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During the past 30 years, molecular simulations (MS) have become increasingly popular 
among medicinal chemists, being recognized as a promising tool to reduce drug development costs 
and timelines while increasing its success. From the refinement of docking experiments during 
the 1990’s to the contemporary possibility to produce accurate models of ligand intrinsic activity 
and affinity, the use of simulations in medicinal chemistry has progressed rapidly, becoming an 
essential tool in modern drug discovery pipelines. However, in spite of their potential, in silico 
methods and MS have historically been dependent on a tradeoff between computational cost and 
accuracy, which not uncommonly limits their impacts on drug development. In this context, this 
review presents a concise and up-to-date summary of the role of MS in medicinal chemistry, and 
examines its participation in recent advancements of both ligand-based and structure-based drug 
discovery, free-energy predictions, and model accuracies. In addition to offering a synopsis of 
the potential benefits of MS on drug discovery, this review intends to aid users to both understand 
the limitations of computational methods and to design more accurate experiments that, as a 
consequence, will have an increasing impact on the development of new therapeutics.
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1. Introduction

The recognition of molecular flexibility was epochal. 
The concept of conformation as currently understood can 
be traced1 to Haworth, in his seminal book The Constitution 
of Sugars,2 published in 1929. However, it was not until the 
beginning of the 1960’s that the understanding of molecular 
flexibility matured to encompass protein dynamics, 
taking as a hallmark the studies of protein folding by 
Anfinsen et al.3 The 1960’s also saw the first reports of 
software capable of manipulating protein structures by 

using oscilloscopes.4 And, since the 1970’s, with the work 
from Nobel laureates Levitt and Warshel5 and the seminal 
work of McCammon et al.,6 the simulation of biomolecular 
dynamics became a reality within the scientific community. 

In the context of drug discovery, the structural basis 
of ligand-receptor recognition took about 50 years to 
evolve from a mechanical concept offered by the “Lock 
and Key” model from Emil Fischer, developed in the end 
of the nineteenth century, to the dynamic description of 
enzyme-substrate recognition from Koshland7 (i.e., new 
conformational states, not previously observed in solution, 
emerge upon complexation) and to the thermodynamic 
understanding of the process of conformational selection 
(i.e., molecules exist in an ensemble of different 
conformations and the partners select each other based 
on complementarity).8 Since then, “Induced Fit” or 
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“Conformational Selection” models can be applied to 
drug-receptor modulation in general, as in allosterism 
and agonism, which are currently well established by a 
plethora of experimental techniques that include X-ray 
crystallography, nuclear magnetic resonance (NMR), 
circular dichroism, infrared spectroscopy, fluorescence, 
cryoelectron microscopy, and many others. More recently, 
the importance of the time during which a drug remains 
physically bound to its target receptor, that is, its residence 
time, has been recognized,9 greatly expanding the timescale 
required to represent the pharmacologic action of drugs. 

With the emergence and continuous development of 
in silico simulation techniques focused on organic drug-
like compounds, the scientific community has produced 
progressively more accurate computational models of 
drug action, allowing researchers to not only refine and 
complement empirical results but also, within certain 
parameters, to circumvent some experimental limitations 
and reduce the cost and time required to obtain results 
in comparison to empiric non-computational techniques 
(“computational experiments” are for simplification usually 
called “computational data.” The word “experiment” is 
commonly retained for benchwork-related data, or “wet 
science.” However, the concept that in silico results, by 
its theoretical nature, are of lower quality than results 
obtained by experiments that do not use computer models, 
is obsolete. All types of experiments, either computational 
or empirical, have limitations and advantages. In fact, 
it is increasingly difficult to find experiments that do 
not require any form of computational modeling). In 
fact, the potential of in silico experiments has increased 
acutely in recent decades (Figure 1), following a steady 
increase in computational power, software optimization, 
and methodologic development that have progressively 
transferred its bottleneck from infrastructure (hardware 
and software) to experimental design and data analysis. 
Numerous compounds developed through computational 
methods10 have entered clinical trials leading to drug 
approvals, from the use of comparative modeling on the 
development of captopril and zanezepil,11 to the design 
of novel human immunodeficiency virus (HIV) protease 
inhibitors as lopinavir based on analyses of its interactions 
with mutant residues11 and the use of fragment based drug 
discovery for the identification of vemurafenib.12 In fact, 
it is implausible that the development of new drugs do 
not include, at some point, computational tools, as in the 
identification of genes, the screen of molecular libraries or 
the application of structure-based drug design methods.10 
Additionally, the emergence of machine learning and 
artificial intelligence models may be heralding a “golden 
age” of computational drug discovery that, on the other 

hand, may suffer from a “point and click” use of complex 
tools without concern for methodological characteristics, 
best practices, and limitations. In this sense, the accuracy 
of computational simulations remains highly dependent on 
user expertise, on how the simulations are prepared, and 
on how results are interpreted. In this context, the current 
review intends to present some of the main advancements of 
computational simulation over the past decades, their major 
potentials and limitations, as well as some methodological 
best practices, with the aim to aid medicinal chemists to 
produce more accurate models for their drug discovery 
pipelines while wasting less time following false leads 
based on methodological limitations.

Therefore, this work will begin by discussing 
methodological approaches to the computational assessment 
of molecular flexibility, followed by a description of the 
potential impacts of molecular simulations (MS) on ligand-
based drug discovery (LBDD) and structure-based drug 
discovery (SBDD), ending with considerations regarding 
future prospects on the field.

