Open-access Molecular dynamics study of the differences in the human defensin behavior near a modelled water/membrane interface

Human defensins HNP-1, HNP-2 and HNP-3 behavior is studied in a membrane interface model H2O/CCl4 by molecular dynamics simulation. The distinct HNP-3 behavior, when compared to HNP 1 and 2, can be associated to the fact that HNP-3 is the least potent of the three defensins, since its apolar residues, which could attack the cellular membranes of the pathogenic organisms, are shielded in the inner region of the peptide. Three mechanisms were proposed to explain the HNP action on cellular membranes. These mechanisms are unable to enlighten the membrane hydrophobic part role for preserving the quaternary structure of the peptide when it is interacting with the inner part of the membrane. They suggest that the damaging is mainly caused by the interactions between the localized charges of the peptides with charges on the membrane surface. These models do not clearly explain what the hydrophobic region role is in the stabilization of the quaternary HNP structure, when it is interacting with a membrane. The understanding of how the HNP dimers structure is conserved at the first stages of the insertion into the membrane is fundamental to explain the different activities of the peptides. This work aims at contributing for the understanding of the mechanism of the defensins antimicrobial action.

human defensin; membrane model; molecular dynamics; antimicrobial peptides


location_on
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro