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Hotspots situated at protein-protein interfaces, allosteric and orthosteric binding sites, 
traditionally play a crucial role in the initial phases of drug discovery, as they are useful to 
identify druggable targets and guide the optimization of fragments into lead compounds. Despite 
the high level of protein frustration, which can be thought of as the percentage of residues that 
cannot independently achieve minimum energy due to tridimensional restraints, observed at 
those locations, limited efforts have been made to investigate any potential connection between 
the localized frustration and hotspots in proteins. This review paper aims to partially address this 
knowledge gap by proposing that the origin of hotspots is, at least in part, due to localized frustration 
in proteins. While there is no hard evidence to support this hypothesis, the results obtained by 
integrating in silico tools predicting hot spot locations, with those calculating localized protein 
frustration, suggest that druggable hotspots are surrounded by residues involved in frustrated 
contacts. Additionally, the inclusion of long-range electrostatic terms in the protein frustration 
calculation enables the identification of an equal to a higher number of frustrated residues. These 
observations indirectly suggest that localized protein frustration around druggable hotspots could 
guide the development of more potent leads.
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1. Introduction

Professor Eliezer Barreiro and co-workers1 advocated 
that medicinal chemists exploit their chemical intuition 
to integrate knowledge from diverse domains, including 
organic chemistry and biology, to elucidate the mechanisms 
of drug actions and devise novel chemical entities. To 
achieve this objective, both basic and applied research 
play crucial roles, either expediting hit identification, and 
lead optimization, or the pre-clinical studies that ensure 
the safety and efficacy of candidate drugs entering clinical 
trials.2,3

Both ligand-based and structure-based molecular 
modeling studies play their role in this pipeline, offering 
either a simplistic, physics-based description of the 

biological targets4 or quantum-based insights into the 
electronic properties of ligands.5 These studies also 
encompass mathematical models, linear or otherwise, 
guiding virtual screening campaigns, ADMET (absorption, 
distribution, metabolism, excretion, and toxicity) exclusion 
criteria, etc.6-8 Integrating concepts and foundations 
from diverse fields often facilitates performing these 
tasks from a novel and more efficient perspective. In 
a contribution towards this goal, this paper explores 
how the well-established minimum frustration theory9 
relates to the hotspots found in orthosteric and allosteric 
binding sites. The text is organized as follows: a brief 
description of the frustration theory and its application to 
protein folding is provided, followed by an introduction 
to a quick and efficient tool for calculating frustration in 
proteins (Frustratometer webserver).10 The reader is then 
informed about the high proportion of frustrated residues 
in binding sites, paving the way for the second section, 
which delves into the concept of hotspots, demonstrates 
how they can be identified, and introduces another tool 
widely used for predicting the location of these hotspots 
(FTMap webserver).11-13 The focus of this section will be on 
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druggable hotspots, where drug-like molecules are expected 
to bind with nanomolar affinity, but this section will also 
describe the fundamentals of the Fragment hotspot map 
server,14,15 and how it can be exploited to gain further insight 
into the molecular interactions that are responsible for 
hotspot formation. The subsequent section compares and 
contrasts whether highly frustrated residues, as predicted by 
the Frustratometer webserver, surround druggable hotspots, 
as calculated with the DRUGpy plugin,16 or the hotspots 
predicted with Fragment hotspot map.14,15 Consequently, 
readers will gain insights into the correlation between 
hotspots and protein frustration on enzymes and selected 
examples. The concluding remarks will bring the readers’ 
attention to the work that should be carried out to prove 
that protein frustration is indeed at the root of hotspots.

2. A Brief Overview of Protein Frustration

While high-resolution single structures are essential 
for understanding biological processes and protein 
interactions, Nussinov et al.17 argue that a conformational 
view is necessary for an in-depth analysis of how proteins 
function at the conformational level and how they are 
regulated in the cell.17 This argument is rooted in the fact 
that the sequence-structure-function dogma leads to some 
misconceptions. Firstly, it implies that the binding of a 
small molecule to an incompatible conformation of the 
protein always “pushes” it to change its shape. Instead, 
we should recognize that binding might also involve 
conformational selection from the available options at 
a given temperature, necessitating only minor changes 
for optimal steric and electrostatic complementarity.18,19 
To differentiate whether conformational changes occur 
before (conformational selection) or after (induced 
fit) ligand binding, or involve a mix of both,20 it is 
recommended to use biophysical techniques that do not 
rely on ensemble-averaged data, such as single-molecule 
Förster resonance energy transfer.21 Secondly, it fails to 
identify the protein’ preferred activation pathway, as it 
requires the consideration not only of conformational 
states but also their occupancies.22-24 Under physiological 
conditions, proteins are predominantly in their inactive 
conformations, and effector binding, whether covalent 
or not, can stabilize the active conformation, enabling 
the crossing of kinetic barriers necessary for biological 
activity.25,26 Lastly, it struggles to adequately explain 
allosteric mechanisms 17,27,28

The concept of the energy landscape is instrumental to 
overcoming such limitations since it describes biological 
molecules as dynamic ensembles that adapt to their 
surroundings.29,30 Hence, it maps all the conformations 

a protein can adopt, with lower energy corresponding to 
a higher population. Then, minor differences in energies 
among conformations mean that a slight energy change can 
easily shift an inactive conformation to an active one. This 
transition translates into a biological signal, the intensity of 
which is directly proportional to the energy gap between 
the active and inactive conformations.31

There is substantial evidence suggesting that natural 
proteins navigate a minimally frustrated energy landscape 
towards their native state, as opposed to exploring various 
alternative conformations.9,32-35 Frustration arises when a 
physical system cannot independently achieve minimum 
energy for each of its components.36 This can result from 
geometric reasons or competition between interacting 
elements. For instance, the formation of a specific 
secondary structure in one region may prevent the formation 
of another in a distant part. 

Localized frustration in proteins is typically found at 
binding sites37 and regions associated with conformational 
changes required for allosteric regulation.38,39 Proteins 
tolerate these frustrated regions due to their role in protein 
dynamics and function. Proteins perform chemical 
activities that impose restrictions conflicting with the 
requirements of self-organization.40 For instance, complex 
formation required for the proteins’ activity (e.g., protein-
protein or protein-ligand complexes) may conflict with 
those stabilizing the folding of one of the partners. As 
highlighted by Ferreiro et al.,36 the molecular origin of 
binding frustration is related to intramolecular contacts 
present in the unbound form that need to be disrupted 
before intermolecular contacts of the complex can form.

Analyzing protein frustration requires a reliable method 
to measure the degree of satisfaction of a general energy 
function. A quantum mechanics description is unnecessary 
for this type of system, as most forces involved in protein 
frustration can be adequately accounted for using classical 
force field descriptions, or even the simplified coarse-
grained description.31 In such an approach, molecular 
interactions may be modeled with forces averaged over the 
solvent environment, and each amino acid in the polymer 
may be described as a pseudoatom with specific encoded 
properties.41-43 For instance, the associative memory, water-
mediated, structure and energy model (AWSEM) force 
field employs a three-atom-per-residue representation 
with explicit hydrogen bonds,44 but differs from Takada’s 
model in its relatively simple hydrophobic interactions 
and context-dependent electrostatic interactions, even 
though both were originally developed for folding studies.45 
A full description of the AWSEM model is available 
as the supplementary material of paper published by 
Davtyan et al.44 Briefly, the solvent-averaged free energy 



The Interplay between Protein Frustration and Hotspot Formation Froes and Castilho

3 of 21J. Braz. Chem. Soc. 2024, 35, 10, e-20240168

function of the protein chain (Vtotal) is calculated as a sum 
of 6 terms (equation 1):

