
ReviewJ. Braz. Chem. Soc., Vol. 29, No. 5, 982-988, 2018
Printed in Brazil - ©2018  Sociedade Brasileira de Química

http://dx.doi.org/10.21577/0103-5053.20180013

*e-mail: carolina@ufg.br, carolhandrade@gmail.com 
This paper is part of the PubliSBQ Special Issue “IUPAC-2017”  
(http://publi.sbq.org.br/).

Development of Web and Mobile Applications for Chemical Toxicity Prediction

Vinicius M. Alves,a,b Rodolpho C. Braga,a Eugene Muratovb,c and Carolina H. Andrade*,a

aLaboratório de Planejamento de Fármacos e Modelagem Molecular, LabMol,  
Faculdade de Farmácia, Universidade Federal de Goiás, 74605-170 Goiânia-GO, Brazil

bLaboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry,  
UNC Eshelman School of Pharmacy, University of North Carolina, 27599 Chapel Hill, NC, USA

cDepartment of Chemical Technology, Odessa National Polytechnic University,  
65000 Odessa, Ukraine

Computational tools are recognized to provide high-quality predictions for the assessment of 
chemical toxicity. In the recent years, mobile devices have become ubiquitous, allowing for the 
development of innovative and useful models implemented as chemical software applications. Here, 
we will briefly discuss this recent uptick in the development of web-based and mobile applications 
for chemical problems, focusing on best practices, development, usage and interpretation. As an 
example, we also describe two innovative apps (Pred-hERG and Pred-Skin) for chemical toxicity 
prediction developed in our laboratory. These applications are based on predictive quantitative 
structure-activity relationships (QSAR) models developed using the largest publicly available 
datasets of structurally diverse compounds. The developed tools ensure both highly accurate 
predictions and easy interpretation of the models, allowing users to discriminate potential toxicants 
and to purpose structural modifications to design safer chemicals.
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1. Introduction

Chemical safety assessment is a fundamental step in 
development and regulation of drugs, cosmetics and other 
chemicals.1 In the last few decades, society has less tolerated 
animal testing.2 As a consequence, legislations, guidelines, 
and practice of animal experiments have been implementing 
the principles to reduce, refine, and replace animals used 
in laboratory. As a prime example, in vivo evaluation for 
cosmetic products is forbidden in Europe since 20033 and 
the sale of cosmetics and ingredients tested on animals 
are banned since 2013.4 In Brazil, since 2015, alternative 
methods recognized in the National Regulatory Agency 
(ANVISA) are sufficient for the approval of chemicals5 
and animal testing will not be allowed for endpoints with 
approved alternative methods (e.g., eye irritation, skin 
irritation, acute toxicity, etc.) starting from 2019.6 

Computational methods have become an effective 
alternative method for the evaluation of new or untested 

compounds, such as drug candidates, cosmetics and 
pesticides, providing high-quality predictions at low-cost 
and reasonable time.7,8 Toxicity prediction often relies on 
structural alerts,9 read-across,10 and quantitative structure-
activity/property relationships (QSAR/QSPR) models.11,12 
Structural alerts are molecular substructures that are 
associated with a particular adverse biological effect.13 
Read-across is a technique that extrapolates data based 
on structural similarity (usually using structural alerts) 
to previously measured compound(s) for those lacking 
experimental data.14 This method has earned prominence 
from a regulatory perspective15,16 due to its simplicity and 
transparency.17 

Scientific applications implemented in a web interface 
(web apps) are an interesting alternative to standalone 
software applications, since they are ready to use, fast, 
and they usually present an intuitive interface. Several 
web apps to solve chemical and molecular modeling 
problems have been proposed through the years, such as 
the Platform for Unified Molecular Analysis (PUMA),18 
SWISS‑MODEL,19,20 Chembench,21 Pred-hERG,22,23 
Pred-Skin,24 among others. Conversely, to a lesser extent, 
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chemistry mobile apps have also been developed and 
they tend to see a rapid uptake in the next few years 
since smartphones and tablet computers are becoming 
ubiquitous.25 Such apps may be useful for education and 
to improve chemists’ productivity.26,27

The Green Solvents mobile app is one of the first 
chemistry apps. It is based on a dataset of solvents 
containing several informations to serve as a solvent 
guide for chemists.28 The TB Mobile app provides 
information on over 700 molecules screened versus 
Mycobacterium  tuberculosis from the Collaborative 
Drug Discovery (CDD) database. The app also performs 
similarity search, which can infer potential targets from 
similar structures.29 The Lead Designer app30 provides a tool 
for drawing compounds and predict permeability through 
blood-brain barrier membrane, CYP3A4 binding potency, 
and some physical-chemical properties. 

Recently, our group has developed and implemented 
predictive QSAR models in two distinctive tools available 
as a web app (Pred-hERG)23 and web and mobile apps 
(Pred-Skin),24 for the fast prediction of hERG cardiac 
toxicity and skin sensitization, respectively. Here, we aim 
to describe the details behind the development of these 
two innovative and impactful web-based and mobile 
applications for chemical toxicity prediction.