2. Accessing Molecules Flexibility 

2.1. Representation of drug-like compounds

The computational representation of drug-like 
compounds at the atomistic level is performed primarily 
by using quantum mechanics (QM), molecular 
mechanics (MM), a combination of these methods (QM/MM)  
and, more recently, through machine learning potentials 
trained from QM data (coarse-grained methods are 

Figure 1. Publication count per year, produced from data obtained 
from Web of Science (WoS). Searches were performed using keywords: 
(red) “chemistry, medicinal,” a category from WoS (left y axis), (blue) and 
its combination with the keywords “molecular simulation” or “molecular 
dynamic” or “metadynamics” or “umbrella sampling” (right y axis). 
Access date 05/12/2023. The steepness of the increase in molecular 
simulations on drug discovery publications in the last 10 years demonstrate 
the popularization of these techniques on the field.
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theoretically able to describe drug-like compounds, but 
are impaired by the challenge of parameterizing drugs 
chemical landscape, so they will not be discussed here). 
QM methods usually describe molecular properties more 
accurately, but incur a higher computational cost and it 
can be challenging to find the proper method, functional or 
basis set for your specific system. The MM approach, in turn, 
allows simulations of molecular systems beyond 106 atoms, 
but requires a careful calibration of energy functions to 
empirical data to properly describe molecules (i.e., the force 
field). Although this parameterization is well established 
for biomacromolecules (as in AMBER,13 CHARMM,14 
GROMOS,15 and OPLS)16 as based on known and repetitive 
building blocks (e.g., amino acid residues, nucleotides, 
lipids and monosaccharides), drug-like compounds impose 
challenges due to their structural diversity. Because the 
quality of these parameters is central to the accuracy of 
computational models, several potential solutions to this 
problem have been explored in the past decades and so avoid 
(at some level) the extra parameterization effort by the user.

From the pioneering work of Hendrickson17 in the 
1960’s to a series of force field developments by Allinger 
and co-workers18,19 between the 1970’s and 1990’s, the 
development of MMFF94 by Halgren20 is notable, and 
likely the first force-field development focused on drug 
discovery. Even after 30 years, Halgren’s work is still 
relevant, as exemplified by its role in assisting the high 
accuracy of the DockThor21 engine. However, these 
initial developments of force fields for organic drug-
like compounds were not associated to the parameters 
necessary to describe the dynamics of biomolecules, 
particularly those of proteins, thus impairing MS of ligand-
receptor complexes obtained by using MMFF94. This 
limitation was tackled by AMBER GAFF,22 CGEnFF23,24 
and CHARMM-GUI25 and, for GROMOS, in the initial 
approach by PRODRG,26 and later more accurately by 
ATB27 (see Table 1 for a comprehensive list of simulation 
packages, force fields and topology builders for drug-
like compounds; check also the literature36 for further 
information on simulation engines trends). Nonetheless, 
all solutions indicated above share an intrinsic limitation 
of parameterization due to the difficulty of anticipating 
chemical diversity. Consequently, the user should be 
conscious of the possible lack of accurate parameters for 
uncommon functional groups and atoms, and should be 
aware of the absence of appropriate torsional terms in the 
force field database, which could impact the accuracy of the 
ligand-receptor interactions described in MS. In addition, 
the proper selection of protonation or tautomeric states 
for the potential bioactive compounds under study may 
also have a strong influence on the obtained interaction 

energies (e.g., hydrogen bonds versus salt bridges) and, 
therefore, on how conformational events propagate through 
the target receptor. This also applies for the receptor, 
particularly in the case of histidine residues, that can 
occur in different protonation states in physiological pH. 
Even with the use of tools to predict pKa values for the 
residues side chains, an analysis of the residues that interact 
with a histidine may aid to identify the ionization state 
likely to occur physiologically and, as a consequence, 
to be employed on the simulations. The combination of 
inadequate parameters and bad ligand preparation may 
give origin to errors as inaccurate ligand conformations, 
may impair the ability of simulations to properly represent 
conformational activation of target receptors by bioactive 
compounds or even induce the dissociation of the ligand-
receptor complex. In other words, these errors could be of: 
(i) structural/conformational nature, that could be limited 
on tight binding clefts (where the ligand cannot move) 
or highly flexible ensembles (where the ligand moves so 
much that it creates some conformational “noise”), or (ii) 
energetic nature, that could greatly interfere in free-energy 
predictions, being likely more sensitive to bad parameters 
than the first case. However, these problems may be less 
likely in future iterations of automated ligand topology 
builders due to improved set of parameters, based on 
larger data sets that will cover a major part of the potential 
chemical landscape. 

In principle, the limitations of force field-based 
descriptions of drug-like compounds might be circumvented 
by using hybrid QM/MM methods, bringing the ligand 
into the QM region, and therefore not requiring previous 
parameterization. On the other hand, the user should be 
aware of the employed method (e.g., semi-empirical, 
ab  initio, or density functional theory), functionals and 
basis sets. This choice is intrinsically associated to the 
chemical structure of the compound under study and 
how well a specific method describes its properties. 
Unfortunately, the embedding schemes that describe the 
interactions between QM and MM regions are far from 
ideal, ranging from simple mechanical embedding via 
electrostatic embedding to more advanced polarizable 
embedding schemes. Furthermore, the inclusion of a 
QM region in an molecular dynamics (MD) simulation 
still substantially increases computational cost, seriously 
limiting the accessible time scale. An alternative approach 
would be to first sample the compounds of interest on large 
time scales by using MM, then identify conformational 
states of interest and refine these states through shorter  
QM/MM simulations (or even pure QM in some situations, 
as through MOPAC MOZYME)37 to describe intermolecular 
interactions of electronic origin. For instance, one can 
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check with such an approach if a crystallographic ion is 
indeed coordinated to the enzyme.38 These limitations due 
to high computational costs, however, may be overcome 
in the near future by substantial advancements in machine 
learning-derived potentials trained on large, high-quality 
data sets derived from quantum mechanical data, such 
as ANI  (accurate neural network engine for molecular 
energies) potentials,39 substituting the QM part and allowing 
faster calculation.25

