using Hyperchem 7 software.41 Pre-optimized 
data with the molecular mechanics force field (MM+) and 
final geometries were obtained with the semi-empirical 
AM1 method in Hyperchem program. All calculations 
were carried out at the restricted Hartree-Fock level with 
no configuration interaction. The molecular structures 
were optimized using the Polak-Ribiere algorithm until 
the root mean square gradient was 0.001 kcal mol-1. The 
resulted geometry was transferred into the Dragon program 
package which was developed by Milano chemometrics 
and QSPR group,42 to calculate about 1497 descriptors 
in constitutional, topological, geometrical, charge, 
GETAWAY (geometry, topology and atoms-weighed 
assembly), WHIM (weighed holistic invariant molecular 
descriptors), 3D-MoRSE (3D-molecular representation of 

structure based on electron diffraction), molecular walk 
count, BCUT, 2D-autocorrelation, aromaticity index, randic 
molecular profile, radial distribution function, functional 
group and atom-centered fragment classes. Meanwhile the 
Hyperchem output files again were used by the Gaussian 
98,43 program to calculate 2 classes of descriptor including: 
electrostatic (minimum and maximum of partial charge, 
polarity parameters, charge surface area descriptors, etc) 
and quantum chemical (dipole moment, HOMO and 
LUMO energies, etc) was operated to optimized with 
6-31+G** basis set for all atoms at the B3LYP level.44,45 

No molecular symmetry constrain was applied rather full 
optimization of all bond lengths and angles was carried out 
at the level B3LYP/6-31++G**. We used from 7 descriptors 
for building of different models. It should be noted that we 
did Y-shuffled and the result was 0.0921, which indicated 
that there is no chance correlation. These descriptors 
are complementary information content (neighborhood 
symmetry of 1-order) (CIC1), average eigenvector 
coefficient sum from distance matrix (VED2), partial 
charge weighed topological electronic charge (PCWTe), 
shape profile no.01 (SP01), 3D-MoRSE-signal03/
weighed by atomic masses (Mor03m), T total size index/
weighed by atomic van der Waals volumes (Tv) and mean 
molecular polarizability (α). These descriptors and their 
characterizations are shown in Table 3. 

Results and Discussion

Selection of the optimum number of factors

The optimum number of factors (latent variables) to 
be included in the calibration model was determined by 
computing the prediction error sum of squares (PRESS) 
for cross-validated models using a high number of factors 
(half the number of total standard +1), which is defined 
as follows:

 (12)

where y
i
 is the reference K

o/w
 for the ith compound and  ^y

i
 

represents the estimated K
o/w

. The cross-validation method 
employed was to eliminate only one compound at a time 
and then PLS calibrate the remaining standard descriptor. 
By using this calibration, the K

o/w
 of the compound that left 

out was predicted. This process was repeated until each 
standard had been left out once. One reasonable choice 
for the optimum number of factors would be that number 
which yielded the minimum PRESS value. Since there are 
a finite number of compounds in the training set, in many 
cases the minimum PRESS value causes over fitting for Figure 1. The Gaussian distribution of log K

o/w
.
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unknown compounds that were not included in the model. 
For solution of this problem, Haaland et al. 46-48 has been 
suggested, which the PRESS values for all previous factors 
are compared with the PRESS value at the minimum. The 
F-Statistical test can be used to determine the significance 
of PRESS values greater than the minimum. In all instances, 
the number of factors for the first PRESS values whose 
F-ratio probability drops below 0.75 was selected as the 
optimum. Number of factors were used in PLS model is 
5. Figure 2 shows the variation of the R2 parameter with 
number of factors. For presentation of the effect of number 
of factor on the consecutive RBF-PLS models, variation 
of the root means square error (RMSE) of cross-validation 
versus σ is presented in Figure 3. It is clear from this figure 
that in σ value of 0.1 and two number of factors we have 
maximum RMSE value. 

