Acessibilidade / Reportar erro

Biodiesel: An Overview II

Abstract

The crescent number of scientific articles published per year shows that research on biodiesel continues to play an important role to support the growing demand for this biofuel. The second edition of Biodiesel: An Overview presents the worldwide research in the last 15 years. Microalgae biomass is the most studied raw material alternative in this period and several studies have been carried out to develop basic heterogeneous catalysts for biodiesel production. Concerning to production technologies, supercritical conditions and intensification process have been extensively investigated. The development of new antioxidants additives has focused mainly on biomass-derived formulations and there are few studies on biocide candidates. In terms of pollutant emissions, in general, the studies showed that the addition of biodiesel generates lower concentrations of polycyclic aromatic hydrocarbons (PAH), CO and n-alkanes pollutants, but carbonyl compounds, major ions and NOx are emitted in a higher concentration compared to pure diesel.

Keywords:
additives; biodiesel; catalysts; emission; feedstocks; review


1. Introduction

Biodiesel plays an increasingly important role in the energy matrix of several countries in the world and its demand is increasing every year. Accordingly, the associated research, development and innovation (R&D&I) on biodiesel is also advancing to the same extent. This could be clearly observed by the growing number of publications in scientific search databases. A bibliographic search was carried out in the Scopus (Elsevier) database in October 2020 looking for publications that contain the word "biodiesel" in the title, abstract or keywords. A total of 40,492 references were found, and from those, 39,602 papers (98% of them) were published in the last 15 years (2005-2020). Figure 1a shows the number of publications by year.

Figure 1
Quantitative of publications (a) and reviews (b) about biodiesel, from 2005 to 2020.

In turn, the search for publications containing the words "biodiesel" and "review" (or "overview") in the title, abstract or keywords provided a total of 3,411 references. The search was done again in order to ensure that the publications are really review articles, now using the same words only in the title. The number was reduced to 583 references. From these, 579 were published between 2005 and 2020. Figure 1b shows the number of review articles by year and Table 1 exhibits the top 20 references with the highest number of citations.

Table 1
Ranking of review articles about biodiesel with the highest number of citations in the Scopus database

Those reviews approach different aspects about biodiesel. Some of them focus on just one topic, such as new sources of raw material,99 Singh, S. P.; Singh, D.; Renewable Sustainable Energy Rev. 2010, 14, 200. analytical methods for biodiesel characterization2121 Monteiro, M. R.; Ambrozin, A. R. P.; Lião, L. M.; Ferreira, A. G.; Talanta 2008, 77, 593. and stability of biodiesel.2222 Jain, S.; Sharma, M. P.; Renewable Sustainable Energy Rev. 2010, 14, 667. Others are even more specific by discussing about a type of a specific feedstock,2323 Talebian-Kiakalaieh, A.; Amin, N. A. S.; Mazaheri, H.; Appl. Energy 2013, 104, 683. a specific catalyst aspect2424 Helwani, Z.; Othman, M. R.; Aziz, N.; Fernando, W. J. N.; Kim, J.; Fuel Process. Technol. 2009, 90, 1502. or regarding the oxidative stability of a given type of biodiesel in particular,2525 Pullen, J.; Saeed, K.; Renewable Sustainable Energy Rev. 2012, 16, 5924. just to name few examples. There are also some authors who chose to address the key points and/or news of several topics. In 2005, we published one of the five reviews on biodiesel that year, which is among the 20 most cited in the world. The present article provides an overview of research on biodiesel in the last 15 years, including a brief summary about the evolution of biodiesel regulation in Brazil within the period. In the present paper we also discussed about the use of biodiesel by G20 countries, the recent feedstocks and catalysts for biodiesel production, as well as new technologies. Additionally, the use of additives as an alternative to solve some storage problems and emissions are also discussed.