2.2. MD simulations

Conventional MD simulations have been conducted 
for almost half a century,5,6 and have allowed researchers 
to accurately represent molecular phenomena in solution.40 
MD simulations can represent a molecular system as a 
function of time while including elements essential to the 
representation of ligands activity, such as solvent, ions, 
cofactors, amino acid ionization, membrane chemistry, and 
ultimately, how these factors entangle in a dynamic system. 
However, the accuracy of MD-based predictions depends 
on a series of factors, such as the selected force field, 
simulation setup, system equilibration, and the extent of the 
system sampling.40,41 With the continuous advancement of 
computational power dictated by Moore’s Law and software 
optimization (particularly of graphic processing units, 
GPUs), the time scale accessible to medicinal chemists has 
increased steadily in the last 30 years (Figure 2). 

The length of a simulation is one of many factors that 
may impact a model accuracy. Additionally, the preparation 

of the system, including the equilibration phase, will 
contribute to how well a MD simulation will mimic the 
desired biological conditions. It is usually constituted 
by an initial equilibration phase, in which the system 
is gradually heated, or the simulation is progressively 
freed from positional restraints or, alternatively, a 
combination of the two approaches. Equilibration is 
essential to allow solutes to lose the structural memory of 

Table 1. Most common packages for atomistic unbiased molecular dynamics simulations, including the main force fields included and available tools to 
produce organic, drug-like topologies

Program Force field Ligand topology builder

AMBER28 AMBERa Antechamber, CHARMM-GUI, ATB

CHARMM29 CHARMMb, MMFF94 CHARMM-GUI, LigParGen

Desmond30 OPLS4c Maestro, CHARMM-GUI, LigParGen

GROMACS31 AMBER, CHARMM, GROMOS, OPLSd ACPYPE, ATB, CHARMM-GUI, LigParGen

GROMOS32 AMBER, GROMOSe ATB

NAMD33 CHARMM, X-PLORf CHARMM-GUI, LigParGen

OpenMM34 AMBER14, CHARMM36, AMOEBA, ANIg OpenMM, CHARMM-GUI, LigParGen

Tinker35 AMBER, Allinger MM, OPLS, MMFF94, AMOEBAh Tinker, CHARMM-GUI, LigParGen
aMultiple versions, but the recommended ones are ff19SB (proteins), OL21 (deoxyribonucleic acids (DNA)), OL3 (ribonucleic acids (RNA)), GLYCAM_06j 
(carbohydrates), lipids21 (lipids), gaff2 (organic compounds) and multiple models for water and ions; bmultiple versions, but the recommended one is 
CHARMM36, that include parameters for proteins, nucleic acids, lipids, carbohydrates and organic compounds (CGenFF) as well; cadditional force fields 
from OPLS, AMBER and CHARMM families are also available; dmultiple versions of these force fields are available on GROMACS, including AMBER 
versions 94, 96, 99, 99SB, 99SB-ILDN, 03 and GS; CHARMM versions 19, 22, 27 and 36; GROMOS versions 43a1, 43a2, 45a3, 53a6 and 54a7; and 
version OPLS-AA/M; ethe latest versions of GROMOS force field available under GROMOS package are 45A3/4, 53A5/6, 54A7 and 54A8; finclude 
versions of force fields present on CHARMM and X-PLOR packages. gother force fields are also available on OpenMM, including GLYCAM parameters, 
CHARMM Polarizable force field and OpenFF or AMBER GAFF for organic compounds; hTinker is able to use multiple version of several force fields, 
such as Amber (ff94, ff96, ff98, ff99, ff99SB), CHARMM (19, 22, 22/CMAP), Allinger MM (MM2-1991 and MM3-2000), OPLS (OPLS-UA, OPLS-AA) 
and AMOEBA (2004, 2009, 2013, 2017, 2018), among others. 

