Juan M. Amaro-Luis^{*,a}, Irama Ramírez^b, Paulino Delgado-Méndez^a and Zacarías D. Jorge^c

^a Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela 5101

^b Instituto de Investigaciones, Facultad de Farmacia, Universidad de Los Andes, Mérida, Venezuela 5101

^c Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, 11510 Cádiz, Spain

Quatro sesquiterpenos do tipo eudesmano foram isolados das partes aéreas de *Verbesina turbacensis* e foram caracterizados por métodos espectroscópicos incluindo experimentos bidimensionais de RMN.

Four eudesmane sesquiterpene were isolated from the aerial parts of *Verbesina turbacensis* and were characterised by spectroscopic methods, including 2D NMR experiments.

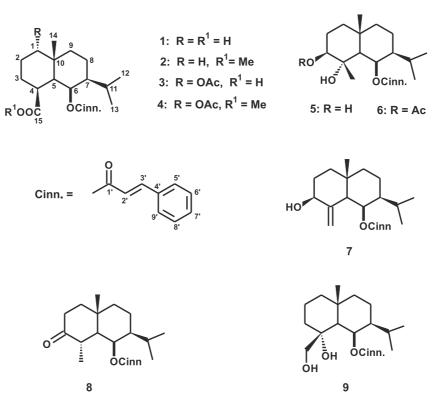
Keywords: Verbesina turbacensis, Asteraceae, sesquiterpenes, eudesmane

Introduction

Species of the genus *Verbesina* (Asteraceae, tribe *Heliantheae*, subtribe *Ecliptinae*) have produced a range of eudesmane sesquiterpenes with cinnamate or a derived ester group,¹⁻⁷ of which, α - and β -verbesinolcoumarates were the first reported examples.^{1,8} Several species also afforded elemanolides,^{9,10} diterpenes,¹¹ flavonoids,¹² and biological active guanidines as Galegine, the toxic principle of *V. enceloides* Benth.^{13,14}

As a continuation of our phytochemical investigation on Venezuelan Compositae,¹⁵⁻¹⁷ in this paper we describe the results of our study of *Verbesina turbacensis* H.B.K., a previously uninvestigated species, which is widely distributed throughout of Central America from Mexico to Colombia and Venezuela.¹⁸ *V. turbacensis* as well as *V. caracasana* Fries, a plant which contains the dosedependent hypotensive agent Caracasanamide,¹⁹ are frequently used in Venezuela as medicinal plants against a variety of diseases.

Results and Discussion


The dried, ground leaves and stems of *V. turbacensis* were extracted with acetone at room temperature and the obtained extract was purified by standard procedures. Vacuum liquid chromatography separation over silica gel²⁰

of the fractions obtained from a hexane-EtOAc (3:1, v/v) eluate, gave the sesquiterpenes 1, 3, 5 and 9.

Compound 1 was crystallized from acetone as colourless prisms (mp 221-223° C; $[\alpha]_{p}$: + 147.2°) and analysed for $C_{24}H_{22}O_4$ ([M⁺] m/z 384.2189 high resolution EI-MS). Its ¹H NMR spectral data were in close agreement with those reported by Bohlmann and Lonitz² for the methyl- 6β -[cinnamoyloxy]eudesman-15-oate 2. However the IR, ¹H NMR and ¹³C NMR spectra of compound 1 revealed the presence of a free carboxyl group [IR: 3600-3200 and 1735 cm⁻¹; δ_{H} 11.45 broad singlet; δ_{c} 181.10 (O=C-O-)], instead of the methyl ester present in 2. In accordance with above assignments, treatment of 1 with CH₂N₂/eter gave 2 and consequently 1 was identified as 6β -[cinnamoyloxy]-eudesman-15-oic acid. Further support to structure 1 was provided by 1H, 1H-COSY, HMQC and HMBC experiments, which allowed the assignments in Tables 1 and 2. The NOESY spectrum of 1 showed cross peaks between the signal assigned to H-6 and the signals of H-4 and H-7 respectively, suggesting that all three protons were on the same side of the molecule. Assuming an A/B ring fusion (5 α H, 10β Me); these results clearly confirm a β -configuration for C-4 carboxyl-, C-6 "trans"-cinnamoyl- and C-7 isopropyl groups.