1.1. Implementation of biodiesel in Brazil

Three events were decisive for the implementation of biodiesel in the Brazilian energy matrix: (i) the oil crisis of the 1970s, (ii) the "green revolution" in Brazil that encouraged the Brazilian agribusiness, producing a surplus of vegetable oil, and (iii) the ECO-92 Conference of the United Nations Environment Program.2626 Menezes, R. S.; Biodiesel no Brasil: Impulso Tecnológico, vol. 1, 1st ed.; Artecor Gráfica e Editora Ltda: Lavras, BR, 2016. The ECO-92 took place in Rio de Janeiro, in which there was the recognition of the potential of biofuels as allies in order to achieve the targets set for reducing carbon emissions.2727 https://www.politize.com.br/eco-92/, accessed in March 2021.
https://www.politize.com.br/eco-92/...

Considering the favorable conditions for implementation of biodiesel as an alternative fuel in the Brazilian energy matrix, in 2002 the Ministry of Science and Technology introduced the ProBiodiesel.2828 Ministério da Ciência e Tecnologia; Portaria MCT No. 702, de 30 de outubro de 2002, available at https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra;jsessionid=8362AE01F515A95B019F0C252F60C72C.proposicoesWebExterno2?codteor=122459&filename=LegislacaoCitada+-PL+526/2003, accessed in March 2021.
https://www.camara.leg.br/proposicoesWeb...
Back then, the ProBiodiesel was a network for research and technological development of biodiesel. This took place by the ordinance No. 702 of the 30th October 2002,2828 Ministério da Ciência e Tecnologia; Portaria MCT No. 702, de 30 de outubro de 2002, available at https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra;jsessionid=8362AE01F515A95B019F0C252F60C72C.proposicoesWebExterno2?codteor=122459&filename=LegislacaoCitada+-PL+526/2003, accessed in March 2021.
https://www.camara.leg.br/proposicoesWeb...
aiming both partial and gradual replacement of fossil diesel by biodiesel. After the ProBiodiesel, an Interministerial Executive Committee for Biodiesel (CEIB) was created in 2003, with the purpose of conducting studies about the economic, social and environmental viabilities of a prospective biodiesel industry in Brazil.2626 Menezes, R. S.; Biodiesel no Brasil: Impulso Tecnológico, vol. 1, 1st ed.; Artecor Gráfica e Editora Ltda: Lavras, BR, 2016.,2929 Pousa, G. P. A. G.; Santos, A. L. F.; Suarez, P. A. Z.; Energy Policy 2007, 35, 5393. Based on the studies done by CEIB, in December 2004 the President of Brazil officially launched the Brazilian Program for the Production and Use of Biodiesel (PNPB).3030 https://www.gov.br/agricultura/pt-br/assuntos/agricultura-familiar/biodiesel/arquivos/cartilha-do-programa-nacional-de-producao-e-uso-de-biodiesel-pnpb.pdf, accessed in March 2021.
https://www.gov.br/agricultura/pt-br/ass...
At that time, the Program envisaged different raw materials for biodiesel production, within the context of social inclusion and regional development. Hence, castor oil was initially considered in the pool of feedstocks, but it was proved to be technically unfeasible due to its composition, rich in ricinoleic acid, yielding a biodiesel that does not meet specifications. In addition, the economic benefits were also not clear, since the unique composition of castor oil makes it highly valuable for cosmetics and pharmaceuticals. Indeed, after all these years, the major raw materials for the production of biodiesel in Brazil are soybean and tallow (data on section 2). Indeed, both soybean and tallow were agrobusiness activities which already existed at the time the PNPB was launched. These facts highlight some economical barriers for implementing other crops in the pool of biodiesel feedstocks to replace the traditional ones. In January 2005, the law No. 11,097 was published,3131 Presidência da República Casa Civil; Lei No. 11.097, de 13 de janeiro de 2005, Dispõe sobre a Introdução do Biodiesel na Matriz Energética Brasileira; Diário Oficial da União (DOU), Brasília, Brazil, 2005, available at https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11097.htm, accessed in March 2021.
https://www.planalto.gov.br/ccivil_03/_a...
which officially establishes the compulsory implementation of biodiesel in the Brazilian energy matrix. This law also determined the ANP (National Agency of Petroleum, Natural Gas and Biofuels) to define acceptable limits of percentage variations of biodiesel in fossil diesel.2626 Menezes, R. S.; Biodiesel no Brasil: Impulso Tecnológico, vol. 1, 1st ed.; Artecor Gráfica e Editora Ltda: Lavras, BR, 2016.,2929 Pousa, G. P. A. G.; Santos, A. L. F.; Suarez, P. A. Z.; Energy Policy 2007, 35, 5393.,3232 Suarez, P. A. Z.; Meneghetti, S. M. P.; Quim. Nova 2007, 30, 2068. In 2008 the addition of 2% (v v-1) biodiesel in diesel (B2) became mandatory in the country.3333 http://www.anp.gov.br/biocombustiveis/biodiesel, accessed in February 2021.
http://www.anp.gov.br/biocombustiveis/bi...
From there to the present day, the biodiesel amount added to fossil diesel was risen gradually. The evolution of the biodiesel percentage increase to mineral diesel is presented in Figure 2.