Figure 2. Boxplot of the evolution of MD simulation times associated with 
drug discovery, in nanoseconds, from 1995 to 2020. Data were collected 
on the WoS by combining the terms “molecular dynamics” and “drug 
discovery.” Only full papers were considered, resulting in ca. 3,300 articles 
between 1995 and 2020. Additionally, these papers were curated manually 
to focus only on conventional MD, resulting in a total of ca. 730 papers 
from which data were collected. For each paper, only the single longest 
simulation was considered. The red values present the median values of 
the simulation lengths, while the black values (with a white diamond) 
represent the average values. Black circles represent the outliers. 
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the crystallographic environment (that feature high protein 
and salt concentrations), while acquiring interactions 
with solvent molecules. But this simulation step, which 
is commonly neglected by users, carries a much deeper 
importance and implication to the success of a MD-
based molecular model. The average properties obtained 
from simulations will only be representative when the 
equilibration length is longer than the time that a given 
property requires to reach equilibrium (the property 
called relaxation time) and when the simulation period 
is sufficiently longer than the relaxation time of the 
property of interest.42 Unfortunately, different properties 
possess dissimilar relaxation times. Consequently, the 
equilibration time should be adjusted to the property of 
interest. For example, physical chemical properties such 
as the system volume, density, and total/kinetic/potential 
energies will usually equilibrate in matter of picoseconds, 
while the protein atom-positional root-mean-square 
deviation may require nanoseconds to microseconds 
to achieve equilibrium, or may even fail to equilibrate 
during the simulation time. In our research group,43 we 
use only a relaxation of positional restraints. It simplifies 
the equilibration by removing the graduate heating, but 
still allow the solute or ligand-receptor complex to slowly 
accommodate to the solvent and dissipate crystallographic 
forces. Usually, our setup includes an initial 1 ns NVT (the 
number of simulated particles, simulation cell volume and 
temperature are all kept fixed) simulation with all atoms from 
the ligand-protein complex restrained by 5,000 kJ mol-1,  
followed by five NPT (the number of simulated particles, 
simulation cell pressure and temperature are all kept fixed) 
simulations, during 1 ns each, with decreasing positional 
restraints on the complex of 5,000, 4,000, 3,000, 2,000 and 
1,000 kJ mol-1, after which the production run initiates. 
But this setup should be adapted to the system under 
study. For example, for transmembrane proteins an initial 
step to equilibrate the membrane should be performed, 
restraining the protein (and bioactive compound, if 
present) atomic positions. Such longer and more subtle 
equilibration protocol could be particularly important in 
the equilibration of ligand-receptor complexes, where 
bad contacts between atoms produced by docking or 
crystallization could impact on binding stability, or when 
a given protein, such as a G-protein-coupled receptors, 
GPCRs, shows an activated conformation produced by a 
ligand, made by a net of delicate interactions that could be 
lost in abrupt equilibrations. 

The simulation length, especially for unbiased MD, 
represents how much of a given molecule conformational 
ensemble is sampled by the computational model. 
Accordingly, simulation length is one of the major aspects 

that define the accuracy of simulations in representing 
the behavior of the molecular system under conditions 
that supposedly mimic native states. Ideally, simulation 
time scales should be beyond the relaxation times of 
the phenomena under study,40 which can range from 
milliseconds to hours.44 In this context, the length of 
simulations used by medicinal chemists started modestly 
on a picosecond time scale during the 1990’s and the first 
decade of the 2000’s, and then increased slowly up to 
the current decade, when it was boosted by an order of 
magnitude compared to the previous period, which is a 
remarkable achievement. Currently, the average time scales 
of MD simulations applied to drug discovery are on the 
order of 102 ns and are moving towards 103 ns. Nonetheless, 
75% of MD applications are below the 102 ns time scale, 
which may not capture all relevant processes observed in 
longer simulations. 

In contrast to simulation times (Figure 2), the lengths 
of equilibration times have shown a very limited evolution 
over recent decades, remaining between tens to a few 
hundred picoseconds (Figure 3). While such timescales are 
usually adequate to equilibrate simulation box conditions, 
they are far from sufficient for protein equilibration, which 
in turn will depend on molecular flexibility and size, as well 
as on the molecular phenomena of interest (e.g., a small 
globular protein, a multidomain protein, a small or a large 
loop, a docking pose accommodation, the estimation of 
ligand half-life of complexation, and allosteric activation of 

Figure 3. Boxplot of the evolution of equilibration times in preparation of 
MD simulations associated with drug discovery, in picoseconds, from 1995 
to 2020. Data were collected on the WoS, combining the terms “molecular 
dynamics” and “drug discovery.” Only full papers were considered in the 
analysis, resulting in ca. 3,300 articles. Additionally, these papers were 
curated manually to focus only on conventional MD, resulting in a total 
of ca. 730 papers, from which the data were collected. For each paper, 
only the single longest simulation was considered. Red values present the 
median values of the simulation lengths, while black values (with a white 
diamond) represent the average values. Black circles represent outliers. 
Equilibration schemes included thermalization and progressive relaxation 
of positional restraints, or a combination of both.
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G-protein-coupled receptors, GPCRs). On the other hand, 
if a hypothetical 100 ns simulation was equilibrated by 
100 ps, but only the last 10 ns were analyzed, in practice 
the system was equilibrated by 90 ns, and not 100 ps. 
Much more troublesome is that approximately 50% of the 
reviewed papers from 1995 to 2020 that reported the use 
of molecular dynamics simulations in medicinal chemistry 
projects neither equilibrated nor mentioned equilibration of 
their systems. This omission is even more common when 
commercial packages are used (“black boxes”). 

A series of approaches has been developed and 
integrated into conventional MD to at least partially 
circumvent the challenges of representing ligand-
receptor complexes on biological time scales. For 
example, techniques as clustering or PCA (principal 
component analysis) are used to reduce the dimensionality 
of simulation sampling by removing noise while 
concentrating the user analysis on main conformational 
states that are (hopefully) relevant for the biological 
process under study. On the other hand, an increasingly 
common approach that is even required as a standard by 
some journals45 is the use of replica simulations that start 
from different velocities or even coordinates (and the 
combination of these trajectories can be filtered by PCA, 
for instance). It is important to emphasize that a PCA 
analysis of multiple replicas of the same system will not 
be directly comparable, unless the user combine all replica 
in a single trajectory (as well as control simulations). 
Later, each state can be comparatively located on the 
map, as well as its trajectory during simulations. The 
concept is that each simulation will start from a different 
point in the free energy landscape of a given molecular 
system, cover a different path, and ideally converge with 
a similar sampling, while the properties of interest would 
be presented as averages among the replica. This approach 
can robustly increase the sampling of a simulation while 

allowing the user to focus on reproducible molecular 
phenomena and to exercise caution when evaluating 
rare events,46 particularly when combined to control 
simulations, that is, a MD of the uncomplexed receptor 
(as a negative control) or MDs of the receptor complexed 
to known ligands (as positive controls).