Vtotal = Vbackbone + Vcontact + Vburial + VHB + VAM + VDSB	  (1)

where: Vbackbone accounts for the protein chain’s connectivity 
using harmonic potentials to maintain specific distances 
between atoms, typically between Cα, N, and C atoms of 
adjacent residues. It ensures the correct bond angles around 
the Cα atom to preserve the protein’s secondary structure, 
models the energetics of the chain’s dihedral angles to 
ensure that the torsional angles adopt physically reasonable 
values, enforces allowed conformations based on the 
Ramachandran plot, and applies repulsive potentials to 
avoid steric clashes; Vcontact is split into two terms that have a 
direct correlation with the frustrated contacts: (i) a pairwise 
additive potential that depends on the distance between 
the Cβ atoms of interacting residues, capturing the direct, 
non-bonded interactions between the atoms; (ii) a term that 
switches between water-mediated and protein-mediated 
interaction weights, capturing the role of water in mediating 
interactions between residues that are not in direct contact; 
Vburial term mimics the hydrophobic effect in protein folding, 
dictating whether the residue should be buried or exposed 
depending on its hydrophobicity; VHB term captures the 
energetics of hydrogen bonds, ensuring physically realistic 
geometries for these interactions; VAM is the associative 
memory term that incorporates information from known 
protein structures to bias the simulation towards native-like 
conformations; VDSB accounts for the desolvation barrier, 
helping to simulate the difficulty of bringing residues near 
each other without forming direct contacts or hydrogen 
bonds.

Using coarse-grained descriptions of the system, 
sequence permutation is a straightforward way to probe the 
effect of topological frustration.36 To analyze the existence 
of energetic conflicts in a folded protein, the energy of 
structural or sequence decoys is measured concerning the 
native state. For instance, the “frustration” index can be 
calculated by comparing the stability of native interactions, 
represented by the total energy of the protein in the native 
configuration (ET,N) (equation 2) to a distribution of decoy 
interactions.

	 (2)

where the first two terms account for the interactions 
that residue (i) makes with residues (k), either in a direct 
contact (Ei;k

contact) or in a water-mediated interaction 
(Ei;k

water), while the third term describes the burial energy 
for residue (i) (Ei

burial).

This total energy is then compared to the average total 
energy of the decoy set <ET,U

i,j>, which can be generated by 
randomizing the identities of the interacting amino acids 
(i) and (j), while keeping all other interaction parameters at 
their native values.46 From these two values, the mutational 
frustration index (Fm

ij) can be calculated as shown in equation 3:

	 (3)

when the decoy set is generated by changing not only 
the residue identities but also their positions in space, the 
“configurational frustration” (Fc

ij) is calculated to describe 
the interaction energies of the same pairs of residues when 
they interact in a non-native ensemble of structures. While 
the mutational frustration index can be computed using only 
the coordinates of the folded native backbone configuration, 
computing the configurational frustration depends on 
generating non-native decoy configurations, such as those 
available in long molecular dynamics simulations.

The local frustration indexes (mutational and 
configurational) are represented as the Z-score of the free 
energy of parts of the native structure compared to the 
distribution of the energy of rearranged decoys.37 If the 
energy of a native pair of interacting residues (i and j) falls 
at the most favorable end of the distribution, the interaction 
(contact) is considered minimally frustrated. Conversely, 
regions where permutation would lower the free energy of 
the system are labeled as having highly frustrated contacts 
(Figure 1), indicating that the original pair of residues (i and 
j) make contacts in the high-energy end of the distribution.37 
The localized frustration may result in direct frustrated 
contacts, which refer to interactions between amino acid 
residues that are close to each other in the protein structure, 
or water-mediated frustrated contacts, which account for 
interactions between amino acid residues that are not in direct 
contact but interact through one or more water molecules. 

The Frustratometer webserver10 computes these 
frustration indexes from the Protein Data Bank (PDB) 
structure and enables users to download the results as a 
PyMOL48 session, which displays highly frustrated contacts 
between residues as red-solid lines, while minimally 
frustrated contacts are represented by green-solid lines. 
Furthermore, water-mediated highly frustrated contacts are 
depicted as dashed lines, following the same color scheme 
(highly frustrated: red, minimally frustrated: green), within 
the PyMOL session (Figure 1).

Residues involved in interactions with an average 
Z-score (indicative of neutral frustration) are excluded 
from the PyMOL session to enhance clarity. Additionally, 
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users have the option to visualize the results through three 
plots: a map displaying frustrated contacts for residues i 
and j, the counting of frustrated residues within a 5 Å radius 
of residue i, and the density (%) of frustrated residues 
within a 5 Å radius of residue i. In all plots, residues with 
neutral frustration are depicted in gray, but the user cannot 
distinguish between direct and water-mediated frustrated 
contacts in the plots (Figure 1).

In 2019, Chen et al.49 introduced an all-atom model for 
computing localized protein frustration using the Rosetta 
energy function. For a matter of consistency, two types 
of Rosetta-based frustration indices were calculated: the 
atomistic “mutational-frustration”, and the atomistic 
“configurational-frustration”. The authors acknowledge 
that one of the biggest challenges of all-atoms descriptions 
is to build the ensemble of non-native conformations in a 

Figure 1. TbPTR1 (PDB ID 4CLR)47 localized frustration, calculated by the Frustratometer webserver,10 is depicted on the left side for configurational 
frustration and on the right side for mutational frustration. (a,b) Density of frustrated residues (direct and water-mediated) within a 5 Å sphere radius. The 
localized frustration on the protein structure is highlighted by red dashed lines connecting residues engaged in highly frustrated water-mediated contacts (c,d) 
frustrated direct contacts, as solid red lines (e,f). The protein is presented in the cartoon, with the cofactor (nicotinamide adenine dinucleotide phosphate 
(NADPH)) and the substrate (biopterin) displayed in sticks. Frustration levels are represented as follows: minimally frustrated contacts in green, and highly 
frustrated contacts in red. Minimally frustrated contacts (green) are omitted in (c), (d), (e) and (f).



The Interplay between Protein Frustration and Hotspot Formation Froes and Castilho

5 of 21J. Braz. Chem. Soc. 2024, 35, 10, e-20240168

reasonable amount of time, as the results reported in their 
paper took hundreds of core hours (see the supplementary 
material of Chen et al.).49

A compar i son  be tween  the  a tomis t ic  and 
AWSEM‑frustratometer results shows a poor correlation, 
but some general trends are observed: (i) both methods 
agree that the vast majority of interactions have minimal 
frustration; (ii) there is a set of non-neutral residues 
identified by both methods; (iii) however, there is a 
significant amount of non-neutral frustrated residues 
identified only by one method or the other. Chen et al.49 
ascribe this discrepancy to different sets of parameters 
and cutoff values employed in each force field, without 
specifying which parameter or cutoff has the largest impact 
on the results. Similarly, the authors acknowledge that the 
results from both methods were not expected to match, 
without further justifying why. Rosetta-atomistic frustration 
indices are better suited for predicting sequence mutations 
that could improve the folding of a highly frustrated protein. 
On the other hand, the coarse-grained version available 
through the Frustratometer webserver remains the most 
adequate and cost-effective method to assess localized 
frustration in potential therapeutic targets. Alternatively, 
users can utilize an R package,50 which also employs the 
coarse-grained version, to compare and contrast localized 
frustration in large protein datasets.

The original AWSEM forcefield accounts for local 
electrostatic interactions with the solvent but ignores long-
range electrostatic interactions.51 However, electrostatic 
interactions play an important role in the recognition 
between the protein and its ligand,45,52 as the electrostatic 
interactions can introduce conformational changes when 
the partners come into close proximity. For that reason, 
Tsai  et al.51 added Debye-Huckel terms that describe 
long‑range electrostatic interactions, into the AWSEM 
package.53 Whether considering, or not, these long-range 
interactions improve the relationship between frustration 
and hotspot prediction will be addressed in the last  
part of “4.1. Hotspot glimpses into frustrated proteins” 
sub-section.