Figure 2
Evolution of the increase in the biodiesel added to mineral diesel in Brazil through the time, up to nowadays (adapted from reference 33).

1.2. Overview of the biodiesel scenario in G20 countries

The group of the twenty countries (the G20) is formed by finance ministers and central bank governors of the world’s 19 largest economies. Indeed, the G20 is composed by Argentina, Australia, Brazil, Canada, China, France, Germany, India, Indonesia, Italy, Japan, the Republic of Korea, Mexico, the Russian Federation, Saudi Arabia, South Africa, Turkey, the United Kingdom, the United States and the European Union.3434 http://g20.org.tr/about-g20/g20-members/, accessed in February 2021.
http://g20.org.tr/about-g20/g20-members/...
G20 reflects the wider interests of both developed and emerging economies. The role of the G20 is "to coordinate policies and to make globalization a smoother, more harmonious, and sustainable process."3535 https://sta.uwi.edu/iir/normangirvanlibrary/sites/default/files/normangirvanlibrary/documents/The%20OECD%20in%20the%20G20%20A%20Natural%20Partner%20In%20Global%20Governance.pdf, accessed in February 2021.
https://sta.uwi.edu/iir/normangirvanlibr...
In this way, international negotiation is favored, integrating the principle of an extended dialogue.3535 https://sta.uwi.edu/iir/normangirvanlibrary/sites/default/files/normangirvanlibrary/documents/The%20OECD%20in%20the%20G20%20A%20Natural%20Partner%20In%20Global%20Governance.pdf, accessed in February 2021.
https://sta.uwi.edu/iir/normangirvanlibr...
Table 2 shows a brief summary of studies or actions in progress, or already concluded, regarding the biodiesel inclusion in the G20 countries energy matrices.

Table 2
Summary of actions and feedstocks used to introduce biodiesel in the G20 countries energy matrices

2. Feedstocks for Biodiesel Production

In general, vegetable and animal raw materials rich in oils and fats can be used to produce biodiesel. However, it is not easy to find an ideal feedstock for the production of biofuel for internal combustion engines. In regard to economic viability, critical factors such as acreages planted, energy consumption, water quality/quantity7676 Miglietta, P. P.; Giove, S.; Toma, P.; Ecol. Indic. 2018, 85, 1231. and the possible competition with food and/or pharmaceutical industries, among other possibilities, should be considered carefully. A typical example is the use of jatropha oil for the production of biodiesel in African countries and India. The plant grows in semi-arid regions and has been acclaimed for its alleged ability to resist pests. On the other hand, a large amount of water is needed for irrigation and a large cultivation area is required, creating a potential conflict with food production.7777 Zentou, H.; Rosli, N. S.; Wen, C. H.; Abdul Azeez, K.; Gomes, C.; Iran. J. Chem. Chem. Eng. 2019, 38, 173.

