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Synthetic herbicides are widely used for weed control in crops. Continuous application of 
chemicals induces the adaptation of weeds, leading to the development of resistance. Therefore, 
research for novel synthetic herbicides plays an important role in crop protection and food 
production. Within this context, it is important to understand the relationship between the structures 
of a set of compounds endowed with herbicide activity and their biological response. In this work, 
a quantitative structure-activity relationship (QSAR) study of 34 nostoclide analogues was carried 
out in order to analyze their ability to inhibit the photosystem-II. Compounds were optimized using 
the DFT/B3LYP/Def2-TZVPP method. 2D and 3D (Lennard-Jones and electrostatic potential 
energies) molecular descriptors were calculated at the same theory level. QSAR models showed 
major importance of electrostatic ligand-acceptor interactions and indicated the presence of aromatic 
interaction in the benzyl group. A photoelectron transfer via hydrogen-bond was proposed to occur 
between His215 residue and the carbonyl group.
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Introduction

Human growing population and prosperity around 
the world is driving an increased demand for food. 
Therefore, agriculture has developed to achieve higher 
yields and better-quality products. To yield high crop 
production, it is important to protect the cultures from 
pests and diseases.1,2 Weeds produce the highest potential 
loss overall among the pests, which can be avoided by 
applying physical, biological and chemical measures.2 Crop 
protection by chemical measures spreads worldwide since 
the commercialization of the two phenoxyacid herbicides: 
2,4-dichlorophenoxyacetic acid (usually called 2,4-D) and 
the 2-methyl-4-chlorophenoxyacetic acid (MCPA).2,3 The 
use of chemicals in crops has become the main method of 
weed control because of its low cost and high efficiency, 
encouraging reliance on them.4 However, frequent use of 
chemicals with similar biological mechanism creates a 
selective pressure on weeds, leading to the development 
of resistance.1,4,5 Herbicide resistance was firstly reported 
in 1970 and confirmed in 495 unique cases until 2017.5,6 
Usually, the resistance acquired by a weed species is a 
result of a mutation in the active site. The development 
of herbicides with a different mechanism of action is 

desirable, because it will generally be able to eliminate 
the herbicide-resistant weed.7 However, Duke,7 in 2012, 
stated that “no new major herbicide mode of action has 
been introduced in a commercial herbicide active ingredient 
in the last 20 years”. Moreover, environmental and health 
hazards concerns related to pesticides have grown since 
1960’, which led to stringent regulation of pesticides.4 It is 
imperative to find new substances with herbicide properties 
to fight weed resistance and that should be in agreement 
with the environmental protection agencies regulations.

There are different experimental strategies in the search 
for novel herbicides. They usually involve the measurement 
and analysis of herbicide activity of sets of analogue 
compounds. These experimental activities could be further 
exploited using quantitative structure-activity relationship 
(QSAR) studies. For that, molecular descriptors, that could 
be related to biological properties based on the chemical 
structure of the set of compounds, are calculated and 
mathematical models are built to predict the biological 
property using the desirable molecular descriptors. The 
interpretation of such models could provide information 
about the ligand-receptor interactions and the mechanism 
of action of the set of molecules. QSAR models can be 
also used to predict the biological activity of compounds 
with similar structures.8-11 Therefore, QSAR study is an 
important research tool when applied to the development 
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of chemicals with biological activity, such as herbicides.8,12

A large number of QSAR studies applied to 
novel herbicides was published in last few years. 
Karacan et al . 12 reported a QSAR analysis on 
perfluoroisopropyldinitrobenzene derivatives, a type 
of dinitrophenolic compound, which have been used 
in crop protection. A 2D-QSAR model of a series of 
1H-1,4-benzodiazepine-2,5-dione analogues was proposed 
by Banjare et al.13 and used to generate a library of 
new compounds with comparable and better expected 
activity. Teixeira et al.14 used photosynthetic inhibition 
activity data (IC50) for 19 nostoclide analogues to build 
and analyze a 2D-QSAR model, which indicated that 
their activity is associated with their polarity. A series of 
rubrolide analogues were synthesized by Barbosa et al.15 
and 2D-QSAR models were built and analyzed using 
their photosynthetic inhibition activity, leading to insights 
about the most effective substituents among the set. Funar-
Timofei et al.16 published a QSAR study in combination 
with molecular docking applied to fused heterocyclic 
herbicides that act as inhibitors of the D1 protein of 
photosystem II. A 3D-QSAR study of series of 3-(pyridin-
2-yl)benzenesulfonamide derivatives was made by 
Xie et al.17 based on CoMFA and CoMSIA models, which 
were then used to successfully design new derivatives with 
superior herbicide activity. In recent a work, Teixeira et al.18 
synthesized and measured the photosynthetic inhibitory 
activity of a set of trifluoromethyl arylamides, which were 
also used to build a 2D-QSAR model.