3. Hotspots on Proteins and their Importance 
to Drug Design

In the past couple of decades, drug development 
has predominantly focused on target-based approaches, 
relying primarily on in vitro assays.54,55 According to this 
paradigm, macromolecules that play a crucial role in 
physiopathological processes and are considered druggable 
become suitable targets for drug development.56 Therefore, 
identifying and characterizing the ligand’s binding site 

are recognized as crucial steps for the success of drug 
development campaigns. The identification of binding sites 
can be accomplished through either experimental means57 
or computational strategies. Various in silico methods are 
available to identify cavities or pockets where molecules 
may bind, utilizing geometric and/or energetic criteria 
(Table 1).

Typically, binding sites are situated in non-exposed, 
hydrophobic cavities that harbor regions, termed hotspots, 
that have a disproportional contribution to the ligand’s 
binding energy with the macromolecule. The meaning 
of “hotspot” can vary across research fields.64-66 In the 
context of protein science, hotspots refer to residues whose 
mutation to alanine alters the ligand’s binding energy by 
at least 2 kcal mol–1.67 Identifying hotspots traditionally 
involves generating numerous single-point mutant proteins, 
purifying them, and assessing the mutation’s impact on the 
binding energy. Mutagenesis studies cannot distinguish 
between residues critical for protein folding and those 
relevant for ligand binding,67 which are the main interest 
of medicinal chemists.

For drug design purposes, it is noteworthy that hotspots 
coincide with sites where various organic solvent molecules 
bind,68,69 even though the biophysical explanations for 
this phenomenon are not fully understood.70 Despite 
experimental solvent-mapping provides unique insights 
into ligand binding by considering protein conformational 
flexibility,71 it is not feasible for many proteins due to the 
harsh experimental conditions required (e.g., soaking 
the protein crystal in a dimethyl sulfoxide (DMSO) 50% 
solution for several hours). In response to these challenges, 
several in silico tools have been developed to predict 
hotspot locations on protein-protein interfaces, including 
DrugScorePPI,72 ISIS,73 PIIMS web server,74 ECMIS,75 
WaterMap76 and mixed solvent molecular dynamics.77 
Unless the solvation penalty is considered, in silico 
prediction of hotspots yields several false positives, along 
with the experimentally validated true positives.55,56 FTMap 

Table 1. Software employed to binding site (hotspot) prediction

Name Prediction criteria Reference

CASTp geometric 58,59

Pocketfinder geometric 60

Q-SiteFinder energetic 61

ConCavity evolution (homology) 62

SiteMap energetic 63

Ftsite (FTMap) solvent mapping 12,13

Ligsite (fragment 
hotspot map)

atomic propensity 
weighted by buriedness

15
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addresses this limitation by incorporating a desolvation 
energy term based on a continuum electrostatics model.57,64 
In essence, FTMap’s energy potentials encompass van der 
Waals forces, electrostatics, a cavity term (to depict the 
contribution of hydrophobic enclosure), and a statistical 
pairwise potential (to represent other solvation effects). 
The latter two terms offer a simplified description of how 
the protein environment influences solvation. As a result, 
the FTMap server replicates the results obtained with 
experimental protein solvent mapping78 by minimizing and 
clustering molecular probes (16 different organic solvents) 
on the protein surface. The probes typically gather around 
crevices and/or pockets (e.g., binding sites), and when their 
clusters overlap, they create ‘consensus’ sites (CSs), where 
multiple solvent molecules are likely to bind. Among them, 
those with at least 16 probes clusters are designated as 
hotspots79 (Figure 2). The results from solvent mapping can 
be downloaded as a PyMOL session or as a PDB file, which 
includes the consensus sites along with the coordinates of 
the query protein.

The default parameters of FTMap exclude all water 
molecules and ligands present in the query. As a result, 
pockets where cofactors and prosthetic groups bind are 
likely to accumulate most of the consensus sites. If the user 
wishes to prevent this situation, a mask should be generated 
using the coordinates of the pocket to be excluded from 
mapping.

Based on the position, size, and distance of these 
consensus sites found in the protein crevices, the sites can 
be categorized by the hotspots they display as: druggable by 
drug-like compounds (D), not druggable due to the absence 
of hotspots (N), druggable only by a large chemotype 
(e.g., foldamer) (DL), druggable only by macrocycles, 
peptide mimetics, and charged compounds  (Ds), 
borderline druggable (micromolar affinity) only by a large 
chemotype  (BL) and borderline druggable (micromolar 
affinity) only by macrocycles, peptide mimetics, and 
charged compounds (Bs).80 The accurate classification 
of the target using this approach relies on selecting the 
appropriate consensus sites, as different combinations 

Figure 2. Solvent mapping of TbPTR1 (PDB ID 4CLR).47 (a) Consensus sites identified by FTMap when the cofactor binding site is occupied (protein 
mask = NADPH coordinates) and (b,c) hotspots calculated with the DRUGpy plugin using the output of FTMap (center: druggable (D and DS); right: 
borderline-druggable (B and BS)). The protein is depicted in cartoon, the molecular probe clusters are shown in sticks and ranked according to the number of 
probes in each cluster, and hotspots are shown as a mesh (red for D and DS, orange for B and BS); (d) heatmap showing the fractional overlap of druggable 
hotspots, ranging from zero (no overlap: light yellow) to 1.0 (complete overlap: dark blue).
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of CSs yield the various types of hotspots employed to 
classify the targets druggability. Consequently, this task 
is biased by the experience of the medicinal chemist. To 
overcome this limitation, Teixeira et al.81 devised a PyMOL 
plugin that automates the process and offers insights into 
the overlap among hotspots classified as D, Ds, B, and Bs, 
as well as between any of those hotspots and the ligand 
(Figure 2). First, the DRUGpy algorithm identifies all 
subsets of up to 3 CSs (default parameter) and calculates 
the center‑to‑center inter-distances, the maximum distance 
among the CSs, and the strength of the main CS, measured 
by the number of probe clusters in CS0, to assess if 
the ensemble of CSs forms a druggable (D or Ds) or a 
borderline-druggable (B or Bs) hotspot. Second, hotspots 
belonging to the druggable classes (D and Ds) are displayed 
as red meshes, while borderline‑druggable (B and Bs) are 
depicted as orange meshes. Each hotspot is considered an 
object in PyMOL, allowing their superposition with each 
other or to another object (e.g., a ligand) to be calculated 
as a fractional overlap, ranging from zero (no overlap) 
to one (total superposition) (Figure 2d). The information 
provided by this plugin played a crucial role in bringing 
attention to underexplored features of the dihydroorotate 
dehydrogenase (DHODH) binding site,82 as well as 
illuminating the optimal pathway to enhance the efficiency 
of ligands for a series of β-secretase enzyme 1 (BACE-1) 
inhibitors.83 

The hotspots calculated with DRUGpy rely on solvent 
mapping carried out with FTMap, which considers the 
static information contained in the PDB structure used as 
the query. Thus, mapping an unliganded protein structure 
or a liganded one will provide different results. Accounting 
for side-chain flexibility does not significantly impact the 
solvent mapping result.84 Consequently, PDB structures 
with minor shifts in their side chains generally provide 
similar hotspots. The results are not identical because minor 
modifications in the CSs’ center-to-center and maximal 
distances may affect hotspot classification. One must be 
aware that even without a change in hotspot classification, 
its features (total number of probes, CSs center-to-center 
distance, maximal distance among CSs) might have 
slight changes, similar to those observed for side-chain 
movement.84 

It has been shown that overall protein conformational 
flexibility must be considered for improved identification of 
binding sites, especially cryptic and allosteric ones, using 
the solvent mapping approach,85 as CS location and strength 
change from one conformation to another. Unfortunately, 
there is no in-depth analysis of how protein conformation 
flexibility affects hotspot classification, requiring users to 
consider each case individually.