Vegetable oils are a fundamental raw material for biodiesel production. Globally, the most important feedstocks for biodiesel production are palm oil (35%), soybean oil (26%) and rapeseed oil (16%).7878 https://www.ufop.de/files/7215/7953/0161/WEB_UFOP_Global_Supply_Report_A5_EN_19_20.pdf, accessed in February 2021.
https://www.ufop.de/files/7215/7953/0161...
Figure 3 shows the percentage distribution of feedstocks used in the biodiesel production throughout the world. In Brazil, the major source for biodiesel production during 2010-2019 were soybean oil and animal fats (Table 3).7979 http://www.anp.gov.br/publicacoes/anuario-estatistico/5809-anuario-estatistico-2020, accessed in February 2021.
http://www.anp.gov.br/publicacoes/anuari...

Figure 3
Feedstocks most utilized in the world for biodiesel production.

Table 3
Feedstocks for biodiesel production in Brazil (2010-2019), in volume

In turn, the map below (Figure 4) shows the main raw materials used in the biodiesel production, distributed according to the Brazilian regions, in 2019. Soybean oil has been the main feedstock for production of biodiesel in all regions of Brazil.8080 http://www.anp.gov.br/producao-de-biocombustiveis/biodiesel/informacoes-de-mercado, accessed in February 2021.
http://www.anp.gov.br/producao-de-biocom...
Table 4 shows that soybean oil was the main raw material during all months in 2019, while bovine fat and other fatty materials took turns between the second and third sources of biodiesel production.8080 http://www.anp.gov.br/producao-de-biocombustiveis/biodiesel/informacoes-de-mercado, accessed in February 2021.
http://www.anp.gov.br/producao-de-biocom...
Even though soybean does not have the highest oil content (among those feedstocks), this commodity has well-established crops traditionally used in the Brazilian food industry. From Table 4 it also is observed Brazil follows a general trend of reusing urban waste, such as the employment of cooking oil for biodiesel production.8181 César, A. S.; Werderits, D. E.; Saraiva, G. L. O.; Guabiroba, R. C. S.; Renewable Sustainable Energy Rev. 2017, 72, 246.

Figure 4
Major biodiesel sources according to Brazilian regions in 2019. Note: only raw materials above 1% are represented. Data from ANP.8080 http://www.anp.gov.br/producao-de-biocombustiveis/biodiesel/informacoes-de-mercado, accessed in February 2021.
http://www.anp.gov.br/producao-de-biocom...

Table 4
Feedstocks for biodiesel production in Brazil (2019)