Herbicides that target the photosystem II compete with 
the plastoquinone QB for its binding site and block the 
electron transfer to plastoquinone QA, thus inhibiting the 
photosynthetic electron transport.19 Trebst20 proposed the 
classification of the herbicides that act on photosystem II 
into two families: the serine family, whose herbicides 
bind oriented towards the D1-Ser264 residue; and the 
histidine family, whose herbicides bind oriented towards 
the D1-His215 residue.

Cyanobacterin (Figure 1a) is a natural occurring lactone 
that has the property of specifically inhibit photosynthetic 
electron transport.21,22 Nostoclides (Figure 1b) are another 

natural occurring lactones that resembles cyanobacterin, but 
their herbicide properties were not fully investigated yet.1 
Teixeira et al.1 synthesized and measured the photosynthetic 
inhibitory activity of a series of nostoclide analogues to 
investigate their potential phytotoxicity.

In the present study, the reported experimental results 
were used to build QSAR models to predict the photosynthetic 
inhibitory activity of 34 nostoclide analogues.1 The best 
models were interpreted in order to understand the ligand-
receptor interactions and provide some insight on the 
mechanism of action of this class of compounds.

Methodology

Data set

A set of 34 3-benzyl-5-(arylmethylene)furan-
2(5H)-ones (Figure 2) and their photosynthetic inhibitory 
activity were used. The aromatic ring of the arylidene 
portion presented different substitution patterns. The 
percentages of photosynthetic inhibitory activity (PI) are 
relative to untreated control for an analogue concentration 
of 10 µmol L-1. Table 1 shows the nostoclide analogues and 
the respective PI values. The molecules that presented PI 
lower than 5% were originally considered ineffective.1 In 
this work, such compounds were included in the QSAR 
study considering their PI as 5%.

Figure 1. Structure of (a) cyanobacterin; and (b) nostoclides (nostoclide I: R = Cl; nostoclide II: R = H).

Figure 2. General structure and atom indices of the nostoclide analogues 
studied. The substituents R1-R5 for each analogue is presented in  
Table 1.
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Table 1. Substituents and photosynthetic inhibitory activity of the studied nostoclide analoguesa

Molecule R1 R2 R3 R4 R5 PIb / %
m01 –H –H –H –H –H 29.2
m02 –CH3 –H –H –H –H

26.0
m02i –H –H –H –H –CH3

m03 –H –CH3 –H –H –H
16.7

m03i –H –H –H –CH3 –H

m04 –H –H –CH3 –H –H 8.0
m05 –H –H –CH2CH3 –H –H 50.7
m06 –H –CN –H –H –H

NEc

m06i –H –H –H –CN –H

m07 –H –H –CN –H –H NEc

m08 –CF3 –H –H –H –H
44.9

m08i –H –H –H –H –CF3

m09 –H –CF3 –H –H –H
49.9

m09i –H –H –H –CF3 –H

m10 –H –H –CF3 –H –H 55.5
m11 –H –H –Ph –H –H NEc

m12 –H –N(CH3)2 –H –H –H
38.6

m12i –H –H –H –N(CH3)2 –H

m13 –H –H –N(CH3)2 –H –H 7.1
m14 –Cl –H –N(CH3)2 –H –H

25.4
m14i –H –H –N(CH3)2 –H –Cl

m15 –H –NO2 –H –H –H
39.5

m15i –H –H –H –NO2 –H

m16 –H –H –NO2 –H –H 57.8
m17 –OH –H –H –H –H

NEc

m17i –H –H –H –H –OH

m18 –H –OH –H –H –H
6.9

m18i –H –H –H –OH –H

m19 –H –H –OH –H –H 6.5
m20 –H –OH –OCH3 –H –H

NEc

m20i –H –H –OCH3 –OH –H

m21 –H –H –OCH3 –H –H 15.0
m22 –OCH3 –H –H –OCH3 –H

43.5
m22i –H –OCH3 –H –H –OCH3

m23 –OCH3 –H –OCH3 –H –OCH3 43.6
m24 –H –OCH3O– –H –H

NEc

m24i –H –H –OCH3O– –H

m25 –F –H –H –H –H
49.5

m25i –H –H –H –H –F

m26 –H –F –H –H –H
28.8

m26i –H –H –H –F –H

m27 –H –H –F –H –H 25.6
m28 –F –F –F –F –F 6.6
m29 –Cl –H –H –H –H

30.8
m29i –H –H –H –H –Cl

m30 –H –Cl –H –H –H
20.3

m30i –H –H –H –Cl –H

m31 –H –H –Cl –H –H 5.8
m32 –Br –H –H –H –H

21.8
m32i –H –H –H –H –Br

m33 –H –Br –H –H –H
22.6

m33i –H –H –H –Br –H

m34 –H –H –Br –H –H NEc

aThe analogues highlighted in grey are those used to build the final QSAR models. The substituents R1, R2, R3, R4 and R5 are related to Figure 2; bpercentage 
of photosynthetic inhibitory activity; cnot effective: PI < 5%.
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Molecular descriptor calculation

