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Dichromate oxidation and dry combustion analysis were evaluated as reference methods 
to determine organic carbon in Brazilian soils using near infrared spectroscopy (NIRS) as an 
alternative. The main objective of this study was to evaluate which of the reference methods could 
provide a calibration model with higher predictive ability. A total of 161 soil samples obtained 
from horizons in full profiles (Parque Estadual da Mata Seca, Minas Gerais State, Brazil) were 
used. Models were mean centered and built from partial least squares. The dichromate oxidation 
method presented a lower accuracy when compared to dry combustion analysis as reference for 
NIRS. Figures of merit such as sensitivity, analytical sensitivity, detection and quantification limits, 
adjust and linearity presented results very similar. A paired t-test was applied to the figures of merit 
results and with 95% confidence did not show significant differences between the two methods 
used as reference for NIRS. The non-parametric Mann Whitney test showed that the samples 
provided with the partial least squares (PLS) model when the reference method was the dichromate 
oxidation or dry combustion analysis come from the same population, indicating that the reference 
methods employed for multivariate calibration from NIRS provide the same results practically.
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Introduction

Soil organic carbon (SOC) is crucial for the function 
of ecosystems and agriculture.1 The SOC is one of the 
most important components of agricultural development, 
especially with regard to increased agricultural productivity. 
In Brazil, research in soil fertility and the scientific and 
technological innovations contributed to the efficient use 
of corrective and fertilizer in agriculture.2 

In addition, the recent adoption by the Brazilian 
government to the ‘ABC program’ (Agriculture Low 
Carbon), which aims to fund projects producers to adopt 
conservation systems with positive balance of carbon 
stock in soil, increases the need to monitor the soil carbon 
changes.3

Soil analysis laboratories, located in Brazil, determine 

SOC based on analytical methods usually employed in 
the form of dichromate oxidation of carbon, with varying 
adaptations,3 or dry combustion analysis.

The Brazilian Agricultural Research Corporation 
(EMBRAPA) has created a near infrared (NIR) spectroscopy 
network to develop, validate and implement this technique 
as a routine method for determination of several chemical 
parameters in agricultural matrices as soil4 and SOC is an 
interest parameter to be determined. Previous research 
employed NIR5 and visible-NIR6-8 spectroscopy to SOC 
monitoring. However, with the best of our knowledge, 
there is no manuscript that describes the comparison of 
dichromate oxidation and dry combustion analysis as 
reference method for NIR determination of SOC.

 In this sense, it is necessary to evaluate which 
reference method for the determination of SOC produces 
a multivariate calibration model with higher predictive 
capabilities and the aim of this research was evaluate the 
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potentiality of a dichromate oxidation method compared to 
dry combustion analysis to produce this model.

Experimental

Materials and methods

A total of 161 soil samples obtained from horizons 
in full profiles were used in this research. These samples 
origin was Parque Estadual da Mata Seca in the state 
of Minas Gerais, Brazil. The soil samples were dried at 
40 °C for 48 hours, a rubber mallet was used to break 
clusters, granulometry of the sample was controlled 
by passing these through a sieve with ground to a size 
fraction < 2 mm.

These samples were analyzed according to elemental 
analysis using the methodologies proposed by Nelson and 
Sommers,9 and by dichromate oxidation of carbon, with 
adaptations.10 For the dichromate oxidation method, 0.5 g 
of soil sample was transferred to a 250.0 mL Erlenmeyer 
flask, to which was added 10.0 mL of 0.4 mol L-1 potassium 
dichromate solution. After this procedure, a test tube 
(25.0 mm of diameter and 250.0 mm of height) completed 
with water was put into the Erlenmeyer flask containing the 
soil and potassium dichromate solution. This combination 
formed a system condenser. The system was heated 
using an electric plate until light boiling for five minutes. 
After cooling, 80.0 mL of distilled water, 2.0 mL of 
orthophosphoric acid and 3.0 drops of diphenylamine 
indicator was added to the system. The chemical reaction 
involved the organic matter oxidation with potassium 
dichromate in orthophosphoric acid is:

2 Cr2O7
2−

(aq) + 3 CO(s) + 16 H+
(aq) → 4 Cr3+

(aq) + 3 CO2(g) + 
8 H2O(l)

The system was titrated using an ammonium ferrous 
sulfate solution 0.1 mol L-1 until the color changed from 
blue to green. The reaction is based on the titration of the 
dichromate excess after oxidation with ammonium ferrous 
sulfate solution: 