Since our last review in 2005,1515 Pinto, A. C.; Guarieiro, L. L. N.; Rezende, M. J. C.; Ribeiro, N. M.; Torres, E. A.; Lopes, W. A.; Pereira, P. A. P.; de Andrade, J. B.; J. Braz. Chem. Soc. 2005, 16, 1313. several other oil and fat sources have been investigated for biodiesel production, such as amaranth seeds (Amaranthus palmeri L.),8282 Deeba, F.; Patel, A.; Arora, N.; Pruthi, V.; Pruthi, P. A.; Negi, Y. S.; Environ. Sci. Pollut. Res. 2018, 25, 353. apricot (Prunus armeniaca L.),8383 Górnaś, P.; Ramos, M. J.; Montano, M. C.; Rudzińska, M.; Radziejewska-Kubzdela, E.; Grygier, A.; Eur. J. Lipid Sci. Technol. 2018, 120, 1700147. papaya seed oil and stone fruit kernel oil,8484 Anwar, M.; Rasul, M. G.; Ashwath, N.; Nabi, M. D. N.; Energy Rep. 2019, 5, 280. safflower (Carthamus tinctorius L.) oil,8585 Yesilyurt, M. K.; Cesur, C.; Aslan, V.; Yilbasi, Z.; Renewable Sustainable Energy Rev. 2020, 119, 109574. Moringa oleifera,8686 Niju, S.; Balajii, M.; Anushya, C.; Int. J. Green Energy 2019, 16, 702. Calophyllum inophyllum,8787 Arumugam, A.; Ponnusami, V.; Renewable Energy 2019, 131, 459. Styrax officinalis L. seed,8888 Yesilyurt, M. K.; Cesur, C.; Fuel 2020, 265, 117025. broiler chicken waste,8989 Abraham, J.; Kumar, R. S.; Xavier, F.; Mathew, D. M.; Int. J. Agric. Biosys. Eng. 2015, 9, 1190. duck tallow,9090 Chung, K. H.; Kim, J.; Lee, K. Y.; Biomass Bioenergy 2009, 33, 155. macroalgae,9191 Sivaramakrishnan, R.; Muthukumar, K.; Energy Fuels 2012, 26, 6387; Sivaramakrishnan, R.; Muthukumar, K.; J. Biosci. Bioeng. 2014, 117, 86; Jalilian, N.; Najafpour, G. D.; Khajouei, M.; ChemBioEng Rev. 2020, 7, 18. microalgae (Aurantiochytrium sp. KRS101,9292 Kim, K. H.; Lee, O. K.; Kim, C. H.; Seo, J.-W.; Oh, B.-R.; Lee, E. Y.; Bioresour. Technol. 2016, 211, 472. Auxenochlorella protothecoides,9393 Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Biotechnol. Biofuels 2018, 11, 169. Botryococcus braunii,9494 Ashokkumar, V.; Agila, E.; Sivakumar, P.; Salam, Z.; Rengasamy, R.; Ani, F. N.; Energy Convers. Manage. 2014, 88, 936. Botryococcus sp.,9595 Sivaramakrishnan, R.; Incharoensakdi, A.; Fuel 2017, 191, 363. Chlorella protothecoides,9696 Al-lwayzy, S. H.; Yusaf, T.; Renewable Energy 2017, 101, 690; Chen, Y. H.; Huang, B. Y.; Chiang, T. H.; Tang, T. C.; Fuel 2012, 94, 270; Cheng, Y.; Zhou, W.; Gao, C.; Lan, K.; Gao, Y.; Wu, Q.; J. Chem. Technol. Biotechnol. 2009, 84, 777. Chlorella pyrenoidosa,9797 Cao, H.; Zhang, Z.; Wu, X.; Miao, X.; BioMed Res. Int. 2013, 2013, 930686; Elystia, S.; Muria, S. R.; Erlangga, H. F.; Environ. Health Eng. Manage. J. 2020, 7, 1. Chlorella sp.,9898 Ehimen, E. A.; Sun, Z. F.; Carrington, C. G.; Fuel 2010, 89, 677; Ehimen, E. A.; Sun, Z.; Carrington, G. C.; Procedia Environ. Sci. 2012, 15, 47. Chlorella sp. KR-1,9999 Jo, Y. J.; Lee, O. K.; Lee, E. Y.; Bioresour. Technol. 2014, 158, 105. Dunaliella tertiolecta,100100 Arroussi, H. E.; Benhima, R.; Mernissi, N. E.; Bouhfid, R.; Tilsaghani, C.; Bennis, I.; Wahby, I.; Renewable Energy 2017, 113, 1515. Enteromorpha compressa,101101 Suganya, T.; Kasirajan, R.; Renganathan, S.; Bioresour. Technol. 2014, 156, 283. Euglena sanguinea,102102 Kings, A. J.; Raj, R. E.; Miriam, L. R. M.; Visvanathan, M. A.; Energy Convers. Manage. 2017, 141, 224. Haematococcus pluvialis,103103 Razon, L. F.; Tan, R. R.; Appl. Energy 2011, 88, 3507. Isochrysis sp.,100100 Arroussi, H. E.; Benhima, R.; Mernissi, N. E.; Bouhfid, R.; Tilsaghani, C.; Bennis, I.; Wahby, I.; Renewable Energy 2017, 113, 1515. Micractinium reisseri SIT04,104104 Srinuanpan, S.; Cheirsilp, B.; Prasertsan, P.; Kato, Y.; Asano, Y.; Renewable Energy 2018, 122, 507. Nannochlopsis,103103 Razon, L. F.; Tan, R. R.; Appl. Energy 2011, 88, 3507. Nannochloropsis gaditana,105105 Jazzar, S.; Olivares-Carrillo, P.; de los Ríos, A. P.; Marzouki, M. N.; Acién-Fernández, F. G.; Fernández-Sevilla, J. M.; Molina-Grima, E.; Smaali, I.; Quesada-Medina, J.; Appl. Energy 2015, 148, 210. Nannochloropsis sp.,106106 Moazami, N.; Ashori, A.; Ranjbar, R.; Tangestani, M.; Eghtesadi, R.; Nejad, A. S.; Biomass Bioenergy 2012, 39, 449; Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A.; Bioresour. Technol. 