2.3. Enhanced sampling techniques

Alternatively to increase sampling by increasing its 
length and adding replicas, multiple approaches have been 
developed to improve simulation sampling. These include 
local elevation (LE) simulations,47 metadynamics,48,49 
replica-exchange simulations,50,51 gaussian accelerated 
molecular dynamics,52,53 normal modes,54,55 normal modes 
with excited states,56 umbrella sampling,57,58 and accelerated 
enveloping distribution sampling,59 among many others 
(see Table 2 for a list of some enhanced sampling 
techniques and associated packages). Distinguished by 
either requiring or not requiring a collective variable (a 
variable, property or path that will guide the sampling, 
as in LE and metadynamics), these approaches employ 
different methods to allow simulations to circumvent 
energy barriers, and thereby sample a larger region of 
the conformational space associated to a given molecular 
system. An analysis of these techniques has been previously 
reviewed.62 However, the user should consider some issues 
when employing enhanced sampling techniques (depending 
on the method), such as: (i) high computational cost; (ii) 
subjectivity of the definition of collective variables; (iii) 
observation of high energy conformational states, with 
no relevance for biological conditions; and (iv) the level 
of complexity associated to the use of the technique of 
interest. Nevertheless, the role these methods will have on 
drug discovery will certainly increase in the next years, 
and in some applications, it will likely be the new standard.

Table 2. List of some of the most common enhanced sampling techniques, as well as the packages where they are currently found 

Method Program

Accelerated Enveloping Distribution Sampling (A-EDS) GROMOS

Accelerated Weight Histogram (AWH) GROMACS

Enveloping Distribution Sampling (EDS) CHARMM, GROMOS

Gaussian Accelerated Molecular Dynamics (GaMD) AMBER, GROMOS, OpenMM

Local Elevation (LE) GROMOS

Metadynamics PLUMED60

Normal Modes (NM) AMBER, CHARMM, GROMACS

Normal Modes with Excited States (MDeNM) MDexciteR61

Potential of Mean Force (PMF) AMBER, CHARMM, GROMACS, OpenMM, Tinker

Replica-Exchange Molecular Dynamics (REMD) AMBER, CHARMM, GROMACS, GROMOS, OpenMM

Umbrella Sampling (US) AMBER, CHARMM, GROMACS, GROMOS, OpenMM
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3. Molecular Flexibility Impact on LBDD

With our current understanding of drug activity as 
a consequence of the modulation of a specific target 
receptor (or receptors, in the case of multi-target drugs) 
and the consequent implications for drug development, the 
analysis of free ligand dynamics using LBDD may seem 
counterintuitive. So why pay attention to uncomplexed 
ligand conformation?

The first and likely most obvious reason is that 
receptors’ 3D structures may not always be available from 
either experimental (e.g., NMR, X-ray crystallography, and 
cryoelectron microscopy) or computational approaches 
(primarily through AlphaFold,63 because of the great 
advancement and publicity that AlphaFold brought, some 
researchers64 may believe that it can predict high fidelity 
models for all proteins. This is not true. It certainly can 
predict excellent models for an extremely large number 
of proteins, but the user should be aware of the quality 
statistics offered with AlphaFold results. Global or local 
problems are far from uncommon with these models, 
and should be taken carefully into consideration) 
whereas other tools such as Rosetta and Swiss Model 
remain important for specific applications).65,66 In such 
situations, traditional approaches to building structure-
activity relationships  (SAR) from ligands and produce 
predictive models of the bioactivity of a series of 
congeners will remain relevant to medicinal chemistry in 
the foreseeable future (Figure 4). Because the user may 
not know the ligand’s bioactive conformation, and since 
such conformation may not necessarily correspond to a 
minimum energy state, tools were developed in the past 
decades to perform fast conformational analyses and to 
produce representations of the conformational diversity 
of drug-like compounds,70 including recent deep learning 
based approaches.71 However, the use of such tools is 
limited by their potential prediction of conformations 

that are not observed under biological conditions or that 
represent high energy states. As an alternative to the 
identification of single conformational states for SAR/
QSAR (quantitative structure-activity relationships) 
studies, the consideration of the ensemble as a dimension 
to be explored in QSAR approaches was pioneered by 
Hopfinger69 in the late 1990’s and remains a relevant 
tool for medicinal chemists.72 Not only an alternative 
approach for QSAR modelling, Hopfinger’s 4D-QSAR 
accelerated the recognition that pharmacophoric models 
are not static entities, but snapshots of a dynamic network 
of probabilistic intermolecular interactions, whereas 
the idea of an ensemble space was already proposed in 
the 1980’s73 (Figure 4). As a consequence, the idea of a 
bioactive conformation may be understood as a set of 
similar conformational states from a bioactive compound 
able to promote similar responses by the target receptor. 