The crystallographic structure of compound m03 
(Table 1) was retrieved from Cambridge Structural 
Database (CSD) (code CONPEB). 23 Geometry 
optimization was carried out in Gaussian 09 software 
(G09Rev-D.01) using DFT/B3LYP method and Def2-
TZVPP basis set.24-27

Some molecules presented substituents at the meta and 
ortho positions of the aromatic ring of the arylidene portion. 
In these cases, several conformations arise from rotation 
around C1-C2 bond (Figure 2) and there are two preferential 
ones (Figure 3). Both conformations were optimized and 
one of them was selected for further analysis, as described 
in the next sub-sections.

The 2D molecular descriptors were calculated 
at the same theory level in Gaussian 09 software 
(G09Rev-D.01)24 for the optimized structures. They 
were: total and molecular orbital energies; molecular 
orbitals energy gaps; dipole and quadrupole moments; 
mean polarizability; Mulliken and CHELPG (charges 
from electrostatic potentials using a grid based method) 
partial atomic charges; and sum of squares of the wave 
functions’ molecular orbital coefficients (for the frontier 
orbitals ranging from highest occupied molecular orbital 
(HOMO)-4 to lowest unoccupied molecular orbital 
(LUMO)+4). In addition, the sums of partial atomic 
charges for certain sets of atoms were also calculated.

The 3D molecular interaction field descriptors were 
calculated by LQTAgrid software8 using a 21 × 15 × 9 Å 
grid with 1 Å increment and a NH3

+ probe. The alignment 
was made using the optimized geometries. The reference 
structure was compound m01 and the atoms aligned were 
C8, O9, C10, C11, C12 and O13 (Figure 2). For each grid 

point, electrostatic and Lennard-Jones potential energies 
were calculated.8

Conformer selection

From the 34 compounds, 19 assume two different 
preferential conformations by rotation around the C1-C2 
bond, resulting in 19 pairs of conformers. However, only 
one conformer of each pair was used in the final QSAR 
models. The selection of a specific conformer in each pair 
was carried out in two steps. Firstly, a conformational 
equilibrium at 25 °C was considered to calculate the 
population of each conformer according to equation 1. This 
equation is derived from Boltzmann distribution, where 
P is the population percentage for each conformer.28 E and 
Ecount. are the optimization energies of the conformer and 
its counterpart, respectively; k is Boltzmann’s constant and 
T is the temperature. The same procedure was applied to 
each one of the 19 pairs of conformers.

 (1)

The conformers with P < 1% compared to its 
counterparts were eliminated. For example, the compound 
mXXi would be excluded if it presented P < 1% compared 
to its counterpart, mXX.

Considering the remaining 11 pairs of conformers, 
one of each was excluded and the remaining compounds 
were used to build a partial least squares (PLS) regression 
model with the 2D descriptors. This procedure was repeated 
exchanging the excluded conformers to test all possible 
combinations. These regression models were internally 
validated by leave-one-out cross-validation (LOOCV) and 

Figure 3. General structure of the two preferential conformations considered in this work for substituents in: (a) R1 and R5; (b) R2 and R3.
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the combination of conformers corresponding to the models 
with the best statistics was selected.

Descriptor selection

The descriptors selection was carried out on the 
conformer combination selected in “Conformer selection” 
sub-section. The 2D descriptors were inspected to remove 
those degenerated. The following step was to eliminate 
descriptors that had the absolute value of Pearson’s 
correlation coefficient (|r|) with biological activity lower 
than 0.3. The ordered predictors selection algorithm 
(OPS) implemented in the public domain QSAR modeling 
software was used to reduce the number of descriptors 
to be kept in the regression model.29,30 Finally, they were 
manually selected in Pirouette-3.1131 software by building 
PLS regressions and comparing their statistics.

The 3D descriptors were selected by applying the 
digital filter for molecular interaction field descriptors 
(comparative distribution detection algorithm, CDDA).32 
OPS algorithm and Pirouette-3.11 software were used 
in the next step of the selection. Descriptors’ probes and 
molecules were visualized using Chimera-1.11.33

All the QSAR-models were built using PLS regressions 
method on autoscaled data (mean centered and scaled to 
unity variance) and internally validated by LOOCV.34

Conformer reselection

To ensure that the best combination of conformers was 
selected, they were retested following the same method 
described in “Conformer selection” sub-section, but using 
only the descriptors selected in “Descriptor selection” sub-
section. The same procedure was applied for the 2D and 3D 
molecular descriptors. PLS regressions were performed to 
choose the best combination of conformers.