2011, 102, 4265. Phaeodactylum tricornutum,107107 Zendejas, F. J.; Benke, P. I.; Lane, P. D.; Simmons, B. A.; Lane, T. W.; Biotechnol. Bioeng. 2012, 109, 1146. Phormidium autumnale,108108 Siqueira, S. F.; Francisco, É. C.; Queiroz, M. I.; de Menezes, C. R.; Zepka, L. Q.; Jacob-Lopes, E.; Braz. J. Chem. Eng. 2016, 33, 427. Scenedesmus obliquus,109109 Wu, H.; Miao, X.; Bioresour. Technol. 2014, 170, 421. Scenedesmus obliquus SIT06,104104 Srinuanpan, S.; Cheirsilp, B.; Prasertsan, P.; Kato, Y.; Asano, Y.; Renewable Energy 2018, 122, 507. Scenedesmus sp.,110110 Sivaramakrishnan, R.; Incharoensakdi, A.; Environ. Sci. Pollut. Res. 2017, 24, 4950. Schizochytrium limacinum,111111 Bi, Z.; He, B. B.; McDonald, A. G.; Energy Fuels 2015, 29, 5018. Spirulina maxima,112112 Rahman, M. A.; Aziz, M. A.; Ruhul, A. M.; Rashid, M. M.; J. Mech. Eng. Sci. 2017, 31, 3025.,113113 Rahman, M. A.; Aziz, M. A.; Al-khulaidi, R. A.; Sakib, N.; Islam, M.; J. Radiat. Res. Appl. Sci. 2017, 10, 140. Spirulina sp.,114114 Martínez, N.; Callejas, N.; Morais, E. G.; Costa, J. A. V.; Jachmanián, I.; Vieitez, I.; Fuel 2017, 202, 512. Teraselmis sp.,100100 Arroussi, H. E.; Benhima, R.; Mernissi, N. E.; Bouhfid, R.; Tilsaghani, C.; Bennis, I.; Wahby, I.; Renewable Energy 2017, 113, 1515. Thalassiosira pseudonana,107107 Zendejas, F. J.; Benke, P. I.; Lane, P. D.; Simmons, B. A.; Lane, T. W.; Biotechnol. Bioeng. 2012, 109, 1146. Tribonema minus),115115 Wang, H.; Gao, L.; Chen, L.; Guo, F.; Liu, T.; Bioresour. Technol. 2013, 142, 39. mustard oil,116116 Hossain, J.; Mod. Mech. Eng. 2011, 1, 77. mutton fat,117117 Kaur, N.; Ali, A.; Energy Sources, Part A 2013, 35, 184. peanut oil,118118 Nguyen, T.; Do, L.; Sabatini, D. A.; Fuel 2010, 89, 2285. pine and kapok oil,119119 Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.; Appl. Energy 2014, 130, 466. pumpkin seed (Cucurbita pepo L.),120120 Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E.; Biomass Bioenergy 2009, 33, 44. Sapindus mukorossi,121121 Atabania, A. E.; Silitonga, A. S.; Ong, H. C.; Mahlia, T. M. I.; Masjuki, H. H.; Badruddin, I. A.; Fayaz, H.; Renewable Sustainable Energy Rev. 2013, 18, 211. soapnut oil,122122 Chen, Y. H.; Chiang, T. H.; Chen, J. H.; Biomass Bioenergy 2013, 52, 15. spent coffee grounds,123123 Tuntiwiwattanapun, N.; Tongcumpou, C.; Ind. Crops Prod. 2018, 117, 359.,124124 Kamil, M.; Ramadan, K. M.; Olabi, A. G.; Al-Ali, E. I.; Ma, X.; Awad, O. I.; Renewable Energy 2020, 147, 1880. turnip oil (Raphanus sativus L.),125125 Shah, S. N.; Iha, O. K.; Alves, F. C. S. C.; Sharma, B. K.; Erhan, S. Z.; Suarez, P. A. Z.; Bioenergy Res. 2013, 6, 841. waste fish oil,126126 Yahyaee, R.; Ghobadian, B.; Najafi, G.; Renewable Sustainable Energy Rev. 2013, 17, 312. waste sewage sludge,127127 Capodaglio, A. G.; Callegari, A. J.; Environ. Manage. 2018, 216, 176. chicken fat,128128 da Silva, M. J.; de Souza, S. N. M.; Chaves, L. I.; Baricatti, R. A.; Nogueira, C. E. C.; Renewable Sustainable Energy Rev. 2013, 17, 278. insects129129 Nguyen, H. C.; Nguyen, N. T.; Su, C.-H.; Wang, F.-M.; Tran, T. N.; Liao, Y.-T.; Liang, S.-H.; Curr. Org. Chem. 2019, 23, 1499. and yeasts,130130 Wang, Q.; Sen, B.; Liu, X.; He, Y.; Xie, Y.; Wang, G.; Sci. Total Environ. 2018, 631-632, 994.