Compound **3** was obtained as white needles (mp 201-203°C; $[\alpha]_{\rm D}$: +176.72°). Its molecular formula C₂₆H₃₄O₆ ([M⁺] *m/z* 442.3501, high resolution EI-MS) and its NMR spectral data (Tables 1 and 2) indicated that **3** differed from **1** only by the presence of an extra acetoxy group. [IR: 1.740 cm⁻¹; $\delta_{\rm H}$ 2.06; $\delta_{\rm C}$ 21.28 and 170.43]. This group was located in C-1 from the HMBC spectrum, which

^{*} e-mail: jamaro@ciens.ula.ve

showed that H-1 (δ 4.54, t J 2.5 Hz) was correlated to C-2/ C-3 (δ 22.73), C-5 (δ 43.86), C-10 (δ 37.44), C-14 (δ 20.53) and C-1" (δ 170.43). The α -orientation of acetoxy group already evidenced for the multiplicity of H-1 resonance, also followed from the strong shielding effect on C-3 and C-9 signals, when the chemical shifts of **3** were compared with those of **1** and **2** (Table 2). Thus, **3** was characterised as 1 α -acetoxy-6 β -[cinnamoyloxy] eudesman-15-oic acid, which had already been reported from *Verbesina eggersii* Hieron,² but it was isolated as the methyl ester **4**. Treatment of **3** with CH₂N₂/eter gave a methyl ester with data identical with those ones of **4**. The physical and spectral data of the acid **3** have not been previously published.

Compound **5** was isolated as colourless hexagonal plates (mp185-87° C; $[\alpha]_{\rm D}$: +65.89°). On the basis of high resolution EI-MS (*m*/*z* 368.2375 [M-H₂O]⁺) and ¹³C-NMR (BB and DEPT) spectral data, the molecular formula of **5** was deduced to be C₂₄H₃₄O₄. These data, as well as 2D-NMR experiments, revealed that **5** is a 6 β -[cinnamoyloxy]-eudesmane sesquiterpene similar to **1**, with an additional secondary hydroxyl group ($\delta_{\rm H}$ 3.10 (-OH) and 3.44 (H-C-O-); $\delta_{\rm C}$ 78.84), but in which, the C-15 carboxyl group was replaced by a methyl ($\delta_{\rm H}$ 1.14; $\delta_{\rm C}$ 17.92) located on a carbon that supports a tertiary hydroxyl group ($\delta_{\rm C}$ 75.18). The position of secondary hydroxyl group was clarified by the correlation peaks between C-1/H-3; C-2/H-3; C-4/H-3; C-5/H-3; C-15/H-3; C-3/H-1; C-3/H-2; C-3/H-5 and C-3/H-15 in the HMBC spectrum. On acetylation with

Ac₂O/Py, compound **5** gave the monoacetate **6**. Treatment of **5** with H₂SO₄ in dry acetone gave the dehydration products **7** and **8**, but did not give an acetonide derivative. In spite of this result, the stereochemistry in C-3 was evidenced on the basis of H-3 multiplicity signal and the magnitude of its coupling constants to H-2 α (J 3.5 Hz) and H-2 β a (J 11.5 Hz), which were in agreement with a β equatorial oriented hydroxyl group. All the above data were consistent with the structure proposed for **5**, and these ones also agree well with the spectroscopic data reported for the 6 β -[cinnamoyloxy]-3 β , 4 α -dihydroxyeudesmane, a sesquiterpene previously isolated from *V. persicifolia* D.C.⁶ and *V. oncophora* Rob. et Seat.⁷

Compound **9** (oil, $[\alpha]_{\rm D}$: -13.8°, formula molecular $C_{24}H_{34}O_4$) was also identified as a 6β -[cinnamoyloxy]eudesmane derivative similar to **5**. The ¹H- and ¹³C-NMR data, as well as the carbon connectivity pattern deduced from ¹H, ¹H-COSY, HMQC and HMBC experiments, indicated that **9** lacks of the C-3 hydroxyl group and that the C-4 methyl has been replaced by a hydroxymethyl group $[\delta_H 3.35 \text{ d} (J 11.0 \text{ Hz}) \text{ and } 3.75 \text{ dd} (J 11.0 \text{ and } J 1.3 \text{ Hz}); \delta_C 62.73]$. The W coupling (J= 1.3 Hz) between H-15^B and H-3 α revealed a β -axial orientation of hydoxymethyl group. The physical constants and the EIMS and ¹H-NMR data of **9**, were in agreement with those published for the 6β -[cinnamoyloxy]-4 α , 15-dihydroxyeudesmane, which has been previously isolated from *V. eggersii*.⁵ Until now ¹³C-NMR data of **9** have not been reported in the literature.