The selected combination of conformers and their 
molecular descriptors were used to build 2D and 3D 
QSAR models. The 2D and 3D selected descriptors were 
also combined and reselected manually in Pirouette-3.1131 
to build a hybrid QSAR model. All the QSAR-models 
were built using PLS regressions and internally validated 
by LOOCV (in MATLAB software).35 Other validation 
tests such as leave-N-out (LNO) cross-validation and 
y-randomization were carried out in QSAR modelling 
software.36,37

The molecular structure figures were created using 
ChemDraw Ultra 12.0,38 Chimera-1.11,33 GaussView 5.039 
and MATLAB software35 and the graphics were built using 
Pirouette-3.1131 and MATLAB software.35

Results and Discussion

Conformers and molecular descriptors selection

Since conformation at the active site is unknown, 
two preferential conformations of nostoclide analogues 
were initially considered (Figure 3). However, only one 
conformer from each pair was selected for model building. 
In a first step, the optimization energies of each pair of 
conformers were compared using equation 1. Only those 
conformers significantly less stable than its counterpart 
(P < 1%) were eliminated. The pairs of conformers for 
which the optimization energies were not significantly 
different (1 ≤ P ≤ 99%) were selected in the next step.

Conformers m02i, m08i, m14i, m17i, m22i, m25i, 
m29i and m32i presented P < 1%, thus were excluded, 
whereas their counterparts, m02, m08, m14, m17, m22, 
m25, m29 and m32, were kept. The eliminated conformers 
have an R5 substituent, suggesting instability at this position. 
Similar observation was previously proposed in a structural 
and conformational study of nostoclide analogues; it 
was assumed that the preferential conformation was due 
to a non-bonding steric repulsion between O13 and the 
substituent at R5 position.23

The preferred conformer from the remaining pairs were 
selected in order to choose those molecular descriptors 
which provided better predictions based on LOOCV of PLS 
regressions. Thus, the selected conformers are expected to 
have a conformation which is closer to the one they assume 
in its active site, or that better correlates with it.

Molecular descriptors selection was carried out using 
only the analogues that remained after the first conformer 
selection. When PLS models were built, 5 analogues 
appeared to be outliers. Two of them, molecules m23 
and m28, are the only structures having substituents 
in both positions R1 and R5. The non-bonding steric 
repulsion between O13 and the substituent at R5 position 
is unavoidable, causing the arylidene and furanone rings to 
be in different planes. Although it does not imply a problem 
in the experimental biological activity data, all the other 
analogues presented an optimized structure with those 
rings in the same plane (Figure 4). Therefore, the molecular 
descriptors calculated for molecules m23 and m28 are 
significantly different from the other compounds. The plots 
scores and sample’s residues versus Mahalanobis distance 
from principal component analysis, presented in Figure 5, 
confirm the atypical behavior of these two molecules. The 
remaining outliers were molecules m05, m25 and m34, 
which presented atypical behavior compared to tendency 
of similar nostoclide analogues, e.g., m02-m04, m26-m27 
and m32-m33, respectively.
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The conformer selection did not consider the descriptors 
selection and the exclusion of the outliers. Therefore, the 
excluded conformers were re-included and a new conformers 
selection was carried out (conformer reselection). A similar 
methodology was applied, but excluding outliers and using 
only the molecular descriptors selected. The final set of 
molecules used to build the QSAR models are highlighted 
in grey in Table 1.

2D, 3D and hybrid QSAR models’ statistics

A QSAR model predictivity can be evaluated by the 
values of Q2, R2,  and kC, which are, respectively, the cross-
validated correlation coefficient, correlation coefficient of 
multiple determination, Pearson’s correlation coefficient of 

calibration and slope of measured versus predicted regression 
line through the origin. According to the literature, a QSAR 
model can be considered predictive if:36,37

 (2)
 (3)

 (4)

 (5)
 (6)

The statistics of the 2D, 3D and hybrid QSAR models 
are presented in Table 2. All the models satisfy the 
conditions of inequalities 2 to 6. The root mean square 
error of calibration (RMSEC) and root mean square error 
of cross-validation (RMSECV) values of the hybrid QSAR 
models were slightly better than the 3D QSAR’s, while the 
2D QSAR presented higher RMSEC and RMSECV.

The measured versus predicted percentages of inhibition 
plots are presented in Figures 6, 7 and 8 for the 2D, 3D and 
hybrid QSAR models, respectively. The 2D-QSAR model 
plot presented absolute deviations greater than 10% for 13 
molecules, most of them with measured values of PI between 
5 and 27%. The 3D and hybrid QSAR models showed better 
predictions in this range, although not for all molecules (6 
of them with absolute deviation larger than 10%). However, 
the hybrid QSAR model presented lower absolute deviations 
overall, resulting in a more evident linearity.