As an alternative to the generation of ligand 
conformational diversity, MD simulations can produce 
accurate representations of conformational states accessible 
in simulated solutions using water or organic solvents, 
being limited primarily by force field accuracy.74 Drug-
like compounds, due to their small size, are simulated 
quickly and possess smaller conformational landscapes 
compared to proteins; consequently, robust sampling 
should be accessible for compound series used to produce 
SAR or QSAR models. While this strategy to generate 
conformational diversity will not enable the anticipation 
of bioactive geometries produced by induced fit (see 
item 4.2) it will allow the user to infer a conformational 
selection process, given the identification of ligand-
receptor complexes with the corresponding bioactive 
conformations.75 In fact, conformational selection 
may be far more common than usually believed.76,77 
Additional applications of MD simulations of uncomplexed 
drug-like compounds include: (i) elucidation of NMR 
conformational information of peptides (mainly through 

Figure 4. Evolution of models for ligand-receptor affinity inference. (a) A pharmacophoric model based on simple geometric descriptors, from the end 
of the 1970’s (reproduced from reference 67 with copyright permission 2023 from Wiley Company). (b) 3D pharmacophoric model derived from the 
superimposition of multiple structures, from the late 1980’s (reproduced from reference 68 with copyright permission 2023 from Wiley Company). 
(c) 4D formalism proposed by Hopfinger et al.69 for the representation of ligand-receptor interactions, from the late 1990’s (reproduced from reference 69 
with copyright permission 2023 from American Chemical Society). (d) The current sampling of ligand-receptor complex by molecular simulations (MS), 
allowing the characterization of complex ensembles and main conformational states, for which accurate free energy estimations are becoming increasingly 
routine for medicinal chemists. 
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nuclear Overhauser effect (NOE) distances and J3
H,H 

couplings);74,78,79 (ii)  exploration of conformational 
differences between organic solvents used in NMR and 
water,74 and (iii) identification of non-biological, crystal 
packing effects.75,80-84 

4. Molecular Flexibility Impact on SBDD

4.1. Ligand dynamics

The addition of flexibility to ligand-receptor complexes 
(of experimental or computational origin) may promote 
significant conformational and orientational changes of 
the ligand,85,86 which in turn will impact the definition and 
representation of pharmacophoric groups, the identification 
of binding pockets, and thereby the determination of 
a SAR. In this sense, the user must refrain from using 
only the last conformation of a simulation, since such an 
approach would eliminate the entire ensemble. There is 
no reason to distinguish the last conformation from the 
rest of the trajectory. Averaged data, as for interaction 
energies between amino acid residues and ligands, can be 
important tools to identify the main regions of both ligand 
and receptor that participate in complexation. However, 
averages may include substantial fluctuations of the 
properties being observed. For example, the side chain 
from an arginine residue at the binding site could fluctuate 
and interact with different parts of the ligand during the 
simulation. The identification of these interactions could 
be important in establishing SAR, but an average structure 
could represent a geometry that does not show any of 
these interactions or even having no physical meaning; for 
instance, a flipping aromatic ring has an average position 
of a single straight line. Alternatively, the identification 
of the main conformational states and interactions that 
are modeled during the simulation may be possible (for 
instance, through PCA or clustering). This, however, 
requires a careful selection of states to avoid fortuitous 
correlations with the experimental data. Recent approaches, 
such as the use of Markov state models,87,88 may obviate the 
subjectivity of these analyses, but are still computationally 
costly and instrumentally challenging in the context of drug 
discovery pipelines.

4.2. Induced fit, allosterism, and intrinsic activity

The concept of allosterism was proposed in 1961,89 
based on the Greek words allo (meaning other, different) 
and steric (meaning “solid”), without direct structural 
evidence.90 Two years later, Richard Feynman stated that 
‘‘... everything that living things do can be understood in 

terms of the jigglings and wigglings of atoms’’.91 But not 
until 1977 was it feasible to model such behavior through 
the first molecular dynamics simulation of a protein.6 In 
the context of drug activity, the concept of allosterism 
intertwines with other phenomena such as the induced fit 
originally proposed in 1958,7 the intrinsic activity of drugs 
(i.e., agonism/antagonism/inverse agonism), and ultimately 
with intrinsically disordered proteins,92 in the sense that a 
series of conformational events, modifications in the protein 
flexibility93 or in protein correlated motions94 are triggered 
by drug complexation to its target protein. 

Accurate representations of conformational events 
produced by drug action on target proteins have been 
described for multiple molecular systems by using different 
simulation approaches. Molecular systems that have drawn 
particular interest include conformational modulation 
of GPCRs95-98 due to their importance to therapeutics; 
nAChR;99,100 antithrombin activation by heparin;101-103 
modulation of kinases;104-106 and CRISPR-Cas9 (clustered 
regularly interspaced short palindromic repeats and 
CRISPR-associated protein 9) function;107 among many 
others. While these applications of MS require substantially 
longer time durations, and are therefore usually unsuitable 
for compound screening, they can significantly enable 
medicinal chemists to go beyond ligand binding and 
towards drug activity, particularly when backed by control 
simulations for negative (uncomplexed protein) and 
positive (known ligand) controls. Additionally, some of the 
previously mentioned enhanced sampling techniques may 
substantially reduce time scale limitations of conventional 
MD while accelerating drug discovery pipelines, whereas it 
remains to be determined if these algorithms will maintain a 
proper ensemble in which the enthalpic and entropic effects 
associated to allostery events could be observed. 

4.3. Affinity prediction

The more common methods used by medicinal chemists 
to estimate the free energy of ligand binding can be 
grouped into two approaches: (i) end-state methods, such 
as the linear interaction energy approach (LIE)108 and the 
molecular mechanics Poisson Boltzmann/generalized born 
surface area (MM-PB/GBSA);109,110 and (ii) alchemical 
methods, such as thermodynamic integration (TI),111 free 
energy perturbation (FEP)112 and the Bennett113 acceptance 
ratio method (BAR). Going beyond the methodology114-117 
and use118 of these techniques, which have been reviewed 
regularly, our focus will be on the recent advances of their 
accuracies when predicting experimentally determined 
affinities. The role of ligand-receptor affinity as a key 
indicator of drug potency46 supports the development of 
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more accurate drug-receptor modeling in drug discovery 
pipelines but, in this sense, the user must be also aware 
that experimentally determined affinities also have 
errors, whose magnitude will depend on the employed 
technique. Therefore, the discussion and pursue of more 
accurate simulation techniques will be likely limited to the 
experimental accuracy.