It is worth mentioning that FTMap provides a list 
of hydrogen-bonded and nonbonded contacts between 
the residues and the probes which can hint at crucial 
molecular interaction within the binding site.86 However, 
the output of this server provides no information on the 
type of interactions (hydrophobic, H-donor or H-acceptor) 
that are responsible for maintaining a fragment-sized 
molecule inside the hotspot. Kozakova et al.87 have 
demonstrated that the overlap of fragments with the main 
hot spot (largest probe cluster), quantified as the fractional 
overlap (FO), indicates whether the fragment binding mode 
is conserved upon fragment-to-lead development. Their 
assertion is based on the understanding that a significant 
portion of the protein-ligand binding free energy arises 
from interactions within the main hot spot. According to 
these authors, a fragment with an FO greater than 0.8 is 
expected to maintain its binding profile when its molecular 
weight is increased, as long as its pharmacophore groups 
are not modified. They note, however, that this condition 
is not necessary for retaining the binding mode, as there 
are cases where a fragment’s binding profile is conserved 
even when the FO is below the specified threshold. For 
example, this may occur when the fragment exhibits high 
FO values to secondary, but still strong, consensus sites 
(i.e., > 13 probe clusters). 

The lack of information regarding the molecular 
interaction responsible for preserving the fragment 
orientation within the hotspot is, to some extent, explained 
by the simplistic potentials employed for calculating their 
binding energy to the protein within a reasonable timeframe. 
According to Radoux et al.,15 the Fragment Hotspot Map 
server14 addresses this issue. Hence, the fundamentals of 
hotspot prediction with this server are summarized below: 
initially, atomic propensities, derived from a library of 
intermolecular interactions called Isostar, are extracted to 
indicate how many times more likely than random it is for 
an atomic probe (aromatic CH (hydrophobic), uncharged 
NH (donor), and carbonyl oxygen (acceptor)) to be located 
at a grid point on the protein surface, based on data from 
the Cambridge Structural Database.88 Among the sampled 
grid points, those situated in cavities of the protein, as 
identified by the LIGSITE15,89 algorithm, are also assigned 
a buriedness score ranging from zero (completely solvent-
exposed) to seven (completely buried), and those scoring 
at least five are retained. To highlight the location of the 
hotspots, the remaining grid points are sampled with 
molecular probes (toluene, aniline, and phenol), to exclude 
false positives (i.e., fake binding sites), and weighted by 
their buriedness score (Figure 3).

The output of the Fragment Hotspot Maps server, in 
the form of a PyMOL session containing a grid file, can 
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be examined at various contour levels, which lack specific 
physical meanings; instead, they indicate how closely a 
given interaction (hydrophobic, H-donor, or H-acceptor) 
mimics hotspot-yielding environment. A contour of 
0  displays every grid point that has been sampled by 
the molecular probes, maps with contour levels of at 
least 10 highlight the protein’s binding sites, while those 
with levels of at least 14 correspond to hotspots. Maps 
with contour levels higher than 17 emphasize molecular 
interactions that anchor the fragment in its position, 
within a strong hotspot. Consequently, a high-scoring 
polar interaction (e.g., H-donor, or H-acceptor maps 
scoring > 17) is anticipated to be situated in a deeply buried 
and hydrophobic environment.

4. Where Do the Hotspots Come From?

As demonstrated in the preceding section, hotspots 
arise from the protein environment surrounding them, 
characterized by features such as a concave topology and 
a mixed composition of hydrophobic and polar groups, 
described as a “mosaic-like” pattern by Kozakov et al.12 

These structural characteristics favor the binding of 
small molecules, including solvents and fragments. It has 
been emphasized that upon binding, fragments displace 
constrained water molecules,90 including those unhappy 
waters situated in hydration sites with a positive ∆G (Gibbs 
free energy) compared to bulk water,76 or those involved in 
strong polar interactions with the protein. The latter situation 
is only feasible if the ligand can replace a geometrically 
strained water-protein hydrogen bond, resulting in a 
significant entropy gain with minimal enthalpy loss. This 
water-centric hypothesis is one of the putative underlying 
reasons for the existence of hotspots. While there is not 
yet direct evidence for an alternative frustration-centric 
hypothesis, this section will build upon previous works 
that have already utilized either protein hotspots or their 
frustration to demonstrate how the complementary analysis 
provided by the other approach can lead to similar outcomes 
and conclusions. Although a validation study is beyond the 
scope of this review, we believe the reader will be convinced 
of the compelling evidence connecting frustration and 
hotspots in proteins.

Figure 3. Hotspots of TbPTR1 (PDB ID: 4CLR)47 according to Fragment Hotspot Maps. (a) The calculation of atomic propensities was carried out with 
no ligand or water molecules in the input file; (b) the molecule of NADPH was considered for the calculation of atomic propensities. The hydrophobic 
map is depicted in yellow, H-bond donor in blue and H-bond acceptor in red. All maps are contoured at level 17. Residues surrounding (5 Å radius) the 
probe propensity maps are highlighted in the insets. CSX refers to a modified cysteine residue.
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4.1. Hotspot glimpses into frustrated proteins

Evolutionary constraints, which prioritize function, 
often come into conflict with those optimizing folding, 
resulting in local protein frustration.37,91 To gain experimental 
insights linking frustration to the folding pathway and 
protein function, Di Silvio et al.92 analyzed proteins 
with a common structural signature composed of 5 or 6 
β-strands and 2 or 3 α-helices,93 known as the PDZ domain, 
named after the proteins in which it was first observed,94 
focusing on those with two experimentally accessible 
sequential transition states (TS1 and TS2).95 The first state 
is exemplified by protein tyrosine phosphatase‑bas-like 
(PDZ2, PDB  ID  1GM1),96 with its active site located 
between helix a2 and strand b2. An insertion of five 
residues (VLFDK) at the beginning of the b2-b3 loop 
mimics the second state (PDZ2a, PDB ID 1OZI),97 which 
lacks catalytic activity.97 Comparing the frustration patterns 
between these two structures (native versus denatured‑like) 
and the complexed PDZ2 structure (PDB ID 1VJ6)98 
(Figure 4) reveals an increased number of highly frustrated 
water-mediated contacts near the VLFDK-loop. In contrast, 
the frustration in the complex and free PDZ2 conformations 
is quite similar. Instead of attributing the lack of activity in 
PDZ2a to the increased frustration around this region, the 
authors of the original paper emphasize that the frustration 
patterns in the native and denatured-like conformations 
differ and they exploit kinetic data from 13 PDZ2a 
mutants (including the one that produced the 1OZI X-ray 
structure) to argue that differences in the early stages of 
folding explain why TS2 cannot adopt the correct (active) 
conformation.

Aiming to shed additional light on why the insertion 
of the VLFDK loop renders the protein inactive, we took a 

different approach, focusing on the mutational frustration 
within the binding site of denatured-like (PDB ID 1OZI) 
and native-like (PDB ID 1GM1) conformations, along 
with the position and shape of hotspots within them, as 
calculated with DRUGpy. 

From a structural perspective, the additional loop 
impacts the orientation of the α2 helix and reduces the 
pocket’s flexibility to accommodate ligands.97 From 
the hotspots’ perspective, the native-like conformation 
(PDB ID 1OZI) has a druggable hotspot in the active site. 
Its size, represented by the maximal distance (MD) among 
the CSs, decreases in the denatured-like conformation 
(PDB ID 1GM1 D1, MD = 10.3 Å versus PDB ID 1OZI D1, 
MD  =  9.7 Å), being classified as “Ds” for “druggable 
small”. The frustration pattern around this hotspot (within 
a 5 Å radius) shows that highly frustrated contacts in 
both native- and denatured-like structures are largely the 
same. While this result is disappointing, it illustrates that 
combining data from Frustratometer and FTMap does not 
always yield positive results. 