Table 1. ¹H NMR spectral data of compounds 1-9 (400 MHz, CDCl₃, ppm from TMS)

Н	1 ^a	2 ^b	3 ^a	4 ^b	5 ^a	6 ^a	7 ^b	8 ^b	9 ª
1α	0.99 td	1.09 m	-	-	1.23 td	1.28 td	1.36 m	1.48 m	1.01 m
1β	1.37 m	1.42 m	4.54 t	4.67 t	1.40 m	1.42 m	1.50 m	1.67 m	1.39 m
2α	1.19 m	1.45 m	1.36 m	1.69 m	1.75 dq	1.76 dq	1.95 m	2.34 ddd	1.19 m
2β	1.85 qt	2.15 qt	2.14 tdd	2.46 tdd	1.54 m	1.53 m	1.53 m	2.48 td	1.92 m
3α	1.07 m	1.47 m	1.05 m	1.63 m	3.44 dd	4.65 dd	3.94 dd	-	2.30 m
3β	1.39 m	1.94 ddt	1.39 m	1.82 ddt	-	-	-	-	NA
4α	2.23 td	2.74 td	2.27 td	2.75 td	-	-	-	2.31 dc	-
5α	1.50 d	1.67 dd	1.97 dd	2.12 dd	1.30 d	1.39 d	1.90 brs	1.34 dd	1.79 d
6α	5.40 brs	5.51 t	5.46 brs	5.56 t	5.87 brs	5.93 brs	5.72 brs	5.54 t	5.96 brs
7α	1.14 m	1.17 m	1.11 m	1.16 m	1.08 m	1.12 m	1.12 m	1.10 m	1.15 m
8α	1.54 m	1.58 m	1.55 m	1.61 m	1.63 m	1.63 m	1.68 m	1.63 m	1.71 m
8β	1.48 m	1.51 m	1.43 m	1.51 m	1.51 m	1.56 m	1.26 m	1.22 m	1.46 m
9α	1.10 m	1.13 m	1.46 m	1.59 m	1.17 m	1.08 m	1.29 m	1.28m	1.05 m
9β	1.51 m	1.56 m	1.20 dt	1.28 dt	1.59 m	1.56 m	1.69 m	1.61 m	1.61 m
11	1.42 m	1.37 m	1.41 m	1.36 m	1.44 m	1.41 m	1.40 m	1.46 m	1.42 m
12	1.02 d	1.00 d	1.02 d	1.01 d	0.90 d	0.89 d	1.04 d	0.96 d	0.88 d
13	0.80 d	0.82 d	0.80 d	0.81 d	0.88 d	0.86 d	0.85 d	0.86 d	0.84 d
14	1.22 s	1.33 s	1.31 s	1.42 s	1.17 s	1.19 s	1.06 s	1.31 s	1.12 s
15	-	-	-	-	1.14 s	1.17 s	5.12 ; 4.81°	1.13 d	3.35; 3.75
2'	6.32 d	6.37 d	6.31 d	6.35 d	6.46 d	6.43 d	6.39 d	6.39 d	6.41 d
3'	7.61 d	7.64 d	7.59 d	7.64 d	7.72 d	7.68 d	7.68 d	7.66 d	7.71 d
5', 9'	7.51 m	7.51 m	7.50 m	7.51 m	7.56 m	7.53 m	7.50 m	7.50 m	7.54 m
6', 8'	7.31 m	7.36 m	7.33 m	7.37 m	7.39 m	7.38 m	7.36 m	7.35 m	7.40 m
7'	7.32 m	7.37 m	7.34 m	7.38 m	7.39 m	7.39 m	7.37 m	7.36 m	7.41 m
AcO	-	-	2.06 s	2.00 s	-	2.05 s	-	-	-
-OCH,	-	3.42 s	-	3.43 s	-	-	-	-	-