131 Guerfali, M.; Ayadi, I.; Sassi, H.-E.; Belhassen, A.; Gargouri, A.; Belghith, H.; Ind. Crops Prod. 2020, 145, 112103.
-132132 Passarinho, P. C.; Oliveira, B.; Dias, C.; Teles, M.; Reis, A.; da Silva, T. L.; Waste Biomass Valorization 2020, 11, 2075. among other materials.

Microalgae biomasses, named as third generation energy, are one of the most important raw material alternatives for biodiesel production.133133 Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A. G.; Crit. Rev. Environ. Sci. Technol. 2020, 50, 384. Many microalgae have advantages over conventional terrestrial crops, such as the possibility of establishing companies at low commercial value lands or devastated areas, the continuous crop production, and possibility of using wastewater.134134 Adeniyi, O. M.; Azimov, U.; Burluka, A.; Renewable Sustainable Energy Rev. 2018, 90, 316. In the literature there are several strategies suggested for increasing the potential microalgae use as a feedstock for biodiesel production.104104 Srinuanpan, S.; Cheirsilp, B.; Prasertsan, P.; Kato, Y.; Asano, Y.; Renewable Energy 2018, 122, 507.,135135 Schneider, R. C. S.; Lima, M. M.; Hoeltz, M.; Neves, F. F.; John, D. K.; de Azevedo, A.; Algal Res. 2018, 32, 280.

136 Duarte, J. H.; Costa, J. A. V.; Bioresour. Technol. 2018, 247, 1242.

137 Ferreira, S. P.; Holz, J. C. P.; Costa, J. A. V.; Int. Food Res. J. 2018, 25, 408.

138 Lima, Â. M. F.; Torres, E. A.; Kiperstok, A.; Santos, G. F. M.; Clean Technol. Environ. Policy 2017, 19, 1523.

139 Freitas, B. C. B.; Cassuriaga, A. P. A.; Morais, M. G.; Costa, J. A. V.; Bioresour. Technol. 2017, 238, 248.

140 Pinho, D. M. M.; Oliveira, R. S.; dos Santos, V. M. L.; Marques, W. F.; Pinto, A. C.; Rezende, M. J. C.; Suarez, P. A. Z.; J. Braz. Chem. Soc. 2017, 28, 2429.