One might argue that the shape of the main hotspot (D1) 
could explain why the denatured-like conformation lacks 
activity. To test this hypothesis, one would need to analyze 
hotspots in several proteins with the PDZ domain and 
compare their biological activities, what is beyond the 
scope of our work. A simpler approach involves using 
the FTMove server99 to survey proteins with at least 90% 
sequence identity to a query that has the PDZ domain (e.g., 
1GM1), and then conducting hotspot analysis on these 
proteins. This approach may miss some proteins with the 
PDZ domain but minimizes confounding effects due to 
sequence dissimilarities affecting hotspot location and size. 
Using this conservative approach, we identified 8 additional 
unique PDBs that have the PDZ domain (Table 2). 

Figure 4. Frustration pattern and hotspot analysis of PDZ2as (PDB ID: 1OZI) and PDZ2 in free (PDB ID 1GM1) and complexed (PDB ID 1VJ6) forms. 
Mutational frustration of the protein was computed using the Frustratometer 2.0 server,10 and hotspot analysis was performed with the DRUGpy plugin,16 
utilizing the output from the FTMap server.11-13 The protein structure is represented in cartoon form, with helix α2 colored in density-blue and strand β2 
in raspberry. The VLFDK is highlighted in purple, and the ligand of PDZ2 is presented in a green ribbon, while the druggable hotspots are depicted as 
red meshes. Water-mediated frustrated contacts are indicated by dashed red lines, while residues within 5 Å from the main hotspot (D1), making water-
mediated frustrated contacts, are shown as sticks.
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Clustering these structures with the three already discussed 
above, using their CSs as descriptors (Figure 5) shows that 
the denatured-like conformation (PDB ID 1OZI) clusters 
with the PDZ2 domain from human phosphatase HPTP1E 
(PDB ID 3PDZ), the cis-form of a photo-switchable 
PDZ domain crosslinked with an azobenzene derivative  
(PDB  ID 2M0Z), the second PDZ domain from 
human PTP1E in complex with RA-GEF2 peptide 
(PDB ID 3LNY), and the second PDZ domain from human 
PTP1E (PDB  ID  3LNX). The native-like conformation 
(PDB ID 1GM1) clusters with the PDZ2 domain from 
human phosphatase HPTP1E complexed with a peptide 
(PDB ID 1D5G), the apo form of a PDZ2 domain from 
hPTP1E (PDB ID 7QCX), the PDZ2 domain from hPTP1E 
complexed with the RA-GEF2 peptide (PDB ID 7QCY), the 
trans-form of a photo-switchable PDZ domain crosslinked 
with an azobenzene derivative (PDB ID 2M10), and PDZ2 
from PTP-BL in complex with the C-terminal ligand from 
the APC protein (PDB ID 1VJ6). According to this analysis, 
PDBs in the denatured-like cluster have more similar CSs 
to each other than to those in the native-like cluster. If this 
similarity analysis is extended to the hotspots calculated 
from the CSs, proteins in the denatured-like cluster would 
be expected to have Ds hotspots in the pocket between 
helix α2 and strand β2, whereas proteins in the native-like 
cluster should have D hotspots in the equivalent pocket.

While all proteins within the denatured-like cluster, 
except the second PDZ domain from human PTP1E in 
complex with RA-GEF2 peptide (PDB ID 3LNY), have the 
expected Ds hotspots, the second PDZ domain from human 
PTP1E (PDB ID 3LNX) and the PDZ2 domain from human 
phosphatase HPTP1E (PDB ID 3PDZ) also have druggable 

hotspots at that location (Figure 5). This finding invalidates 
the initial hypothesis and highlights the need for further 
studies to understand when protein frustration and hotspot 
analysis will provide complementary insights, or not.

The catalytic activity of enzymes depends on the 
spatial orientation of residues involved in catalysis, even 
if they conflict with the overall fold.46 To investigate how 
these conflicts impact the biological function of enzymes, 
Freiberger et al.105 calculated the local frustration patterns 
for all protein enzymes from the Catalytic Site Atlas.106 
They observed that highly frustrated interactions follow the 
same pattern as the ones found in the binding or allosteric 
sites of globular proteins.37,39,107 The density of minimally 
frustrated contacts around the catalytic residues, up to 
3.5 Å, is below the overall density observed elsewhere 
in the enzymes, while the density of highly frustrated 
interactions is above average, regardless of the catalytic 
residue burial, or the catalytic mechanism involved. The 
primary contributor to this observation seems to be the 
identity of the residues surrounding the catalytic sites, as 
captured in the mutational frustration index, rather than 
their conformational state (configurational frustration).31,108 
Consequently, we incorporated a comparison of hotspots 
into the characterization of protein frustration in pairs of 
enzymes sharing the same fold (CATH classification),109 
but catalyzing different reactions, which has already been 
conducted by Freiberger et al.105 (Figure 6).

Accordingly, both cyclomaltodextrin glucanotransferase 
(PDB ID 1CDG)110 and glucan 1,4-α-maltohydrolase 
(PDB ID 1QHO)111 exhibit a TIM barrel fold and possess 
the catalytic residues D-D-E-H. As inferred from the 
analysis conducted by Freiberger et al.,105 the examination 

Table 2. X-ray structures sharing at least 90% sequence identity to 1GM1, identified with FTMove,99 which had their in silico solvent mapping assessed 
and hotspots calculated within DRUGpy. PDB IDs are shaded according to the hierarchical cluster analysis shown in Figure 5

PDB ID UNIPROT Number of CSs (CS0)a Main hotspots classb Reference

1D5G Q12923 10 (17) D and Ds 100

1GM1 Q64512 09 (19) D and Ds 96

1OZI Q64512 11 (21) Ds 97

1VJ6c Q64512 07 (21) Ds 98

2M0Z Q12923 10 (22) Ds 101

2M10 Q12923 10 (18) D and Ds 101

3LNX Q12923 09 (25) D and Ds 102

3LNY Q12923 09 (15) B and Bs 102

3PDZ Q12923 10 (21) D and Ds 103

7QCX Q12923 09 (18) Bs 104

7QCY Q12923 09 (26) D and Bs 104
aNumber of consensus sites (CSs) calculated with FTMap and the strength of the main CS (CS0), measured by the number of probe clusters; bwhen more 
than one hotspot class is predicted in the active site, pocket located between helix α2 and strand β2, only the first one, highlighted in bold, is considered, 
since the other class can be viewed as a subset of the first; cthe ligand of 1VJ6 was ignored during the solvent mapping in FTMove, thus the result shown 
here is different from the one depicted in Figure 4.
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of frustrated contacts (mutational frustration) within a 
5 Å radius from the main hotspots in 1CDG (druggable) 
and 1QHO (borderline-druggable) reveals a substantial 
proportion of residues making direct frustrated interactions 
in both enzymes: 1QHO has 16 out of 43 residues (37.2%) 
involved in frustrated molecular interactions, while 1CDG 
has 14 out of 39 residues (36%).

Moreover, the residues participating in frustrated 
interactions in both structures (1QHO: N13, F21, W101, 
D127, D190, R226, Y230, H233, D256, W258, F259; 
1CDG: W101, A137, F183, R227, D229, A230, K232, 
P235, D257, D328) display similar features in equivalent 
positions. This result can be explained by the fact that the 
druggable hotspot from 1CDG partially overlaps with 
the borderline-druggable hotspot from 1QHO, whose 
classification changed due to a reduced number of probe 
clusters in the main CS (CS0). Besides the difference in 
hotspot strength, there is no clear distinction between 
them that would explain the preference for one enzyme’s 
substrate over the other.