Coupling constants: (1)-(9): $J_{5\alpha,6\alpha} = J_{6\alpha,7\alpha} \cong 1.5$ Hz; $J_{11,12} = J_{11,13} \cong 7$ Hz; $J_{2',3'} = 16$ Hz; (1)-(2): $J_{1\alpha,1\beta} = J_{2\alpha,2\beta} = J_{3\alpha,3\beta} \cong 13.5$ Hz; $J_{1\alpha,2\alpha} \cong 7.8$ Hz; $J_{1\alpha,2\beta} \cong 12.5$ Hz; $J_{1\beta,2\alpha} = J_{1\beta,2\beta} = J_{2\beta,3\beta} \cong 3.4$ Hz; $J_{2\alpha,3\beta} = J_{3\beta,4\alpha} \cong 1.8$; $J_{3\alpha,4\alpha} = J_{4\alpha,5\alpha} \cong 5.3$ Hz; $J_{3\beta,4\alpha} \cong 1.8$; $J_{3\alpha,4\alpha} = J_{4\alpha,5\alpha} \cong 5.3$ Hz; $J_{3\beta,4\alpha} \cong 1.8$; $J_{2\beta,3\beta} \cong 1.8$; $J_{2\beta,3\beta} \cong 1.5$ Hz; $J_{2\alpha,2\beta} = J_{3\alpha,3\beta} \cong 13.5$ Hz; $J_{2\beta,2\beta} = 12.5$; $J_{2\beta,3\beta} \cong 4.4$ Hz; $J_{3\alpha,4\alpha} = J_{4\alpha,5\alpha} \cong 5.5$ Hz; $J_{3\beta,4\alpha} \equiv J_{8\beta,9\beta} \cong 1.8$; (5)-(6): $J_{1\alpha,1\beta} = J_{1\alpha,2\beta} = J_{2\alpha,2\beta} \cong 13.8$ Hz; $J_{1\alpha,2\alpha} = J_{1\beta,2\beta} = J_{2\alpha,3\beta} \cong 13.5$ Hz; $J_{2\beta,3\alpha} \cong 11.5$ Hz; (8): $J_{1\alpha,2\beta} = J_{2\alpha,2\beta} \cong 14.9$ Hz; $J_{1\alpha,2\alpha} \cong 4.7$ Hz; $J_{1\beta,2\alpha} \cong 2.1$ Hz; $J_{1\beta,2\beta} \cong 6.3$ Hz; $J_{4\alpha,15} \cong 7.0$ Hz. ^a Assigned by ¹H, ¹H-COSY, HMQC and HMBC experiments. ^b Assigned by ¹H, ¹H-COSY and HMQC experiments. (m): Signals either overlapping or obscured; J unresolved. ^c (8):H-15_A and H-15_B both broad singlets. ^d (9): H-15_A: δ 3.75, d; H-15_B: 3.75 dd [$J_{15A,15B} \cong 11.0$ Hz, $J_{3\alpha,15B} \cong 13.7$ Hz; $J_{3\alpha,15B} \cong 11.3$ Hz;

1.3 Hz].

Table 2. ¹³C NMR spectral data of compounds 1-9 (100 MHz, CDCl₂, ppm from TMS)

Carbon	1 ^a	2 ^b	3 ^a	4 ^b	5 ^a	6 ^a	7 ^b	8 ^b	9 ª
1	44.06	44.23	77.39	77.53	40.83	40.72	41.99	42.46	45.00
2	18.53	18.64	22.73	22.84	26.59	25.22	32.29	37.69	19.60
3	29.60	30.56	22.73	23.79	78.84	80.27	73.35	212.51	36.65
4	42.49	42.60	41.68	41.76	75.18	73.63	149.30	42.65	74.85
5	50.40	50.29	43.86	43.73	55.09	55.49	51.92	53.63	56.92
6	74.04	74.45	74.16	74.47	69.53	69.12	71.66	70.96	69.12
7	51.04	51.18	50.63	50.78	49.75	49.88	50.65	48.72	50.22
8	20.68	20.89	20.13	20.35	21.15	20.96	20.57	20.47	20.57
9	44.39	44.51	36.41	36.52	45.04	44.73	41.10	40.69	43.38
10	34.24	34.27	37.44	37.47	34.65	34.40	35.96	33.52	34.98
11	28.18	28.26	28.06	28.13	28.73	28.53	28.07	28.64	28.67
12	20.13	20.21	20.07	20.15	20.76	20.55	20.38	20.26	19.95
13	22.18	22.07	22.20	22.04	21.59	21.20	22.01	21.60	20.99
14	20.60	20.66	20.53	20.61	21.24	21.35	20.69	19.71	21.47
15	181.10	175.92	181.17	175.98	17.92	18.63	104.27	11.45	62.73
1'	166.75	166.36	166.54	166.21	168.26	167.62	166.77	165.97	168.05
2'	118.63	118.92	118.32	118.62	118.17	118.20	118.58	117.91	117.96
3,	144.18	144.40	144.35	144.67	145.83	145.48	144.84	144.98	146.02
4'	134.84	134.45	134.60	134.29	134.15	134.12	134.42	134.14	134.05
5', 9'	128.19	128.07	128.14	128.06	128.27	128.12	128.09	127.97	128.31
6', 8'	128.58	128.83	128.72	128.84	128.91	128.81	128.83	128.76	128.93
7'	129.74	130.18	130.02	130.29	130.58	130.42	130.24	130.26	130.64
1"	-	-	170.43	170.30	-	170.76	-	-	-
2"	-	-	21.28	21.25	-	21.66	-	-	-
OMe	-	51.64	-	51.77	-	-	-	-	-

^a Assigned by DEPT, HMQC and HMBC experiments. ^b Assigned by DEPT and HMQC experiments.

From a chemotaxonomic aspect the isolated eudesmane sesquiterpenes have to be regarded as typical constituents of *Verbesina* species, even though similar eudesmane cinnamates has sporadically been isolated from *Ambrosia*, *Brintonia* and *Solidago* species.²¹⁻²³ From a biological point of view, it is also important to highlight that many eudesmane derivatives, with structures related to **1-9**, have shown antifeedant,²⁴ antibacterial²⁵ or cytotoxic²⁶ properties.