Selection of the number of descriptors factors

The basic parameter that is important in different 
models is number of the descriptors. The liquid-liquid 
partition coefficient of solutes is related to some structural, 
electronic and geometric properties of solutes and solvent 
molecules. These molecular parameters are to be used 
to search for the best QSPR model of liquid-liquid 

partition coefficients and they are geometric, electronic 
and topological descriptors. Geometric descriptors were 
calculated using optimized cartesian coordinates and the 
van der Waals radius of each atom in the molecule. The 
method of stepwise multiple linear regression (MLR) was 
used for the selection of importance descriptors and model 
construction. Descriptors that appear in the best MLR 
equation are shown in Table 3. As it can be seen from the 
correlation matrix in Table 4 except a correlation there is 
no significant correlation between the selected descriptors. 
We used from 7 descriptors for RBF-PLS model. The 
statistical parameters and specification of the MLR, PLS 
and RBF-PLS models are shown in Table 5. As can be 
seen from this table, the values of root mean square error 
of prediction (RMSEP) for training and prediction set for 
the RBF-PLS model are 0.0364 and 0.0533, which should 
be compared with the values of 0.3050, 0.3564, 0.4022 
and 0.4128 respectively for the PLS and MLR models. 
Comparison of these values and also other statistical results 
of these two models in Table 5 indicate that the obtained 
results by RBF-PLS are better than those obtained using the 
MLR and PLS methods. This is believed to be due to the 
nonlinear capabilities of the RBF-PLS. It should be noted 
that we performed a Y-randomization test, in which the 
Y-block was shuffled, whilst the descriptors block was kept 
unaltered. After analyzing 10 cases of Y-randomization 
for the model, the average square correlation coefficients 
achieved which was 0.1011, is compared to the one found 

Table 3. The descriptors were used in model construction

No. Symbol Class Meaning

1 CIC1 Topological Complementary information content (neighborhood symmetry of 1-order)

2 VED2 Topological Average eigenvector coefficient sum from distance matrix

3 PCWTe Charge Partial charge weighed topological electronic charge

4 SP01 Randic molecular profiles Shape profile No. 01

5 Mor03m 3D-MoRSE 3D-MoRSE-signal03/weighed by atomic masses

6 Tv WHIM T total size index/weighed by atomic van der Waals volumes

7 α Electronic Mean molecular polarizability; unit: 10-30 esu

Figure 2. Plot of PRESS vs. number of factors by PLS model.

Figure 3. Variation of root mean square error of cross-validation vs. σ. 
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when considering the true Y. The results show that, there 
is not a chance correlation. 

Figure 4 shows the plot of the RBF-PLS predicted 
against the experimental values of n-octanol-water partition 
coefficients (K

o/w
) for the molecules included in the data set. 

This plot illustrate that the RBF-PLS is a power technique 
for prediction of n-octanol-water partition coefficients. The 
residuals of the RBF-PLS calculated values of n-octanol-

water partition coefficients (K
o/w

) are plotted against the 
experimental values in Figure 5. The propagation of residuals 
at both sides of the zero line indicates that no systematic error 
exists in the development of the RBF-PLS model.

Conclusion

MLR, PLS and RBF-PLS are used as feature mapping 
techniques for prediction of the n-octanol-water partition 
coefficients of some neutral, basic and acidic organic 
compounds. The result obtained reveals the superiority of 
RBF-PLS over the MLR and PLS models. This is due to 
the ability of the RBF-PLS to allow for flexible mapping 
of the selected features by manipulating their functional 
dependence implicitly unlike regression analysis. 
Descriptors appearing in these QSPR models provide 
information related to different molecular properties 
which can participate in the physicochemical process 
that affected the n-octanol-water partition coefficients 
of the solutes.
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against the experimental values.

Figure 5. Plot of the residuals vs. experimental values of n-octanol-water 
partition coefficients.
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