The lack of distinction between the hotspot features 
is expected since FTMap was not designed to identify the 
specific interactions responsible for the existence of the 

hotspot or for locking a ligand into a specific orientation 
within the binding site. As this type of information 
can be obtained through the Fragment Hotspot Map 
server (FHM),14,15 comparing the predicted hotspots from 
this server might provide insights into the connection 
between the interactions underlying the hotspot and the 
localized frustration around the catalytic cleft. In contrast 
to FTMap, FHM predicts three hotspots in each structure, 
one of them located in the catalytic pocket, and one of 
them coincides with the location of a borderline-druggable 
hotspot in both enzymes (Figure S1, Supplementary 
Information section), hydrophobic interactions (indicated 
by the yellow surface contoured at a 17 level) are present in 
the same region as the druggable hotspot in 1CDG. On the 
other hand, only a small polar surface (acceptor) is found 
in the equivalent position in 1QHO. 

The imidazole glycerol phosphate synthase subunit 
HisF (PDB ID 2A0N)112 and the thiamine-phosphate 
diphosphorylase (PDB ID 2TPS)113 share the same fold, 
with their catalytic sites located in the same region of the 
protein. However, the percentage of water-mediated highly 
frustrated residues around the hotspots (within a 4 Å radius) 
found in the pocket containing the catalytic residues of each 

Figure 5. Hotspot analysis of representative X-ray structures sharing the PDZ domain, clustered according to their CSs using the FTMove server.  
(Left) The main hotspot from representative X-ray structures belonging to the same cluster as the denatured-like conformation (PDB ID 1OZI); (center) heatmap 
calculated by the FTMove server, colored according to the number of probe clusters in each CS, showing how the X-ray structures with the PDZ domain 
can be clustered into two families (as depicted in the dendrogram) based on their CSs. The CS number is represented on the right-hand side of the heatmap, 
while the number of probe clusters is on the left-hand side; (right) the main hotspot from representative X-ray structures belonging to the same cluster as the 
native-like conformation (PDB ID 1GM1). The protein structure is represented in cartoon, with helix α2 colored in density-blue and strand β2 in raspberry.
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enzyme differs significantly: 8 out of 36 residues (23.5%) 
for the imidazole glycerol phosphate synthase subunit 
HisF, compared to 6 out of 15 residues (40%) for thiamine-
phosphate diphosphorylase (Figure S2, Supplementary 
Information section). Another distinction is that according 
to the results provided by DRUGpy, the imidazole glycerol 
phosphate synthase subunit HisF is classified as a druggable 
target, whereas thiamine-phosphate diphosphorylase 
exhibits only borderline-druggable hotspots within the 
active site. A secondary borderline-druggable hotspot is 
predicted in this structure, close to the protein N-terminal 
portion, but no highly frustrated residues around this 
putative pocket is found. Moreover, the FHM server 
suggests this region does not have hotspots, probably due to 
its high solvent exposure. Taken together, these data suggest 
the secondary hotspot should not be considered for drug 
development purposes. Last but not least, the analysis of the 
propensity maps calculated with FHM suggests that polar 
interactions play a much more significant role in the hotspot 
of the imidazole glycerol phosphate synthase subunit HisF 

than in thiamine-phosphate diphosphorylase, as predicted 
by their hydrophobic surfaces contoured at level 14. This 
type of information is instrumental in understanding which 
modifications should be made in putative inhibitors of each 
enzyme to improve their affinity.

As highlighted earlier, globular proteins typically 
display a low degree of frustration in their tertiary structure, 
with a significant portion of highly frustrated residues 
and hotspots predominantly located in their orthosteric 
binding site. Nonetheless, it has been demonstrated that 
specific regions within many proteins, including binding 
interfaces, continually sample varied conformations.114,115 
The ability to explore these new conformational states has 
proven crucial for their interaction with different partners.116 
An analysis of local frustration in protein complexes, 
where the formation is accompanied by a transition from 
disordered to ordered forms upon binding,18 indicates 
lower local frustration in the final complexes compared to 
the unliganded disordered forms of the proteins, although 
frustration is not always eliminated. These findings suggest 

Figure 6. Protein frustration and hotspot analysis for a pair of proteins sharing the same fold (PDB IDs 1CDG and 1QHO) that catalyze different biochemical 
reactions. (a) Contact map of frustrated residues: green - minimally frustrated, red - highly frustrated. The upper left quadrant depicts the data for 1CDG, 
while the lower right quadrant shows the data for 1QHO. Residues from the catalytic cleft surrounding the main hotspot are boxed; (b) water-mediated 
frustrated interactions (dashed red lines) and the main hotspot (druggable shown in red mesh) for 1CDG; (c) zoomed view of frustrated residues (sticks) 
within 5 Å from the main hotspots in 1CDG; (d) propensity maps calculated with the FHM server for hydrophobic (yellow), donor (blue), and acceptor (red) 
interactions, contoured at level 17, for the 1CDG active site; (e) water-mediated frustrated interactions (dashed red lines) and the main hotspot (borderline-
druggable shown in orange mesh) for 1QHO; (f) zoomed view of frustrated residues (sticks) within 5 Å from the main hotspots in 1QHO; (g) propensity 
maps calculated with the FHM server for hydrophobic (yellow), donor (blue), and acceptor (red) interactions, contoured at level 14 (transparent color) 
and 17 (solid color), for the 1QHO active site.
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that binding-induced folding often results in suboptimal 
interactions at the binding interface and in the structured 
part of the protein.

Freiberg et al.18 demonstrated the differential binding 
of fuzzy regions in the translation initiation factor 2 
subunit gamma (eIF2g) through the analysis of protein 
structures 3CW2117 and 3I1F.118 As reported in their work, 
the crystallographic conformation of the fuzzy region 
(residues 39-47) is stabilized by intramolecular interactions 
between Glu39-Thr46 and Glu40-Gly44. In contrast, the 
3I1F structure shows stabilization due to charge-charge 
interactions between Glu39 and Arg43. Additionally, the 
Gly44 main chain in the latter forms a hydrogen bond with 
a Lys42 side-chain, while in the 3CW2 structure, Lys42 
interacts with Asp283 of the structured domain. These 
distinct interaction profiles reflect different strategies for 
addressing localized frustration in each eIF2g conformation 
(Figure 7). DRUGpy-calculated hotspots indicate that 
both conformations only exhibit borderline-druggable 
hotspots. However, the shape and location of the hotspots 
are specific to each conformation. In 3CW2, all predicted 
hotspots are within 4 Å of the fuzzy region. Conversely, the 
dissimilar conformation of this region in 3I1F makes the 

cavity smaller than in 3CW2. As a consequence, hotspots 
are distributed between the fuzzy region and another pocket 
on the opposite side of the protein surface. The authors also 
discussed an example of fuzzy binding involving mitogen-
activated protein kinase 10, based on the PDB structures 
3V6R119 and 4H3B.120 Neither DRUGpy nor the FHM 
server predicts hotspots within 5 Å of that region. However, 
the raw output of FTMap indicates a consensus site with 
10 probes near the fuzzy region (residues 369-382), and 
FHM server identifies the same region as a putative binding 
site (propensity maps with level > 10) (data not shown). 
The absence of hotspots in this region is not unexpected, 
given its location in a solvent-exposed and convex area. 

Through the analysis of frustration in proteins 
capable of adopting numerous conformational states, 
commonly referred to as “intrinsically disordered” 
(IDP), Gianni et al.116 proposed a unified model that links 
the frustration concept, accounting for conformational 
variations in proteins, with fuzziness, capturing the 
functional heterogeneity within protein interactions,121 to 
elucidate how proteins exploit these features for fine-tuned, 
context-dependent regulation through binding to different 
partners. They conclude that frustration and fuzziness 

Figure 7. Hotspot analysis of frustrated fuzzy regions in the translation initiation factor 2 subunit gamma (eIF2g) (PDB IDs 3CW2 (a,c) and 3I1F (b,d)). 
(a,b) Density of neutral (gray), highly (red), and minimally (green) frustrated residues, as calculated by the mutational frustration index within the 
Frustratometer webserver.10 The plot insets highlight the different patterns of frustration in the fuzzy region (residues E39-I47) for each crystallographic 
structure; (c,d) borderline-druggable (B) hotspots (orange) predicted with DRUGpy, within a 5 Å radius from the fuzzy region in eIF2g structures (colored 
in red). A secondary cluster of B hotspots is predicted to exist on the opposite face of 3I1F (light orange).