End-state methods correspond to simpler and 
comparatively computationally inexpensive techniques 
that are usually less accurate.116 Additionally, several 
challenges may directly impact the quality of their results. 
For example, the predicted energies obtained through 
LIE can fluctuate substantially during simulations,119 
and longer simulations can in fact produce worse results, 
as the energy distribution becomes multimodal and 
linear responses are not able to represent the affinities 
anymore.120 Higher accuracy has been associated to a 
specific and system-dependent calibration of LIE equation 
parameters.121 To improve LIE accuracy and dependence on 
specific parameterization, variants such as its hybridization 
with GBSA (GBS-LIE) have been proposed, and have 
produced accuracies of up to 70% for three receptors and 
a couple of ligands while increasing speed by an order 
of magnitude compared to other LIE implementations.122 
The extended linear interaction energy (ELIE)123 approach 
is an alternative that has achieved predictions similar to 
some alchemical methods, with accuracies ranging from 
39 to 75%, depending on the molecular system. Other 
approaches focused on the reduction of the importance of 
the initial pose for predictions accuracies through multiple 
independent MD simulations to obtain weighted ensemble 
averages to be used in the LIE method, achieving errors 
smaller than 3 kJ mol-1.120

Another end-point method to estimate ligand free 
energy, MM-PB/GBSA, has become popular in drug 
discovery projects.124 This method is sometimes applied 
directly on docking-obtained poses (rescoring) and even 
on energy-minimized complexes, bringing the promise of 
fast and accurate predictions to drug discovery pipelines. 
Nonetheless, its accuracy in estimating absolute free 
energies has been commonly overestimated by users. 
While some authors consider MM-PB/GBSA as a 
potentially better tool than most scoring functions,125 
new docking scoring functions such as BT-Score, 
RF::VinaElemen, DockThor-RF, and RF::Khamis exhibit 
accuracies to predict affinities of up to 70% when tested 
against ca. 200 protein-ligand complexes retrieved from 
PDBbind  2013 Core Set (version 2013).126,127 These 
alternatives demonstrate solid performance among a 
wide range of molecular systems, showing accuracies 
substantially higher than those of standard Vina and 

AutoDock128 scoring functions, as well as some known 
functions from packages such as Sybyl, MOE and GOLD,127 
even though local Vina and Autodock have been largely 
employed as references to show the supposed advantages 
of rescoring docking poses by using MM-PB/GBSA, 
which could lead to a circumstantial perception of accuracy 
(added by smaller data sets of similar compounds).125,129-131 
Additionally, the accuracy of the poses selected from the 
docking (or even MD) methods as entries will strongly 
influence free-energy estimations.132 Nevertheless, 
optimization of simulation parameters has been attempted 
to improve accuracy,133 and higher accuracies have 
depended on the molecular system under study.132,134

The accuracies of both LIE (mainly through its 
variants) and MM-PB/GBSA have improved substantially 
in recent years, and can currently accommodate large 
sets of compounds compatible with the screening phase. 
However, the user should be aware that the accuracy of 
these methods is highly dependent on the specific molecular 
system and the chemical diversity of the ligands under 
study.135 Consequently, the user must exercise caution 
when extrapolating previously described accuracies from 
different molecular systems. Also, the inverse relationship 
between docking speed and accuracy during the screening 
phase is far from consolidated; in order words, some 
scoring functions allow a very fast virtual screening, 
with a high level of confidence. It is important to realize 
that end-state methods assume that simulations of both 
complexed and uncomplexed states are representative of 
interactions under biological conditions,116 which may 
not be the case (e.g., is it the ensemble able to identify 
the bioactive conformation?). Additional factors that may 
influence these end-state methods include the quality of 
the docking pose or crystal structure and the discontinuity 
of parameters between docking and MD force fields that 
may produce ligand reorientation at the binding site during 
simulations and consequently complicate the selection of a 
conformation for free energy estimation. A similar situation 
can be observed in molecular systems that are more prone to 
an induced fit recognition, in which major conformational 
changes may be identified upon complexation.136 Therefore, 
longer simulations, which are potentially associated with 
larger conformational changes, have not been consistently 
more accurate in free energy predictions;120,123 first, because 
they may not be sampling the bioactive, induced state and 
second, because the bioactive state may appear as noise in 
longer simulations as an underrepresented state. 