Experimental

General experimental procedures

Melting points were determined with a Fisher-Johns apparatus and they have not been corrected. Optical activities were measured in CHCl₃ on a Rudolph Research Autopol III polarimeter. IR spectra were taken on a Perkin-Elmer FT-1725X spectrophotometer as film or KBr pellets. ¹H, ¹³C and two-dimensional NMR spectra were measured on a Bruker-Avance DRX400 instrument, using CDCl₃ as solvent with TMS as internal standard. EI-MS and HREI-MS were run on a Hewlett-Packard 5930A and on an Autospec VG spectrometer, respectively; direct inlet, 70 eV. TLC was carried out on 0.25 mm layers of silica gel PF 254 (Merck). VCC was performated with silica gel 60 (70-230 mesh.).

Plant material

Verbesina turbacensis H.B.K. was collected at La Hechicera, Municipio Autónomo Libertador (Mérida, Venezuela) in November. A voucher specimen (JMA 1511) was deposited in the MERF Herbarium (Faculty of Pharmacy, ULA).

Extraction and isolation of the constituents

Leaves and stems of *V. turbacensis* (*ca* 7.5 kg) were airdried, ground and exhaustively extracted with acetone at room temperature for 1 week. The dissolution obtained was concentrated *in vacuo* to afford a dark brown residue (450 g), which was preadsorbed on silica gel and subjected to VCC over silica gel,²⁰ using hexane with increasing amounts of EtOAc as eluent. Fractions of 1 L were collected and combined based upon TLC monitoring. From fractions eluted with hexane-EtOAc (7:3, v/v), stigmasterol (55 mg) was purified by crystallisation and identified by mp, IR, ¹H NMR and TLC comparison. Fractions eluted with hexane-EtOAc (3:2, v/v) were purified by repeated flash chromatography or preparative TLC yielding four compounds, which were obtained in the following sequence: 1 (2.83 g), 3 (870 mg), 5 (6.25 g) and 9 (35 mg).

6β -[cinnamoyloxy]-eudesman-15-oic acid (1)

Colourless prisms (Me₂CO), mp 221-223° C (lit.² mp 193° C); $[\alpha]_{D}$: +147.2° (*c*, 0.43 CHCl₃).; IR ν_{max} / cm⁻¹ 3600-3200, 2950, 1735, 1690, 1665, 1220, 1180, 790, 700 (KBr); UV (MeOH) λ_{max} : 275 nm; HR-EIMS, [m/z, (% rel. int.)]: 384.2189 (M⁺, calcd. for C₂₄H₃₂O₄: 384.2300) (4.32); LR-EIMS [*m*/*z*, (% rel. int.)]: 384 [M⁺] (4.35), 366 [M⁺-H₂O] (3.80), 356 [M⁺-CO] (2.89), 338 [M⁺-HCOOH] (46.48), 253 [M⁺-PhCH=CHCO] (9.07), 236 [M⁺-PhCH=CHCOOH] (39.60), 235 (48.34), 221 [M⁺-PhCH=CHCOOH-CH₃] (7.74), 193 [M⁺-PhCH=CHCOOH-C₃H₇] (54.51), 190 (30.48), 175 (22.15), 148 (20.83), 147 (20.88), 131 [PhCH=CHCO]⁺(100), 103 [PhCH=CH]⁺(22.45), 91 (8.59), 77 (9.62).

Methyl- 6β -[cinnamoyloxy]-eudesman-15-oate (2)

Compound **1** (320 mg) was treated with excess ethereal CH_2N_2 and solution was left standing overnight in a refrigerator at 4°. Evaporation of ether yielded the methyl ester **2** (325 mg): White needles (EtOAc), mp 109-111° C; $[\alpha]_{p}$: + 45.1° (*c*, 0.32 CHCl₃); IR ν_{max} / cm⁻¹ 1723, 1700, 1667, 1211, 1018, 859, 727 (KBr); HR-EIMS [*m*/*z*, (% rel. int.)]: 398.2808 (M⁺, calcd. for $C_{25}H_{34}O_4$: 398.2497) (1.52); LR-EIMS [*m*/*z*, (% rel. int.)]: 398 [M⁺-HCOOCH₃] (9.89), 293 (1.23), 267 [M⁺-PhCH=CHCO](6.66), 250 [M⁺-PhCH=CHCOOH](5.89), 235 [M⁺-PhCH=CHCOOH-CH₃] (20.88), 207 [M⁺-PhCH=CHCOOH-C₃H₇](9.11), 190 [M⁺-PhCH=CHCOOH-HCOOH-G₃H₇](9.11), 131 [PhCH=CHCO]⁺(100), 103 (20.36), 91 (4.58), 77 (7.98), 55 (6.43).