The Interplay between Protein Frustration and Hotspot FormationFroes and Castilho

14 of 21 J. Braz. Chem. Soc. 2024, 35, 10, e-20240168

emerge from common physical principles of the energy 
landscape, i.e., its ruggedness, and can be considered as 
two sides of the same coin. Since the binding heterogeneity 
first observed in IDPs is much more common than initially 
expected,122 it is important to make readers aware that 
“a fuzzy complex” exhibits structural heterogeneity that 
is maintained upon protein-protein interactions.123 This 
heterogeneity reflects the structural and dynamic continuum 
between the unliganded and liganded conformations, and a 
more comprehensive description of fuzziness and its impact 
on binding can be found in the works of Fuxreiter.121,124 
While fuzziness and hotspots may not exhibit the same 
feature, it is evident that the divergent conformations 
adopted by IDPs significantly influence the strength and 
localization of hotspots.

A  s i m i l a r  o b s e r v a t i o n  w a s  m a d e  f o r 
Pseudomonas  aeruginosa phosphomannomutase/
phosphoglucomutase (PMM/PGM), where the catalytic 
mechanism relies on the movement of its C-terminal 
domain.125 Although FTMap’s top 3 consensus sites are 
located in the active site for three out of four representative 
PMM/PGM structures investigated, additional hot spots at 
domain-domain interfaces and hinge regions were identified, 
depending on the conformation the protein adopts (open, 
half-open, and closed conformers). In that study, hot spots 
close to each other or partially overlapping were combined. 
Based on the findings reported for this PMM/PGM, the 
authors argue that computational solvent mapping proves 
to be a more sensitive approach for detecting changes 
in binding sites and interdomain crevices than a simple 
RMSD (root mean square deviation) comparison among 
the structures. While substantial differences between the hot 
spot structures were observed upon large conformational 

shifts, the impact of side-chain movements is minor and can 
be accounted for using FTflex,84 which employs a rotamer 
library to determine alternative conformations for residues 
within a 5 Å radius from the selected hotspot(s). The server 
automatically selects the set of rotamers that maximizes the 
number of probe clusters within each consensus site (CS), 
thus highlighting the “optimal” (maximally opened binding 
site) conformation for binding a ligand. 

Whenever there is an “induced fit” or “conformational 
selection”, electrostatic interactions play a role as interacting 
partners come into close proximity.126,127 Therefore, 
Tsai et al.51 investigated the role of electrostatic interactions 
in shaping both folding funnels and binding landscapes 
by introducing long-range electrostatic interactions 
(Debye‑Hückel terms) into the AWSEM package.51 Although 
no improvement was achieved in monomeric structure 
prediction, they demonstrated that the addition of long-
range electrostatics does influence the binding mechanism, 
especially when a charged partner is involved. In some cases, 
long-range electrostatic interactions provide charge-charge 
stabilization, while in others, they cause frustration in the 
landscape that negatively impacts protein dimer formation 
(protein-protein binding). Since the paper did not describe 
any protein-small molecule complexes, a comparison of 
protein frustration, considering or not the Debye-Hückel 
terms, and hotspot locations is presented for the selected 
proteins described herein (Figure 8).

The dataset considered here (Table 3) suggests there is 
no single frustration index (mutational or configurational) 
that consistently exhibits a strong correlation with hotspots 
in the proteins investigated here. For 2TPS and 2A0N, the 
percentage of frustrated residues surrounding the main 
hotspot is higher when mutational frustration is taken 

Figure 8. Percentage of highly frustrated residues (top 10%) within 5 Å of the main hotspot for unliganded PDZ2 (PDB ID 1GM1),  
PDZ2as (PDB ID 1OZI), cyclomaltodextrin glucanotransferase (PDB ID 1CDG), glucan 1,4-α-maltohydrolase (PDB ID 1QHO), imidazole glycerol 
phosphate synthase subunit HisF (PDB ID 2A0N), thiamine-phosphate diphosphorylase (PDB ID 2TPS) and the translation initiation factor 2 subunit gamma 
(eIF2g) (PDB IDs 3CW2 and 3I1F), and Renin (PDB Ids 2REN, 1RNE) in the presence or absence of long-range electrostatic interactions (mutational: 
left-hand side; configurational: right-hand side).
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into consideration, whereas for the second PDZ domain 
of PTP-BL (PDB ID 1GM1), the proportion of frustrated 
residues appears to be much larger when configurational 
frustration is considered. Despite this shortcoming, the 
results presented in Figure 8 suggest that incorporating 
long-range electrostatic terms into the frustration 
calculation shows similar (PDB IDs1QHO, 1GM1, and 
2REN)129 or improved (PDB IDs 2TPS, 1CDG, 1OZI, 
3CW2, and 1RNA)130 correlation for all proteins, except 
for the imidazole glycerol phosphate synthase subunit hisF 
(PDB ID 2A0N) when mutational frustration is considered.

In the case of a similar analysis carried out for 
configurational mutation, the inclusion of Debbie-Hückel 
terms yields comparable results for 2TPS, 1GM1, 1QHO, 
and 2REN, whereas 1OZI and 3CW2 have fewer frustrated 
residues than when these terms are not considered.

4.2. Uncharted frustration around hotspots in proteins

Brenke et al.78 reported the in silico solvent mapping 
study on Renin, a well-known drug target for controlling 
increased blood pressure. They mapped both the ligand‑free 
Renin structure (PDB ID 2REN) and the structures 
co-crystallized with aliskiren (PDB ID 2V0Z)131 or a 
peptidomimetic inhibitor (PDB ID 1RNE). According to 
their results, the strength of the main binding site (CS0) is 
highest for the apo structure (22 probe clusters), followed 
by the aliskiren-bound structure (18 probe clusters) and 
the peptide-bound structure (14 probe clusters). Using the 
current version of the FTMap server (accessed in December 

2023),11 with standard parameters, one finds a somewhat 
different order (Apo structure 25 probe clusters, peptide-
bound structure 21 probe clusters, and aliskiren-bound 
structure 19 probe clusters), although the locations of the 
binding sites remain largely unchanged. As the coordinates 
of the original consensus sites are not available, the ones 
calculated with the current version of the FTMap server 
were considered to calculate the number of frustrated 
residues around the main consensus site  (CS0), as well 
as the druggable hotspots in each of these structures. The 
peptidomimetic-bound structure displays a lower proportion 
of highly frustrated residues (mutational frustration) around 
both the druggable hotspots (8 out of 39, 20.5%) and the 
main consensus site (4 out of 17, 24%) than the unliganded 
structure (9 out of 35, 25.7% for the druggable hotspots, and 
2 out of 17, 12% for CS0) or the aliskiren-bound structure 
(12 out of 50, 24% for the druggable hotspots and 3 out of 
16, 19% for CS0) (Figure 9, upper panel).

According to Brenke et al.,78 the fact that the subsite 
where aliskiren, the first orally available drug targeting 
Renin,132 displays the third-largest consensus site (fourth-
largest probe cluster according to the solvent mapping 
carried out in December 2023), suggests this pocket exists 
before any ligand binds to it. The mutational frustration 
pattern around this subpocket changes with the presence of 
the ligand: in both cases analyzed, ligand binding decreases 
the number of residues engaged in frustrated interactions 
compared to the protein in the apo form (Figures 9g-9i). 
This example highlights the anticipated reduction in 
frustration (protein stabilization) due to ligand binding.

