Acessibilidade / Reportar erro

Thermal Decomposition of Polymer/Montmorillonite Nanocomposites Synthesized in situ on a Clay Surface

This paper reports the effect of the SWy-1 montmorillonite content on the kinetic thermal degradation of poly(2-hydroxyethyl methacrylate) (PHEMA)/SWy-1 nanocomposites prepared by in situ photopolymerization, using thermogravimetry analysis (TGA). 2-Hydroxyethyl methacrylate was photopolymerized in the presence of SWy-1 clay mineral using 2-hydroxy-3- (3,4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-N,N,N-trimethyl-1-propanium chloride (QTX) and triethanolamine as the photoinitiating system. X-Ray diffraction analysis indicates that the PHEMA/SWy-1 nanocomposites present an intercalated structure. The isoconversional Flynn-Wall-Ozawa method was used to estimate activation energies and pre-exponential factors for the thermal decomposition. All nanocomposites exhibited improvement in their thermal stability, mainly due to the large interaction between the PHEMA intercalated in the SWy-1 structure. The activation energies for PHEMA/SWy-1 nanocomposites increased when increasing the clay content. The SWy-1 clay mineral acts as a better insulator, mass transport barrier and as a "crosslinking agent", increasing the activation energies for the decomposition of the polymer present in the nanocomposites.

Keywords:
polymer-clay nanocomposites; thermal degradation; photopolymerization


Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br