Although statistical parameters previously calculated 
are necessary to indicate the quality of QSAR models, 
further validations are required to evaluate its robustness 
and the existence of a real structure-activity relationship. 
This can be done through the tests of leave-N-out (LNO) 
cross-validation and of y-randomization, which are 
presented in Figures 9, 10 and 11.36,37

Figure 4. All optimized structures aligned. m23 in red; m28 in blue; 
others: in white.

Figure 5. PCA for the 2D and 3D molecular descriptors: (a) PC1 × PC2 × PC3 scores plot; (b) applicability domain graph (Mahalanobis distance versus 
sample’s residues).
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Table 2. 2D, 3D and hybrid quantitative structure-activity relationship 
(QSAR) model statistics

Model 2D-QSAR 3D-QSAR Hybrid QSAR

Number of descriptors 5 7 7

Latent variables 1 2 2

Explained variance / % 57.4 63.4 61.2

kC
a 0.901 0.935 0.939

RMSECb / % 9.11 7.55 7.33

c 0.717 0.813 0.824

R2 d 0.717 0.813 0.824

RMSECVe / % 9.60 8.52 8.38

Q2 f 0.663 0.734 0.743

aSlope of measured versus predicted regression line through the origin; 
broot mean square error of calibration; cPearson correlation coefficient of 
calibration; dcorrelation coefficient of multiple determination; eroot mean 
square error of cross-validation; fcross-validated correlation coefficient.

Figure 6. Plot of measured versus predicted percentages of inhibition 
for the 2D-QSAR model.

Figure 7. Plot of measured versus predicted percentages of inhibition 
for the 3D-QSAR model.

Figure 8. Plot of measured versus predicted percentages of inhibition for 
the hybrid QSAR model.

Figure 9. 2D-QSAR model graphs of (a) leave-N-out cross-validation and (b) y-randomization test.

The LNO cross-validation test was repeated 10 times 
for each value of N. The rows from the data matrix were 
randomized for each replicate, resulting in average values 

of . For a robust QSAR model, the average  is 
expected to be close to  even for a large number of 
molecules (20-30% from original set) removed from the 
set. It is also desirable that two times the standard deviation 
for each N (including the critical one) presents values lower 
than 0.1.36,37 In this work, N varied from 2 to 10. Figures 9a, 
10a and 11a show the mean value and standard deviation 
of Q2 for each N and the limits  ± 0.05. All the models 
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presented little fluctuation for N varying from 1 to 10. 
Therefore, all the QSAR models can be considered robust.

The y-randomization test consists in building several 
QSAR models (50 in this work) for which the vectors of 
biological activity (y vector) is randomly shuffled. For a 
good QSAR model, these randomized models are expected 
to be of poor quality and without real meaning. The basic 
LOO statistics of the randomized models should be worse 
than the original model: low  and  values. A 
QSAR model that presents relatively high values of  
and  (> 0.2 and > 0.4, respectively) indicates the 
existence of chance correlation, which means that the 
real model may contain descriptors which are statistically 
well correlated to y, but in reality there is no cause-effect 
relationship encoded in such correlations.36,37,40 Figures 
9b, 10b and 11b show the plots of R2 versus Q2 for the 
y-randomization test for the three models: 2D, 3D and 
hybrid QSAR, respectively. The original model is labeled 
as y and the dashed lines indicate the cutoff = 0.4. Based 
on these results, none of the QSAR models built presented 
chance correlation.

Analysis of the selected molecular descriptors

The correlation matrix and regression coefficients for 
the 2D, 3D and hybrid QSAR models are shown in Tables 
3, 4 and 5. The correlation matrices of these tables present 
the descriptor-PI and descriptor-descriptor correlation 
coefficients for each molecular descriptor in the model. 
Comparison between the regression and the descriptor-
PI correlation coefficients for each molecular descriptor 
shows that they present the same sign. This implies that the 
contribution of each descriptor to its model is consistent 
with its correlation to the PI. Table 6 presents the details of 
the 2D descriptors and Figure 12 shows a tridimensional 
plot of the aligned nostoclide analogues and the position 
of the selected 3D descriptors, where “L” and “E” stands 
for the Lennard-Jones and the electrostatic potentials, 
respectively.

The most important molecular descriptor for the 2D 
model (see regression coefficients in Table 3) is QMbZZ, 
which is one of the components of the electrostatic 
quadrupole moment of the aromatic ring of the benzyl 

Figure 10. Plots of (a) leave-N-out cross-validation and (b) y-randomization test for the 3D-QSAR model.