Furthermore, the authors highlight the largest, albeit 
biologically irrelevant, difference among the three 
structures, as revealed by FTMap, is a consensus site 
located between the S2 and S4 subsites that is present 
in both the apo-structure and the peptidomimetic-bound 
protein, but absent in the aliskiren-bound structure. The 
analysis of druggable hotspots suggests yet another 
difference: the number of consensus site combinations that 
yield druggable hotspots: 5 in the ligand-free Renin, 10 in 
the aliskiren-bound, and 16 in the peptidomimetic-bound 
structure (Figure S3, Supplementary Information section). 
This result indicates that upon ligand interaction, the 
binding site becomes even more druggable. This finding 
is in good agreement with the assertion that solvent 
mapping sheds light on subtle but crucial changes in the 
binding site.125 Last but not least, the druggable hotspot 
in the peptide-bound Renin structure does not entirely 
encompass the S3 subpocket. This suggests that while a 
strong consensus site (CS) is identified in this subpocket 
when analyzing the APO structure with FTMap, ligand 
binding results in a conformational selection that displays 

Table 3. Dataset of protein binding small molecules employed to compare 
protein frustration, considering or not the Debye-Hückel terms

PDB ID UNIPROT
Number of 
CSs (CS0)a

Main hotspots 
classb Reference

1GM1c Q64512 9 (19) D 96

1OZI Q64512 11 (21) Ds 97

1CDG P43379 11 (18) D 110

1QHO P19531 13 (15) B 111

2A0N Q9X0C6 9 (20) D 112

2TPS P39594 15 (17) D 113

3CW2c Q980A5 14 (15) B 117

3I1F Q980A5 12 (17 D 118

2RENc P00797 9 (21) D 128

1RNE P00797 9 (25) D 129
aNumber of consensus sites (CSs) calculated with FTMap and the strength 
of the main CS (CS0), measured by the number of probe clusters; bwhen 
overlapping hotspots from the same class were predicted in the active 
site, all of them were employed to calculate the 5 Å radius mentioned in 
Figure 8; cunliganded X-ray structures.
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a somewhat different distribution of CSs, particularly in 
the S3 subpocket.

Previously,  we conducted in si l ico  solvent 
mapping on representative structures of DHODH from 
Trypanosoma cruzi (TcDHODH) to capture the effect of 
conformational flexibility on hotspots.82 This enzyme is 
responsible for the oxidation of dihydroorotate (DHO) to 
orotate (ORO) and acts as a soluble fumarate reductase, 
playing a crucial role in the parasite’s de novo pyrimidine 
biosynthesis.133

The calculation of borderline-druggable and druggable 
hotspots suggests that when the catalytic loop (residues 
129-137) is closed, there are no hotspots within the 
active site, as observed in the representative structure 
(PDB ID 2E6A). In the partially open loop conformation, 
druggable hotspots form, as seen in the DHODH complex 
with W76 (PDB ID 3W76), which turn into borderline-
druggable if the loop adopts a wide-open conformation 
(PDB ID 3W72).82

The analysis of localized frustration in these three X-ray 
structures (Figure 10) reveals that overall water-mediated 
frustrated contacts are lowest in the DHODH-orotate 
complex (PDB ID 2E6A) and highest in the complex 
DHODH-W72 (PDB ID 3W72) (Figure 10, upper panel). 
The same trend is observed if only direct-frustrated contacts 
are considered (PDB ID 2E6A: 111 highly frustrated 
contacts, PDB ID 3W76: 168 highly frustrated contacts, and 
PDB ID 3W72: 179 highly frustrated contacts). Focusing 
on the catalytic loop, the number of residues making highly 
direct-frustrated contacts in the DHODH-orotate complex 
is twice the number found in the DHODH-W76 complex 
(4 versus 2 residues), which might explain the presence 
of druggable hotspots in that structure. The number of 
residues, in the catalytic loop, making highly frustrated 
direct contacts in the complex DHODH-W72 (PDB ID 
3W72) is equal to one observed in the DHODH‑orotate 
complex, possibly contributing to the “borderline-
druggable” classification of the hotspots in that structure.

Figure 9. Mutational frustration around druggable hotspots in Renin. (Upper panel) druggable hotspots (red mesh) predicted from the output of the FTMap 
server (accessed in December 2023)11 and the main consensus site (CS0 spheres) found in Renin (a) peptide-bound structure, (b) apo structure, (c) aliskiren-
bound structure; (middle panel) (d-f) zoomed view of residues within a 5 Å radius from CS0 (dark-blue) or the druggable hotspots (light-blue) making 
highly frustrated interactions (mutational frustration); (lower panel) mapping residues that make highly frustrated interactions within the S3 subpocket 
shows that ligand binding ((h) peptidomimetic inhibitor, (i) aliskiren) changes the mutational frustration pattern of the apo form (g) within this region.
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In our previous work,82 the mentioned hotspots were 
calculated after excluding the FMN binding site from the 
solvent mapping step. This restraint was not applied when 
using the FHM server, as evidenced by a hydrophobic 
yellow surface over FMN (see Figure 8 in Froes et al.).82 
When this region is excluded from the FHM analysis, 
propensity maps contoured at level 17 do not show 
significant changes. However, when contoured at level 14, 
it becomes clear that in the closed-loop conformation 
(PDB ID 2E6A), it is easier to design molecules to bind the 
pocket “behind” the catalytic loop, than to target the active 
site. The propensity maps within this pocket are closer to 
residues not making highly-frustrated direct contacts. A 
similar trend is observed for the wide-open conformation. 
Although, propensity maps and hotstpot classification 
(druggable versus borderline-druggable), seem to be 
affected by localized frustration in their vicinity, it is too 
early to state if this is a general rule or to speculate on its 
implications for hit-to-lead optimization.

5. Concluding Remarks

The presence or absence of hotspots, their locations, as 

well as the percentage and localization of frustrated residues 
in each protein, are due to the 3D structure of the protein, 
which is ultimately encoded in its amino acid sequence. 
Therefore, these features are intertwined, and the preceding 
section reveals that residual protein frustration around 
(druggable) hotspots is significantly higher compared to the 
entire binding site or other regions on the protein surface. 
This indirectly suggests localized protein frustration might 
serve as the “driving force” for hotspot formation at specific 
pockets and crevices, thus being useful for the development 
of more potent ligands against selected therapeutic targets. 
However, to establish a frustration-centric hypothesis 
explaining the origin of hotspots, validation studies are 
necessary on proteins with fully characterized localized 
frustration and hotspots. This requires benchmarks where 
both experimental and computational analyses have been 
applied. Consequently, constructing such datasets is crucial 
for advancing our understanding of the intricate relationship 
between protein frustration and the emergence of hotspots. 
Achieving this may involve protein engineering guided by 
energy landscape theory,134 followed by the experimental 
solvent mapping pipeline described by Agarwal et al.135 
While this goal is not yet attainable, a reasonable starting 

Figure 10. Localized protein frustration in representative crystallographic structures of TcDHOD (left: closed loop, center: open-loop, right: wide-open), 
as suggested by Froes et al.82 (a-c) Direct (red solid-lines) and water mediated (red-dashed lines) highly frustrated contacts; (d-f) direct frustrated contacts 
in the flexible catalytic loop (black: closed, red: open, green: wide open). The inset highlights the probe propensity maps, calculated with FHM, when the 
cofactor (FMN) binding site is masked. The color scheme and contour level are the same as in previous figures.
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point would be to explore the potential connection between 
reduced frustration and the absence of hotspots in less-
druggable protein targets.136

On the other hand, it is equally crucial to investigate how 
well coarse-grained forcefields, such as AWSEM (utilized 
by the Frustratometer engine), can predict the location 
of hotspots. A more resource-intensive approach would 
be to employ the Charmm force field (used by FTMAP) 
to calculate all-atom frustration indexes. Improvement 
on either front would signify a better understanding 
of the physical parameters underlying hotspot origin. 
Consequently, this would be instrumental in supporting or 
refuting the frustration-centric origin of hotspots.

Supplementary Information

Supplementary information is available free of charge 
at http://jbcs.sbq.org.br, as PDF file.
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