1α -Acetoxy-6 β -[cinnamoyloxy]-eudesman-15-oic (3)

White needles (EtOAc), mp 201-203°C; $[\alpha]_{D}$:+176.72° (*c*, 0.55 CHCl₃).; IR ν_{max} / cm⁻¹ 3500-3250, 2950, 1740,1735, 1700, 1650, 1280, 1180, 750, 690 (KBr); UV (MeOH) λ_{max} : 275 nm; HR-EIMS [m/z, (% rel. int.)]: 442.3501 (M⁺, calcd. for C₂₆H₃₄O₆: 442.2355) (0.56); LR-EIMS [m/z, (% rel. int.)]: 442 [M⁺] (0.60), 424 [M⁺-H₂O] (2.52), 414 [M⁺-CO] (2.76), 396 [M⁺-HCOOH] (6.06), 364 [M⁺-H₂O-AcOH] (1.83), 336 [M⁺-HCOOH-AcOH] (13.85), 311 [M⁺-PhCH=CHCO] (2.73), 294 [M⁺-PhCH=CHCOOH] (3.30), 293 (9.27), 251 [M⁺-PhCH=CHCOOH-C₃H₇] (1.08), 234 [M⁺-PhCH=CHCOOH-AcOH] (29.97), 233 (12.03), 219 [M⁺-PhCH=CHCOOH-AcOH-CH₃] (6.93), 191[M⁺-PhCH=CHCOOH-AcOH-CH₃] (6.93), 191[M⁺-PhCH=CHCOOH-AcOH-CH₃] (22.41), 148 (6.34), 147 (16.02), 145 (18.71), 131 [PhCH=CHCO]⁺ (100), 103 [PhCH=CH]⁺ (22.10), 91 (7.45), 77 (8.37).

Methyl-1 α -acetoxy-6 β -[cinnamoyloxy]-eudesman-15oate (4)

Compound **3** (200 mg) was methylated following the procedure above indicated. The methyl ester **4** (195 mg) was obtained as white needles (hexane), mp 172-75°C; $[\alpha]_{p}$: +68.25° (*c*, 0.18 CHCl₃).; IR ν_{max} / cm⁻¹ 1735, 1730, 1715, 1635, 1280, 1243, 1018, 750 (KBr); HR-EIMS [*m/z*, (% rel. int.)]: 456.2491 (M⁺, calcd. for C₂₇H₃₆O₆: 456.2511) (0.86); LR-EIMS [*m/z*, (% rel. int.)]: 456 [M⁺] (0.70), 428 (0.67), 396 [M⁺-AcOH] (7.67), 350 (7.85), 336 [M⁺-AcOH-HCOOCH₃] (7.81), 325 [M⁺-PhCH=CHCO] (6.47), 308 [M⁺-PhCH=CHCOOH] (3.22), 293 [M⁺-PhCH=CHCOOH-CH₃] (25.06), 248 [M⁺-PhCH=CHCOOH-AcOH] (23.33), 233 (14.08), 205 [M⁺-PhCH=CHCOOH-AcOH-C₃H₇] (27.26), 188 (13.56), 147 (15.38), 145 (40.11), 131 [PhCH=CHCO]⁺ (100), 103 (37.60), 91 (7.28), 77 (15.09), 55 (18.08).

6β -[cinnamoyloxy]- 3β , 4α -dihydroxyeudesmane (5)

Colourless hexagonal plates (EtOAc), mp 185-87° C; $[\alpha]_{n}$: +65.89° (c, 0.39 CHCl₃); IR ν_{max} / cm⁻¹ 3430, 2950, 1730, 1647, 1200, 1100, 700 (KBr); UV (MeOH) λ_{max} : 280 nm; HR-EIMS [*m/z*, (% rel. int.)]: 368.2375 ([M-H₂O]⁺, calcd. for C₂₄H₂₂O₂: 368.2351) (2.82); LR-EIMS [*m/z*, (% rel. int.)]: 368 [M+-H,O](2.79), 350 [M+-2H,O](0.79), 307 [M⁺-2H₂O-C₃H₇] (1.49), 238 [M⁺-PhCH=CHCOOH] (48.76), 220 [M⁺-PhCH=CHCOOH-H₂O](20.72), 205 [M⁺-PhCH=CHCOOH-H₂O-CH₃] (7.86), 202 [M+-PhCH=CHCOOH-2H,O] (8.91), 195 [M⁺-PhCH=CHCOOH-C₂H₇] (20.61), 177 [M⁺-PhCH=CHCOOH-H₂O-C₂H₇] (38.20), 159 [M⁺-PhCH=CHCOOH-2H₂O-C₂H₂] (10.45), 149 (12.68), 137 (20.14), 131 [PhCH=CHCO]⁺ (100), 121 (10.14), 103 [PhCH=CH]⁺(27.84), 95 (11.68), 91 (10.75), 81 (18.10), 77 (11.79).