2. Chemical Toxicity Prediction Using Apps

Chemical toxicity prediction usually relies on chemical 
similarity, by using structural alerts and read-across, as 
well as QSAR models.31 Structural alerts are molecular 
fragments that are associated with a positive response for 

a particular endpoint.9 Chemical read-across uses chemical 
similarity to assess the effect of untested chemicals.10,32 
Lastly, QSAR models are a major computational approach 
that uses statistical or machine learning algorithms to 
establish a correlation of molecular representation to 
activity and can be used to provide statistically significant 
prediction of chemicals.33 

A reliable mobile or web server for chemical toxicity 
prediction should be based on highly predictive and 
externally accurate models. As we and collaborators 
have recently shown,31 structural alerts are oversensitive, 
disproportionally flagging chemicals as toxic. Therefore, 
the use of statistically validated QSAR models are preferred. 
The best practices for development and validation of QSAR 
models have been recommended by the Organization for 
Economic Co-operation and Development (OECD)34 and 
elaborated by Tropsha.35 Briefly, any QSAR model should 
have “(i) a defined endpoint; (ii) an unambiguous algorithm; 
(iii) a defined applicability domain; (iv) appropriate 
measures of goodness-of-fit, robustness, and predictivity; 
(v) and, if possible, a mechanistic interpretation.” In 
addition, the reproducibility crisis has questioned the 
quality of experimental data published in peer-reviewed 
journals.36 For this reason, the curation of the chemical and 
biological data is of upmost importance.37-39

The workflow we have adopted for the development 
of the web apps is shown on Figure 1. First, we 
compile the biggest dataset available for the particular 
endpoint, following by the curation protocol proposed by 
Fourches et al.37-39 Then, models are developed following 
the best practices for model development and validiation.35 
Web-based and mobile apps are then developed (see details 

Figure 1. General workflow for development of QSAR models and their implementation for web and mobile applications for toxicity prediction of 
chemical compounds. 
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in next section). Finally, apps are made available for use 
of the scientific community to predict new compounds 
using an intuitive tool with highly confident predictions 
and graphical interpretation.

One of the advantages of building apps based on 
QSAR models is the wide applicability of these models 
through different industrial chemical classes. As recently 
reported,40 QSAR models generated for cosmetics, drugs 
and pesticides can be used interchangeably, i.e., a model 
developed using mainly drugs and drug-like compounds, 
can be used also to evaluate cosmetics and pesticides since 
a QSAR model built mainly using cosmetics compounds 
usually shares the same chemical space of most drugs or 
even pesticides. This is of high value for endpoints such 
as skin sensitization, as many industrial products (e.g., 
cosmetics, drugs, pesticides, food additives, etc.) could 
be in touch with the skin and cause allergic reactions.41 
Despite the wide applicability of models generated using 
structurally diverse chemical datasets, one should be aware 
of the applicability domain of the model to evaluate the 
confidence of the prediction.42-44 This is especially true 
because chemical space has faced a substantial growth 
in the last decade. For instance, the Chemical Abstract 
Services has reached 100 million chemical substances 
in 2015,45 and the current version of the ZINC database46 
contains over 35 million purchasable compounds.

3. Development of Web-Based and Mobile 
Applications

The development of integrative web-based and mobile 
applications running machine learning routines written 
in Python is possible by using Flask.47 Flask is a small 
framework for creating web microframeworks. Flask was 
created from scratch as an extensible framework with 
a solid core of essential services and easy integration 
with Python extensions. The template support of Flask is 
provided by Jinja2, while the Web Server Gateway Interface 
(WSGI) subsystems is based on the Werkzeug toolkit. 
Usually web applications features such as validation of 
webforms, user authentication, and access to databases 
are employed through extensions. The main drawback of 
Flask is the lack of support for projects dealing with a large 
source file, leading the structuration of the app entirely to 
the developer.

The implementation of enormously complex workflows 
for cheminformatics applications written in Python with 
Flask is possible by integrating RDKit48 and scikit-learn. 
RDKit is an open-source cheminformatics application 
programming interface (API) developed by Gregory 
Landrum at Novartis Rational Discovery for building 

predictive models for pharmacokinetics properties, toxicity, 
and biological activity. RDKit can be used to calculate 
molecular descriptors, such as Morgan fingerprints 
(extended circular fingerprints like),49,50 and to enable 
the generation of appropriate molecular representations 
for developing QSAR models using machine learning 
algorithms. The scikit-learn API, a combination of NumPy, 
SciPy, and matplotlib packages, can run machine learning 
scripts, perform datasets splits, data curation, model 
generation, and calculation of the appropriate statistical 
measures in conjunction with 5-fold external validation 
process, allowing an appropriate evaluation of the generated 
models.

Python routines integrating developed machine 
learning models using RDKit and scikit-learn works in the 
back-end of the app (Figure 2).51,52 All the functionalities 
are orchestrated by Flask (back-front-end), which is 
responsible to call the individual modules in the back‑end 
and interact with the user in the front-end, using the 
responsive web‑based templates in HTML5 and JavaScript 
(front-end). The features described here were used to 
develop the two innovative web apps, named Pred-hERG, 
to identify possible hERG blockers and non-blockers, and 
Pred-Skin, for assessment of skin sensitization potential of 
chemicals (see Pred-hERG and Pred-Skin sections).