In the case of alchemical transformation approaches, 
a more thorough theoretical background is applied, 
allowing the user to obtain relative free energy estimations 
for a series of similar compounds through a progressive 
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alchemical transformation between the ligands of 
the series. Being traditionally more computationally 
demanding and methodologically challenging, more 
recent automated procedures may facilitate the application 
of these techniques and the standardization of procedures, 
thus reducing the risk of human error and subsequently 
improving accuracy,137-139 among other advantages.116 
Recent applications of free energy perturbation 
methods (FEP) yielded highly accurate predictions of the 
binding free energies of ca. 200 compounds with over 8 
different target receptors, with errors within 1.0 kcal mol-1 
of their experimental values.115,140,141 On the other hand, 
results were highly dependent on the employed parameters, 
with OPLS2.1 solidly outperforming AM1-BCC/GAFF,  
ChelpG/CharmM,142 MM/PBSA, and MM/GBSA.143 
Nonetheless, aspects such as the treatment of water 
molecules, the degree of sampling, and charge changes 
during alchemical transformations affect accuracy;59,116 
a promise tool to explore the role of water molecules 
on these processes is A-EDS,59 a one-step perturbation 
method able to determine the presence of water 
molecules in the active site by probing them in a fast and 
straightforward way.144 

4.4. Docking refinement

One of the main applications of MD simulations in drug 
discovery is the refinement of ligand-receptor complexes 
obtained by docking calculations. The simulation of a 
ligand dynamic at its binding site, starting from either 
X-ray crystallography or docking pose, can significantly 
change the predicted intermolecular interactions associated 
with molecular recognition, in which the ligand can change 
its position.145 Amino acid residues from the receptor can 
dynamically interact with multiple groups of the ligand;101 
in some situations, the ligand may dissociate from the 
binding site.

On the other hand, while the use of MD simulations 
to refine docking poses can enrich our understanding of 
the molecular recognition under study, the observation 
of ligand dissociation may arise from multiple factors, 
such as poorly executed docking, erroneous amino 
acid ionization (particularly for histidines), or poor 
equilibration prior to the simulation (extremely common, 
as discussed above). Furthermore, a precise determination 
of a ligand time of residence would require an extremely 
robust sampling of the system, including much longer or 
multiple simulations (starting from different velocities) 
to eliminate random and rare events, or even enhanced 
sampling techniques such as steered molecular dynamics 
(SMD),146,147 among other approaches.148 Therefore, the 

concept that MD simulation will validate docking results 
can be misleading, to say the least.

In fact, the time required for a ligand to dissociate 
from its target receptor is generally not a good predictor of 
ligand affinity.149 From an historical perspective, as early 
as 1986, Leysen and Gommeren149 tested the binding of a 
series of compounds against serotonin S2, dopamine D2, 
histamine H1, adrenergics a1 and a2, and opiate m receptors 
while considering both affinities and dissociation times. 
Affinities ranged from 0.4 to 8,000 nM, while dissociation 
times varied from 1.9 to 260 min. No correlation was 
observed between the two properties, indicating that 
the time a compound requires to dissociate from its 
target receptor is not directly related to its affinity. More 
importantly, in spite of being mostly neglected on drug 
discovery pipelines, a drug-receptor residence time may 
be a better predictor of in vivo efficacy when compared to 
classical drug affinity parameters,150 and recent works151 
have been advancing on the development of accurate 
simulation protocols to describe it. Also, the dissociation 
time should be within the simulation time, which is usually 
not the case.149 The situation was similar for other GPCRs, 
including M3, D2, NK1, and CRF1 receptors.152 Considering  
Kd = Koff/Kon (Kd being the equilibrium dissociation constant, 
Koff dissociation rate constant and Kon the association rate 
constant), and an average value for Kon of 108 M-1 s-1 

(taking as reference b2-adrenoreceptor modulators),153 
the dissociation of a ligand within simulations of 100 ns 
would imply in extremely low affinity ligands (Kd = 0.1 M), 
which is not realistic considering drug-like prototypes. As 
a consequence, if there is evidence for appreciable affinity 
for a given ligand-receptor system, the dissociation of a 
ligand during most MD timescales is more likely to be due 
to problems in the simulation setup (such as the docking 
pose, protonation states, equilibration and force field among 
others) then due to an (artificially) low affinity. 

5. Future Prospects

Recent advances have brought MS into key roles in drug 
discovery and development in academic, industrial, and 
clinical communities. Consequently, improved accuracy, 
precision, reproducibility, and timescales compatible 
with decision making will be expected.46 In this context, a 
recent editorial from the Journal of Chemical Information 
and Modeling by Soares et al.45 regarding guidelines for 
reporting molecular dynamics simulations data emphasized 
important directions for future studies, such as the use of 
replica simulations to increase sampling,46 combined with 
enhanced sampling techniques to facilitate the crossing of 
high energy barriers, and validated to the greatest possible 
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extent by experimental data. Although significant advances 
have increased both the accuracy and effectiveness of 
alchemical free-energy techniques for the prediction of 
ligand binding, and because these methods are assuming 
a vital role in the pharmaceutical industry,154 an important 
consideration is that the magnitude of error of most 
approaches may still impose semi-quantitative analyses of 
predictions, as of the prediction of nonbinders.108 

The upcoming decades will likely see a growing set 
of developments that may improve sampling, accuracy, 
operability, and the interpretation of simulation data, such as:
(i) Increase in software and hardware acceleration, 

including a growing role of GPU;
(ii) continuous growth of simulation lengths, allowing 

users to achieve time scales of some biological 
phenomena by using conventional MD;

(iii) common use of replicas and reference simulations. 
Control simulations (positive and negative) will 
assume a growing importance to data analysis and 
model accuracy;

(iv) progressive popularization of enhanced sampling 
techniques, reducing the limitation of simulation 
lengths from conventional MD;

(v) machine-learning and artificial intelligence models 
will play a growing role on MS, both substituting 
current energy functions by ML-derived potentials 
with QM accuracy and allowing improved free 
energy predictions, while reducing the dependence 
of simulation setup and data interpretation on user 
experience and know-how.

(vi) and, most importantly, a continuous improvement 
of model accuracy, allowing users to focus on 
progressively more complex questions at increasingly 
speeds to fight disease and enhance population health.
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