Figure 11. Hybrid QSAR model graphs of (a) leave-N-out cross-validation and (b) y-randomization test.
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Table 5. Descriptors correlation matrix, regression coefficients and model for the hybrid QSAR (quantitative structure-activity relationship) model

CO+CM wHO02 QMafYY QMbYY E1 E3 L1

wHO02 0.310

QMafYY 0.107 0.439

QMbYY –0.679 –0.212 –0.232

E1 0.184 0.430 0.322 –0.289

E3 –0.285 –0.499 –0.440 0.441 –0.340

L1 0.353 0.0225 –0.0269 –0.278 –0.293 0.213

PIa –0.683 –0.521 –0.439 0.705 –0.429 0.571 –0.400

R. coef.b –0.284 –0.154 –0.137 0.275 –0.149 0.201 –0.292

R. modelc PI = –593(CO+CM) – 240(wHO02) – 0.320(QMafYY) + 84.6(QMbYY) – 0.0907(E1) + 0.115(E3) – 34.6(L1) – 335

aPercentage of photosynthetic inhibitory activity; bregression coefficients for descriptors in autoscaled form; cregression mathematical model.

Table 4. Descriptors correlation matrix, regression coefficients and model for the 3D QSAR (quantitative structure-activity relationship) model

E1 E2 E3 E4 E5 L1 L2

E2 –0.622

E3 –0.340 0.391

E4 –0.333 0.407 0.991

E5 –0.0848 0.0630 0.165 0.190

L1 –0.293 –0.0468 0.213 0.239 0.487

L2 –0.335 0.526 0.381 0.382 0.403 –0.0209

PIa –0.429 0.567 0.571 0.550 –0.344 –0.400 0.407

R. coef.b –0.180 0.244 0.248 0.228 –0.343 –0.373 0.157

R. modelc PI = –0.109(E1) + 0.151(E2) + 0.142(E3) + 0.124(E4) – 0.143(E5) – 44.2(L1) + 4.75(L2) – 293

aPercentage of photosynthetic inhibitory activity; bregression coefficients for descriptors in autoscaled form; cregression mathematical model.

Table 3. Descriptors correlation matrix, regression coefficients and model for the 2D QSAR (quantitative structure-activity relationship) model

CO+CM wHO02 QMafYY QMbYY QMbZZ

wHO02 0.310

QMafYY 0.107 0.439

QMbYY –0.679 –0.212 –0.232

QMbZZ 0.778 0.558 0.297 –0.794

PIa –0.683 –0.521 –0.439 0.705 –0.792

R. coef.b –0.238 –0.182 –0.153 0.246 –0.276

R. modelc PI = –498(CO + CM) – 283(wHO02) – 0.358(QMafYY) + 75.6(QMbYY) – 82.2(QMbZZ) – 335

aPercentage of photosynthetic inhibitory activity; bregression coefficients for descriptors in autoscaled form; cregression mathematical model.

group. This descriptor is negatively correlated to the PI 
and its values are negative. It means that higher absolute 
values of QMbZZ correspond to higher inhibition of 
the photosystem II. The QMbYY molecular descriptor, 
another component of the same quadrupole moment, was 
also selected for the 2D QSAR model. It is positively 
correlated to the PI and its values are positive, resulting 
in the same behavior of the QMbZZ. The quadrupole 
moment of an aromatic ring can be associated with 

aromatic stacking, sometimes called “pi-stacking”. This 
is an interaction that is important to many biological 
systems.41,42 At the photosystem II, these interactions 
were observed only between the plastoquinone QA and 
its site in the D2 protein.43,44 However, based on a QSAR 
study, Karacan et al.12 proposed the existence of aromatic 
stacking interactions between a set of perfluoroisopropyl-
dinitrobenzen derivatives and the plastoquinone QB site in 
the D1 protein. Likewise, the molecular descriptors QMbZZ 
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and QMbYY indicate the possibility of aromatic stacking 
interactions between the benzyl group of the nostoclide 
analogues and the residues of the plastoquinone QB site. 
Figure 13 shows the contribution of the benzyl quadrupole 
moment to the electrostatic potential for the m01 analogue, 
which presents no substituents and medium PI. The blue 
and red isosurfaces correspond to the same absolute value 
of electric potential, but with positive and negative signs, 
respectively.

The positive isosurface of this quadrupole moment 
is longer in the Y axis than in the X axis. It also means 
that there is a dipole moment in the aromatic ring of the 
benzyl group. Studies regarding the toluene aromatic 
stacking have shown that its interactions occur preferably 

in a parallel offset manner as a consequence of its 
dipole moment.42 Therefore, the quadrupole moment 
presented in Figure 13 suggests the occurrence of an 
offset aromatic stacking, which is consistent with the 
interaction proposed by Karacan et al.12 and with the one 
observed in the plastoquinone QA site.43,44 The molecular 
descriptor CO+CM presents reasonable correlation with 
the descriptors QMbZZ and QMbYY (ca. ± 0.7), because 
they were calculated based on the CHELPG partial atomic 
charges of the aromatic ring of the benzyl group. The 
CO+CM descriptor is relevant for the model and indicates 
that the proposed aromatic stacking is more sensitive to 
the electronic density of the ortho and meta carbon atoms 
of the aromatic ring.