3β -Acetoxy- 6β -[cinnamoyloxy]- 4α -hydroxyeudesmane (6)

Compound **5** (340 mg) was dissolved in pyridine (5 ml) and treated with Ac₂O (10 ml) at room temperature overnight. Ice was added to the reaction mixture and immediately was extracted with EtOAc. The EtOAc layer was dried on MgSO₄ and evaporated to yield the acetate **6** (295 mg): Colourless oil; $[\alpha]_{\rm D}$: +24.5° (*c*, 0.20 CHCl₃); $\nu_{\rm max}$ cm⁻¹ 3515, 1712, 1633, 1264, 1076, 700 (nujol); HR-EIMS [*m*/*z*, (% rel. int.)]: 428.2556 ([M⁺], calcd. for C₂₆H₃₆O₅: 428.2562) (0.32); LR-EIMS [*m*/*z*, (% rel. int.)]:

428 [M⁺] (0.18), 410 [M⁺-H₂O] (0.15), 368 [M⁺-AcOH] (2.34), 350 (0.91), 280 [M⁺-PhCH=CHCOOH] (5.27), 262 [M⁺-PhCH=CHCOOH-H₂O] (12.94), 238 (7.15), 220 [M⁺-PhCH=CHCOOH-AcOH] (33.98), 202 (32.72), 187 (9.00), 177 (26.21), 159 (22.73), 148 (9.75), 137 (14.34), 131 [PhCH=CHCO]⁺ (100), 107 (10.41), 103 [PhCH=CH]⁺ (46.61), 91 (12.67), 77 (25.52), 69 (11.37), 55 (14.84).

Treatment of compound 5 with H,SO, /Me,CO

Compound 5 (210 mg) was dissolved in dry acetone (20 ml) and a few drops of H_2SO_4 were added. The solution was stirred for 24 h. at room temperature, neutralized with 10% aq. HCO₃Na and extracted with EtAcO. The EtAcO layer was dried on Na₂SO₄ and concentrated "*in vacuo*" yielding an oily residue, which after chromatography gave 7 (95 mg) and 8 (45 mg).

 6β -[cinnamoyloxy]-3β-hydroxyeudesm-4,15-ene (7): mp140-42° C; IR ν_{max} /cm⁻¹ 3510, 1735, 1630, 1255 1085, 890, 710 (KBr); HR-EIMS [*m*/*z*, (% rel. int.)]: 368.22321 ([M⁺], calcd. for C₂₄H₃₂O₃: 368.2351) (3.72); LR-EIMS [*m*/*z*, (% rel. int.)]: 368 [M⁺] (4.07), 350 [M⁺-H₂O] (2.25), 307 [M⁺-H₂O-C₃H₇] (4.69), 220 [M⁺-PhCH=CHCOOH] (15.87), 202 [M⁺-PhCH=CHCOOH-H₂O] (41.31), 187 (9.39), 177 [M⁺-PhCH=CHCOOH- C₃H₇] (15.25), 159 (44.99), 145 (6.37), 131 [PhCH=CHCO]⁺ (100), 103 [PhCH=CH]⁺ (38.03), 91 (13.29), 77 (20.43), 67 (6.63), 55 (9.46).

 6β -[cinnamoyloxy]-3-oxo-4 β H-eudesmane (8): Colourless oil; IR ν_{max} /cm⁻¹ 1732, 1715, 1633, 1220, 740, 710 (nujol).

6β -[cinnamoyloxy]- 4α , 15-dihydroxyeudesmane (9)

Colourless oil; $[\alpha]_{D}$: -13.8° (*c*, 0.25 CHCl₃).; IR ν_{max} /cm⁻¹ 3590, 2960, 1720, 1642, 1130, 710 (nujol); UV (MeOH) λ_{max} : 278 nm; HR-EIMS [*m*/*z*, (% rel. int.)]: 368.2369 ([M-H₂O]⁺, calcd. for C₂₄H₃₂O₃: 368.2351) (7.98); LR-EIMS [*m*/*z*, (% rel. int.)]: 368 [M⁺-H₂O] (8.45), 355 [M⁺-CH₂OH] (11.23), 337 [M⁺-H₂O-CH₂OH] (2.81), 325 [M⁺-H₂O-C₃H₇] (1.37), 294 (0.42), 238 [M⁺-PhCH=CHCOOH] (12.35), 220 [M⁺-PhCH=CHCOOH-H₂O] (32.18), 207 [M⁺-PhCH=CHCOOH-CH₂OH] (73.18), 205 (7.53), 195 [M⁺-PhCH=CHCOOH-C₃H₇] (19.15), 189 (27.16), 177 [M⁺-PhCH=CHCOOH-H₂O-C₃H₇] (32.71), 146 (11.36), 131 [PhCH=CHCO]⁺ (100), 103 [PhCH=CH]⁺ (38.15), 91 (12.41), 77 (11.10).