Cr2O7
2−

(aq) + 6 Fe2+
(aq) + 14 H+ (aq) → 2 Cr3+

(aq) + 6 Fe3+
(aq) + 

7 H2O(l)

A blank sample (solution without the presence of the 
analyte) was also titrated. The SOC was calculated by 
equation 1, where 0.6 is a factor derived from volume 
in mL of dichromate, total volume of solution in mL, 
equivalent mass of carbon in g, and mass of soil sample in 
kg. The equation 1 is adopted by EMBRAPA,10 and is an 

adaptation of the original equation proposed in Walkley 
and Black method.11

 (1)

For dry combustion analysis, 25 mg of soil sample was 
analyzed on a PerkinElmer 2400 elemental analyzer under 
the following conditions: combustion temperature: 925 oC, 
reduction temperature: 640 ºC, minimum purity gas: He 
(99.995%), O2 (99.995%) and N2 (99.0%) and pressure of 
1.5, 1 and 4 bar, respectively.

Precision, at level of repeatability, was assessed for 
both reference methods by analysis of six samples with 
two replicates each, in measurements made in the same day. 
The results were determined as the mean of the standard 
deviation,12 these values are important to evaluate the 
partial least squares (PLS) models performance as stated 
by ASTM E 1655-05.13

The NIR spectra for the soil samples were acquired using 
PerkinElmer equipment, equipped with diffuse reflectance 
accessory (NIRA). The equipment and integrating sphere 
are equipped with DTGS/AsInGa detectors, respectively. 
The spectra were acquired in the region 4000-10000 cm-1, 
spectral resolution of 4 cm-1, 64 scans, at the percentage 
of reflectance mode.

Development of calibration models and validation

The multivariate calibration models were developed 
based on partial least squares (PLS) regression,14 frequently 
used in NIR spectroscopy.15 External validation was used 
in this study to check the performance of the PLS model. 
Then, the samples in the external validation set had not been 
used for the calibration development. Soil samples were 
divided into calibration set (105 samples) and validation 
set (56 samples) by the Kennard-Stone algorithm.16 Mean 
centered spectra, even as first derivative were used for 
data preprocessing. The first derivative was implemented 
using Savitzky-Golay algorithm.17 The optimum model 
dimension was determined by the minimum root mean 
squares error for cross validation (RMSECV) for the 
calibration samples, obtained by 10 samples contiguous 
block cross validation. 

The ASTM E-1655-0513 suggests evaluate outliers 
in calibration and validation sets according to leverage 
and unmodeled residuals in spectral data. Martens and 
Naes18 proposes evaluate also unmodeled residuals in 
dependent variable at calibration set. In this work, outliers 
were identified in the models based on data with extreme 
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leverage, unmodeled residuals in spectral data, and 
unmodeled residuals in the dependent variable.19

Methods for outliers identification were applied 
independently for each model. Thus, different samples, 
in each case, were identified as outliers, which produced 
optimized models with different numbers of samples into 
calibration and validation sets. Thus, it was not possible 
to apply a parametric test (as paired t-test) to compare 
the prediction results obtained from both models. Then, 
the non-parametric Mann Whitney test was applied to the 
prediction results from models to verify if the results come 
from the same population.20

The performance of the PLS models were evaluated by 
figures of merit determination, such as: accuracy, sensitivity, 
analytical sensitivity, detection and quantification limits, 
adjust and linearity. The figures of merit were calculated 
according to previous research.12,19,21 To evaluate differences 
between the models produced with dichromate oxidation 
or dry combustion analysis as reference method, the results 
of figures of merit for both models were subjected to a 
paired t-test.22 

 
Results and Discussion 

The NIR spectra of the soil samples are shown 
in Figure 1a. The spectral baseline was corrected by 
Savitzky-Golay algorithm,17 through first derivative 
(15 points and second order polynomial),23 as shown 
in Figure 1b. The spectral region after 7500 cm-1 
was removed due this region not present relevant 
information. The Figure 1c presents the NIR spectra of 
soil samples, in the range used to build the models, after 
first derivative. According to Peng et al.,24 the important 
wavelengths (λ) in the near infrared spectral region for 
SOC content estimations are 1400 and 1900-2450 nm, 
that in wavenumber (ν = 1/λ) correspond to 7142.8 and 
5263.2-4081.6 cm-1, in agreement with the NIR region 
used in the models development.