4. Pred-hERG

The Pred-hERG is a web app that allows users to predict 
blockers and non-blockers of the hERG channels, and 
important drug anti-target associated with lethal cardiac 
arrhythmia.53 This app has a fast and intuitive interface. 
We implemented binary (blocker vs. non-blocker) and 
multi-classification models, which are able to distinguish 
weak/moderate and strong/extreme blockers. We also 
implemented the probability maps of atomic contribution 
as predicted by the models, allowing users to interpret 
the results and propose structural modifications for the 
predicted compound. The current version of the app (v. 4.0) 
was developed using ChEMBL54 version 23, containing 
8,134 compounds with hERG blockage data after curation. 
This app is publicly available at the website.55

5. Pred-Skin

The Pred-Skin24 is an open source web-based and 
mobile application for evaluation of skin sensitization 
potential using externally validated QSAR models based 
on human and animal (local lymph node assay, LLNA) 
data. The app represents a benchmark for the prediction 
of skin sensitization, since it is the first tool to provide 
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predictions from models based on human data. Predictions 
for a single compound are produced within a few seconds. 
The following outputs are provided: (i) binary predictions 
of human and murine skin sensitization; (ii) multiclass 
predictions of murine skin sensitization potency; and 
(iii) probability maps illustrating the predicted contribution 
of chemical fragments. This app is freely available to the 
public at the website56 and at the App Store.

6. Usage and Interpretation of Apps for 
Toxicity Prediction

There is a strong need for the development of user-
friendly tools that would allow non-experts to usually 
predict their compounds of interest and also visualize 
important structural features related to increase or decrease 
the activity/toxicity of these compounds. QSAR models 
have been commonly referenced as a non-interpretable 
approach.57 This common sense has led experimentalists 
and regulatory agencies to prefer the use of more simple 
and transparent approaches, such as structural alerts or 
read‑accross.58 However, many studies have shown that 
QSAR models can be interpreted and structural features 
associated with activity or toxicity identified.59-64 These 
substructures derived from the interpretation of QSAR 
models can be used to design novel compounds with 
improved toxicity profile.65

Willing to provide predictive and interpretative tools for 
toxicity prediction, we have been working to implement 

highly predictive QSAR models in web and mobile apps 
with intuitive usage and interpretation. Both Pred-hERG 
and Pred-Skin allows the user to make predictions by 
pasting SMILES strings or drawing molecules in the 
JSME66 molecule editor. Alternatively, the user can load 
.sdf or .mol files. After hitting the “Predict” button, the 
user will receive the QSAR predictions on the computer/
mobile screen.

In addition, we have implemented the probability maps 
proposed by Riniker and Landrum51 in our apps. This 
feature provides a graphical visualization of the predicted 
fragment contribution, allowing the user to interpret the 
prediction and to design safer compounds. The atoms 
are highlighted according to their predicted activity 
contribution. Atoms and molecular fragments highlighted 
in green represent a positive contribution (increase in the 
toxicity potential); whereas, pink fragments represent a 
negative contribution (decrease in toxicity potential). The 
gray fragments do not contribute to toxicity potential and 
gray isolines define the frontier between the positive (green) 
and the negative (pink) contributions.

7. Final Remarks 

Despite the progress made in the last decade to predict 
toxicity endpoints, we observe that these efforts still do 
not fully guarantee that all new chemicals do not induce 
toxicity or harzard to human health. Therefore, the 
development of alternative methods, including in silico or 

Figure 2. Pred-Skin front-back-end technology (full-stack).52 (1) front-end using the responsive web-based templates in HTML5 and JavaScript for the user 
to draw/paste the chemical; (2) RDKit ECFP-4 fingerprint (Morgan) representation is calculated on the back-end; (3) scikit-learn API machine learning model 
runs on the back-end; (4) the front-end responsive framework templates based on Flask is rendered with the models predictions and the probability maps.51
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computational methods for addressing toxicity potential 
of chemicals is of upmost importance. Machine learning 
methods, such as modern QSAR approaches have become 
more powerful due to the rapid expansion of bioactivity 
and toxicity data available in chemical databases such 
as TOXNET,67,68 ChEMBL,69 and PubChem.70,71 In this 
paper, we have discussed and reviewed the development 
of web-based and mobile applications for chemical 
problems, focusing on best practices, development, 
usage, and application. We have also described two 
innovative and freely accessible web-based and mobile 
applications for evaluation of potential hERG blockers 
and skin sensitizers developed in our laboratory. These 
applications are based on robust and predictive QSAR 
models developed using the largest publicly available 
data sets of structurally diverse compounds. The freely 
available Pred-hERG and Pred-Skin web apps ensure 
both highly accurate predictions and easy interpretation 
of the models, allowing users to perform rapid screening 
of large libraries of virtual compounds to discriminate 
potential toxicants as to purpose structural modifications 
to design safer chemicals.
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