The molecular descriptor QMafYY is also a quadrupole 
moment, but calculated using only the arylidene and the 
furanone groups. This descriptor is illustrated in Figure 14 
for the m01 analogue, where blue stands for positive and 
red for negative values of the isosurface. It is negatively 
correlated to the PI and, consequently, a higher inhibitory 
activity corresponds to a more negative value of QMafYY. 
As a result, there is an approximation of the red portion of 
the electric potential isosurface to the Y axis. This descriptor 
is also reasonably well correlated to both charge of the atom 
at position R3 and charge of the oxygen O13 (correlation 
coefficients of –0.8598 and –0.5139, respectively). The 
substitution at position R3 is the most relevant for the 
QMafYY descriptor, which influences the atomic charge of 

Table 6. 2D molecular descriptors names and details

Detail

CO+CM sum of CHELPG atomic charges for ortho and meta carbons of the benzyl’s ring, i.e., C16, C17, C19, C20

HO+HM sum of CHELPG atomic charges for ortho and meta hydrogens of the benzyl’s ring, i.e., H23, H24, H26, H27

wHO2 sum of squares of the wave functions’ molecular orbital coefficients for C02 carbon

QMafYYa YY component of the electrostatic quadrupole moment from arylidene and furanone, i.e., atoms 1-13 and 28-34

QMbYYa YY component of the electrostatic quadrupole moment from benzyl’s ring, i.e., atoms 15-20 and 23-27

QMbZZa ZZ component of the electrostatic quadrupole moment from benzyl’s ring, i.e., atoms 15-20 and 23-27

aRegression coefficients for descriptors in autoscaled form. CHELPG: charges from electrostatic potentials using a grid based method.

Figure 12. Illustration of the aligned nostoclide analogues and the location of the 3D descriptors’ probe from two points of view.

Figure 13. Electric potential isosurface of the quadrupole moment from 
the aromatic ring of the benzyl group; blue for positive and red for 
negative values.
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the oxygen O13 and, consequently, the PI. For instance, an 
increase in the atomic charge of the atom in R3, such as in 
m10 and m16, leads to a higher charge in oxygen O13 and 
an increase in PI. Several studies12,16,21 of herbicides targeting 
the D1 protein of photosystem II have shown the importance 
of the hydrogen bond interaction between these herbicides 
and the His215 residue for their photosynthetic inhibition 
activity. Moreover, a voltammetric study of rubrolide 
analogues showed the possibility of these compounds to 
act as hydrogen acceptor at photosystem I, being reduced 
in the process.45 More recently, Teixeira et al.18 proposed a 
photoelectron transfer to the herbicide via His215, forming 
a radical anion. Based on these results and the QMafYY 
descriptor, it is reasonable to propose a similar photoelectron 
transfer to the nostoclide analogues via a hydrogen bond 
interaction with the oxygen O13, which is favored by an 
electron deficiency at the atom in position R3.

The wHO02 molecular descriptor indicates the 
electronic density of the HOMO located at carbon C2. 
However, the HOMO electron densities at the other atoms 
are also dependent on the wHO02 descriptor. Figure 15 
shows the HOMO electronic density for molecules m13 and 
m16, one of the least and one of the most active analogues, 
respectively; carbon C2 is highlighted. The electron density 
in this atom is greater for m13 than for m16, as it is expected 
by the negative correlation between the wHO02 descriptor 
and PI. The change in electron density is observed in both 
arylidene and furanone rings, reaching the methylene of 
the benzyl. Although wHO02 have shown to be significant 
to the 2D QSAR model, it was not possible to attribute a 
conclusive interpretation for its concrete relation to the 
photosynthetic inhibition of the nostoclides.

Among the 3D descriptors, the most important to the 
3D QSAR model was L1, a Lennard-Jones potential energy 
for the NH3

+ probe located in the proximity of the aromatic 
ring of the arylidene portions (Figure 16). Its correlation 
with the PI is negative. On the other hand, the more negative 
the energy values of the van der Waals potential results 
in a more stable interaction. The L1 descriptor’s probe is 
positioned above the aromatic ring of the arylidene portions, 
which is consistent with an aromatic stacking, known to 
have a contribution from the van der Waals potential.46

The E5 descriptor has the second highest absolute 
regression coefficient, it is negatively correlated to PI and its 
values are negative. The NH3

+ probe is located very close to 

Figure 14. Electric potential isosurface of the quadrupole moment from 
the arylidene portion and furanone; blue for positive and red for negative 
values.

Figure 15. HOMO electronic density of molecules (a) m13 and (b) m16 
with the carbon C2 highlighted.