Acknowledgements

We are grateful to CDCHT-ULA (Grant Fa-185-96C) for financial support. Thanks are also due to Ing. For. Juan

Carmona (MERF Herbarium, Facultad de Farmacia, ULA) for identification of plant material.

References

- Gardner, P. D.; Park, G. J.; Albers, C. C.; J. Am. Chem. Soc. 1961, 83, 1511.
- 2. Bohlmann, F.; Lonitz M.; Chem. Ber. 1978, 111, 254.
- Bohlmann, F.; Grenz, M.; Gupta, R. K.; Dhar, A. K.; Ahmed, M.; King, R. M.; Robinson, H.; *Phytochemistry* 1980, 19, 2391.
- 4. Herz ,W.; Kumar, N.; Phytochemistry 1981, 20, 247.
- Banerjee, S.; Jakupovic, J.; Bohlmann, F.; King, R. M.; Robinson, H.; *Phytochemistry* 1985, 24, 1106.
- Jakupovic, J.; Ellmauerer, E.; Jia, Y.; Bohlmann, F.; Domínguez, X. A.; Schmeda-Hirschmann, G.; *Planta Med.* 1987, 53, 39.
- Domínguez, X. A.; Sánchez, H.; Franco, R.; Slim, J.; Ellmauerer, E.; *Rev. Latinoam. Quim.* 1987, 18, 113.
- 8. Bohlmann, F.; Zdero, C.; Phytochemistry 1979, 18, 1751.
- Ortega, A.; Martínez, M.; Romo de Vivar, A.; *Rev. Latinoam. Quim.* 1977, 8, 166.
- Ortega, A.; Maldonado, E.; Fronczek, F. R.; Delord, T. J.; Chiari, G.; *Phytochemistry* **1985**, *24*, 1755.
- 11. Bohlmann, F.; Zdero, C.; Phytochemistry 1976, 15, 1310.
- 12. Glennie, C. W.; Jain, S. C.; Phytochemistry 1980, 19, 157.
- Oelrichs, P. B.; Vallely, P. J.; MacLeod, J. K.; Lewis, I. A. S.; J. Nat. Prod. 1981, 44, 754.
- López, T. A.; Campero, C. M.; Chayer, R.; Cosentino, B.; Caracino, M.; *Vet. Hum. Toxicol.* **1996**, *38*, 417.

- 15. Amaro-Luis, J. M.; Adrián R, M.; Pharmazie 1997, 52, 162.
- Amaro-Luis, J. M.; Adrián, M.; Díaz, C.; Ann. Pharm. Fr. 1997, 55, 262.
- Amaro-Luis, J. M.; Delgado-Méndez, P.; Acta Cient. Venez. 1997, 48, 91.
- Aristiguieta L.; *Flora de Venezuela. Vol X. Compositae*; Edición Especial del Instituto Botánico: Caracas, 1964, p. 592.
- Delle Monache, G.; Botta, B.; Delle Monache, F.; Espinal, R.; De Bonnevaux, S. C., De Luca, C.; Botta, M.; Corelli, F.; Carmignani, M.; *Bioorg. Med. Chem. Lett.* **1992**, *2*, 415.
- 20. Coll, J. C.; Bowden, B. F.; J. Nat. Prod. 1986, 49, 934.
- Bohlmann, F.; Fritz, U.; King, R. M.; Robinson, H.; *Phy-tochemistry* 1980, 19, 2655.
- Jakupovic, T.; Jaensch, M.; Bohlmann, F.; Dillon, M. O.; *Phy-tochemistry* 1988, 27, 3551.
- Lu, T.; Vargas, D.; Fischer, N. H.; *Phytochemistry* 1993, 34, 737.
- Faini, F.; Labbe, C.; Torres, R.; Delle Monache, G.; Delle Monache, F.; Coll, J.; *Nat. Prod. Lett.* **1997**, *11*, 1.
- 25. Kato, T.; Frei, B.; Heinrich, M.; Sticher, O.; *Planta Med.* **1996**, *62*, 66.
- Masuyama, K.; Morita, H.; Takeya, K.; Itokawa H.; *Phytochem-istry* **1993**, *34*, 567.

Received: October 10, 2001 Published on the web: May 9, 2002