The first step in the model development was outlier 
detection. This procedure can improve model quality. 
Outliers can be defined as observations showing some 
type of departure from the bulk of the data. They may 
occur for many different reasons, such as laboratory error, 
objects from another population and instrument error, for 
example.25 The outliers detection resulted in 93 calibration 
samples for both models and 50 and 44 validation samples 
for models using dichromate oxidation and dry combustion 
analysis as reference method, respectively. 

Due to the difference presented between the number 
of validation samples, it was not possible to apply a 
parametric test (as F-test,26 or paired t-test) to compare 

the prediction results obtained from both models. Then, 
the non-parametric Mann Whitney test was applied and 
showed that the samples provided with the PLS model, 
when the reference method was dichromate oxidation and 
samples provided with the PLS model when the reference 
method was dry combustion analysis come from the same 
population. This test was a preliminary assessment to verify 
differences between the two reference methods.

The optimum model dimension was determined by the 
minimum RMSECV for the calibration samples, obtained 
by contiguous block cross validation of 10 samples. Five 
latent variable, for both models, were necessary to retain 
a significant variance in the data. 

The figures of merit for first order multivariate 
calibration were described in earlier papers,12,19,21,25,27 and 
are not described in detail here. The results for the figures of 
merit obtained from PLS models are shown in the Table 1. 

Accuracy values, represented by root mean square error 
of calibration (RMSEC) and prediction (RMSEP), showed 
an adequate dimensionality of the models, so the number of 
latent variables used in the models were properly chosen. It 
is possible to conclude that because an ideal multivariate 
calibration model will show close values of RMSEC 
and RMSEP due to the random errors fit in the model.28 
Furthermore, the RMSEC and RMSEP showed that the 
estimated values of the multivariate models are in agreement 
with the reference methods that presented precision 7.0358 
and 9.4692 g kg-1 for dry combustion and dichromate 
oxidation methods, respectively. According to ASTM 
E1655-05,13 the accuracy of a component concentration or 
property value estimated by a multivariate infrared analysis 
is highly dependent on the accuracy and precision of the 
reference values used in the calibration. The expected 
agreement between the infrared estimated values and those 
obtained from a single reference measurement can never 
exceed the repeatability of the reference method, since, even 

Figure 1. NIR spectra of (a) soil samples; (b) after first derivative; 
(c) region used to build models.
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if the infrared estimated the true value, the measurement 
of agreement is limited by the precision of the reference 
values. The accuracy presented by the PLS model when the 
reference method was dry combustion analysis was higher 
than when dichromate oxidation was the reference method to 
NIR calibration, this was expected since the dry combustion 
presented a precision (in the repeatability level) better than 
the dichromate oxidation method.

Another way to confirm the achieved accuracy is 
the adjust or fit to the models, represented by the plot 
of the SOC determined by reference methods against 
SOC determined by PLS model. It is possible to observe 
the slope, the intercept, shown in Figure 2, and the 
determination coefficient (R-squared), presented in Table 1. 
The R-squared values were close to 0.9 in both models 
indicating a proper fit and reinforce the accuracy results 
achieved.

Figure 3 shows the residuals plot of the calibration and 
validation samples. The residuals distribution seems to 
present a random behavior, which reinforces that the data 
fit to a linear model. 

To confirm the random distribution of these residuals, 
appropriate statistical tests were performed in order to 
check normality (Jarque-Bera test),29 homoscedasticity 
(Brown-Forsythe test),30 and no correlation (Durbin-Watson 
test),31 all with 95% confidence. The results were presented 
in Table 1 and all results indicated the randomness of the 
residuals. For Jarque-Bera test, when JBSTAT < CRITVAL, 
the null hypothesis (residuals are normally distributed with 
unspecified mean and standard deviation) can be accepted 
at significance level of 95%. The associated probability 
for the F-test, performed by Brown-Forsythe test, is 
equal or larger than 0.05. Therefore, the assumption of 

homoscedasticity was met. The value of Durbin-Watson test 
calculated 1.9241 and 2.1799 when dichromate oxidation 
and dry combustion were reference methods, respectively, 

Table 1. Figures of merit for the PLS calibration models

Figure of merit
Dichromate oxidation as 

reference method  
(5 VLs)

Dry combustion analysis as 
reference method 

(5 VLs)

Accuracy / (g kg-1)
RMSECa 1.9427 1.4901

RMSEPb 1.9795 1.0430

Sensitivity / (g kg-1)-1 0.0106 0.0125

Analytical sensitivity-1 / (g kg-1) 0.1326 0.1124

Limit of detection / (g kg-1) 0.4377 0.3710

Limit of quantification / (g kg-1) 1.3262 1.1244

Fit (R-squared) 0.8710 0.8829

Linearity

Jarque-Bera test
JBSTAT = 3.7077 

CRITVAL = 4.9697
JBSTAT = 2.2675 

CRITVAL = 4.8465

Brown-Forsythe test F = 0.4844 F = 0.6181

Durbin-Watson test 1.9241 2.1799

Bias (systematic errors)
t = 3.1496 

t49/95% = 1.6766
t = 3.3207 

t43/95% = 1.6811
aRMSEC: root mean square error of calibration (RMSEC); bRMSEP: root mean square error of prediction.