Figure 16. Illustration of the m01 molecule and the position of L1 
descriptor’s probe.
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carbon C16 of the benzyl group, which is one of the ortho 
ones. This descriptor is possibly related to the QMbYY 2D 
descriptor, located in the same ring, because their correlation 
coefficient is –0.6164 and both have electrostatic nature. 
Their interpretation is also similar: a more negative value of 
E5 leads to more negative electrostatic density close to the 
probe, which results in a more positive value of the QMbYY. 
E5 might be related to aromatic stacking interactions between 
the nostoclide analogues and the plastoquinone QB site, as 
well as the QMbYY was theorized to be. Similarly, the 
descriptors E3 and E4 show some correlation to QMbZZ 
(correlation coefficients of –0.5964 for E3, and –0.5792 for 
E4), thus, could be related to the aromatic stacking of the 
benzyl’s ring.

The E2 descriptor’s probe is in the proximity of oxygen 
O9 and the carbonyl C10=O13 and its values are negative, 
which corresponds to a negative electrostatic density. It is 
positively correlated to the PI, a similar behavior compared 
to QMafYY molecular descriptor regarding positions R3 
and the oxygen O13. The E2 descriptor suggests a similar 
chemical interpretation as the QMafYY, which could be 
related to the photoelectron transfer to the nostoclide 
analogues via His215.

The probe of E1 descriptor is located between the 
R3 and R4 positions of the aromatic ring of the arylidene 
portions. This descriptor’s values vary from negative to 
positive depending on the substituent, but it is negatively 
correlated with PI. Consequently, substituents with more 
negative electrostatic density at positions R3 and R4 (i.e., 
CF3, NO2 and F) favor the photosynthetic inhibition 
property. Barbosa et al.15 observed that these substituents 
are also important for photosynthetic inhibition of rubrolide 
analogues. L2 is a Lennard-Jones potential descriptor 
located close to the benzyl group, whose atoms do not 
present significant variance of their positions. Therefore, 
it was not possible to make a consistent interpretation for 
this molecular descriptor.

Descriptors included in the hybrid QSAR model were 
selected among those used to build both the 2D and the 
3D QSAR models. The selection was performed using 
PLS regressions and analyzing which combination would 
give rise to a QSAR model of good quality. The molecular 
descriptors CO+CM, QMbYY, and E3 were selected 
over the QMbZZ, E4 and E5, regarding the electrostatic 
interactions of the benzyl group. Also, the molecular 
descriptor QMafYY was selected over the E2 to take 
into account the role of the electrostatic density of the 
oxygens from the furanone ring. The descriptors E1, L1 
and wHO02 presented complementary importance for the 
hybrid QSAR model, and thus, they were all kept in the 
model. The descriptor L2 was excluded. As can be seen 

from Table 2, Figures 8 and 11, the statistics of this final 
model is somewhat better than the previous.

Conclusions

Experimental data of the percentage of inhibition of a 
set of 34 nostoclide analogues, published by Teixeira et al. 
in 2008, was used to build QSAR models based on 2D 
and 3D molecular descriptors. Although the 2D QSAR 
model presented higher errors in the leave-one-out cross-
validation, the selected descriptors showed superior 
correlation coefficients with PI. Furthermore, its chemical 
interpretation gave some insight regarding the interactions 
between the analogues and the plastoquinone QB active site 
from photosystem II. On the other hand, the 3D QSAR 
model showed lower errors in the internal validations and 
some complementary information about the ligand-receptor 
interactions regarding the photosynthetic inhibitory activity 
of the studied compounds. The hybrid QSAR model, 
presenting the best statistics, highlighted the most important 
molecular descriptors for the PI. Analysis of the molecular 
descriptors used to build the QSAR models showed the 
major importance of electrostatic interactions for the 
activity of the nostoclide analogues. These interactions 
were observed, primarily, in the aromatic ring of the benzyl 
group, and associated with an aromatic stacking interaction 
due to the electrostatic quadrupole moment of the ring. 
For the studied nostoclides, strong electron withdrawing 
substituents, such as CF3 and NO2 (present in the several 
of the most actives analogues, i.e., m08-10 and m15-16), 
tend to increase the quadrupole moment of the aromatic 
ring of the benzyl group. Another important interaction 
proposed in this work was the photoelectron transfer to 
the nostoclide analogues via hydrogen bond between their 
carbonyl and the His215 residue of the D1 protein. Van 
der Waals interaction observed near the arylidene group 
presented correlation with the PI. The analyses of the 
chemical properties of the nostoclide analogues and their 
relation to the inhibition of the photosystem II presented 
important insights about the ligand-receptor interactions 
of these herbicides. The results obtained in this work are 
expected to be useful in future researches of herbicides 
targeting the photosystem II, especially for the further 
experimental development of novel nostoclide analogues.

Supplementary Information

Supplementary information regarding the selected 
molecular descriptors, the QSAR models and their 
validations is available free of charge at http://jbcs.sbq.org.br  
as PDF file.
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