Figure 2. Adjust. Reference values for organic carbon against the 
values estimated by the PLS model (a) when the reference method was 
dichromate oxidation; (b) when the reference method was dry combustion 
analysis. () Calibration samples and (∗) validation samples.
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are within the acceptable limits (1.50-2.50),27 ensuring 
independence of residuals. However, by applying a bias test 
(systematic errors test) proposed by ASTM E1655-0513 in 
the residuals of validation sets for both models, it is verified 
that the bias presented at this residuals are significant 
(results in Table 1). If the t value calculated is greater than 
the tabulated t value, there is a 95% probability that the 
estimate from the multivariate model will not give the same 
average results as the reference method,13 this shows that 
the average error is not zero and suggests a small sampling 
error. Statistically, the bias test does not mean that the data 
show significant systematic errors, but that the average error 
is different from zero. If the average errors are calculated 
and subtracted from each of the error values, and the bias 
test proposed by ASTM is applied again, then the t value 
calculated (tdichromate oxidation = 1.5656 × 10-16 and tdry combustion 
= 4.4455 × 10-16) is smaller than the tabulated t value. The 
results show that the average error now is zero and the bias 
present in the models is not significant. This can easily 
occur with real and complex samples (as soil samples in 
this case).

The results for sensitivity are somehow complex 
to judge because of the preprocessing adopted in PLS. 
However, the analytical sensitivity is simpler and more 
informative to compare and to judge the sensitivity 
of an inverse multivariate calibration method and was 
calculated by relationship between the sensitivity and the 
instrumental noise. The inverse of the analytical sensitivity 
(analytical sensitivity-1) allows one to establish a minimum 
concentration difference that is discernible by the model 
in the range of concentrations where it was applied,12,28 
considering the spectral noise representing the large source 
of error.25 Thus, considering the instrumental noise as the 
only source of uncertainty, it is possible to distinguish 
samples with organic carbon concentrations in order of 
0.1 g kg-1 when both methods were used as reference to 
the NIR calibration.

Limits of detection and quantification12,32 for the 
models show coherent results with the measured 
quantities. Therefore, the PLS models are appropriate to 
quantify organic carbon, since their ranges are between 
1.25-23.90 g kg-1 and 0.80-19.6 g kg-1, respectively, when 
the dichromate oxidation and dry combustion analysis was 
the reference method.

Due to the results of figures of merit shown in 
Table 1 being very similar, a paired t-test was applied to 
these results in order to evaluate significant differences 
between the methods used as reference in the multivariate 
calibration. In this test, the t value calculated was 1.801, 
while the theoretical t value for this case is 2.447 with six 
degrees of freedom at the 95% confidence level. Thus, there 
are no significant differences between the figures of merit 
for the PLS models when the dichromate oxidation or dry 
combustion analysis was used to build the NIR calibration. 

These results suggest that, dichromate oxidation and dry 
combustion analysis as reference method for multivariate 
calibration from NIR produce models with no significant 
differences in the prediction ability. 

Conclusions

Determination of organic carbon were accessed by 
PLS model based on NIR spectroscopy. The models using 
dichromate oxidation and dry combustion analysis as 
reference methods for NIR calibration presented feasible 
and acceptable results, and no significant differences in the 
prediction ability was observed. The NIR-PLS procedure 
to organic carbon determination in soil samples present the 
advantage of minimal sample preparation and possibility 
to extend to other parameters using the same NIR spectra. 

This work was a preliminary study, so in future 
researches this investigation will be amplified to a larger 

Figure 3. Residuals. (a) Predicted values for organic carbon against 
the absolute error when the reference method was dichromate 
oxidation; (b) when the reference method was dry combustion analysis. 
() Calibration samples and (∗) validation samples.
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number of representative Brazilian soil samples, with a 
bigger range of SOC concentration aiming to achieve even 
more conclusive results.
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