141 Zukovski, L.; Fontana, R. C.; Pauletti, G.; Camassola, M.; Dillon, A. J. P.; Braz. J. Chem. Eng. 2017, 34, 709.

142 Brennan, L.; Owende, P.; Renewable Sustainable Energy Rev. 2010, 14, 557.

143 Leong, W. H.; Lim, J. W.; Lam, M. K.; Uemura, Y.; Ho, Y. C.; Renewable Sustainable Energy Rev. 2018, 91, 950.

144 Chowdhury, H.; Loganathan, B.; Curr. Opin. Green Sustainable Chem. 2019, 20, 39.

145 Vadivel, M.; Arvindnarayan, S.; Kumar, G.; Shobana, S.; Dharmaraja, J.; Nguyen, D. D.; Chang, S. W.; Prabhu, K. K. S.; Waste Biomass Valorization 2020, 11, 1671.
-146146 Ma, Y.; Gao, Z.; Wang, Q.; Liu, Y.; Bioresour. Technol. 2018, 263, 631. Although it is a promising alternative, it still is at very early stage of development. In addition, the use of conventional microalgae production technologies involves high investments and results in high production costs for biofuel.147147 Klein, B. C.; Bonomi, A.; Maciel Filho, R.; Renewable Sustainable Energy Rev. 2018, 82, 1376.

148 Anto, S.; Mukherjee, S. S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S. S.; Verma, T. N.; Pugazhendhi, A.; Chemosphere 2020, 242, 125079.
-149149 Farrokh, P.; Sheikhpour, M.; Kasaeian, A.; Asadi, H.; Bavandi, R.; Biotechnol. Prog. 2019, 35, 1.

In addition to economic viability in the production of biodiesel, the raw material must be able to synthesize secondary metabolites with appropriate physical-chemical characteristics in order to produce biodiesel with good quality. The viscosity of the biodiesel is directly related to the structural characteristics of some constituents such as fatty acids. Biodiesels mainly produced from saturated and linear chain fatty acids generally have higher melting points and tend to solidify at lower temperatures. On the other hand, biodiesels constituted principally from branched-chain fatty acids are likely to be more fluid.150150 Souza, S. P.; Seabra, J. E. A.; Nogueira, L. A. H.; Biofuels 2018, 9, 455. The use of methyl-esters biodiesel by blending it with ethyl esters is a strategy for improving the cold flow properties of biodiesels based on oils with a high content of saturated esters.151151 Maximo, G. J.; Magalhães, A. M. S.; Gonçalves, M. M.; Esperança, E. S.; Costa, M. C.; Meirelles, A. J. A.; Coutinho, A. A. P.; Fuel 2018, 226, 87. Biodiesel with a high content of unsaturated chains is likely to lead to poor oxidative stability. For example, although the microalgae Dunaliella tertioleta has high growth rate and the ability to grow in a brackish environment being a good candidate for biofuel production, a high content of linolenic acid (C18:3) may lead to poor oxidative stability.152152 Tang, H.; Abunasser, N.; Garcia, M. E. D.; Chen, M.; Ng, K. Y. S.; Salley, S. O.; Appl. Energy 2011, 88, 3324.

The percentage of free fatty acids in the biodiesel matrix is another factor should be taken into account. As the triacylglycerides transesterification usually occurs via basic catalysis, if fatty acids are present, emulsification generally occurs, which makes it difficult the biodiesel purification. Additionally, it causes the catalyst consumption.153153 Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H.; Fuel 2010, 89, 2267. For instance, castor seeds (Ricinus communis), with the presence of highly toxic proteins (such as ricin) and other allergenic compounds,154154 Vanhercke, T.; Wood, C. C.; Stymne, S.; Singh, S. P.; Green, A. G.; Plant Biotechnol. J. 2013, 11, 197. was considered an alternative for biodiesel production.155155 Sánchez, A. S.; Almeida, M. B.; Torres, E. A.; Kalid, R. A.; Cohim, E.; Gasparatos, A.; Renewable Sustainable Energy Rev. 2018, 81, 2744. Although it has a high oil content with the seeds usually containing 40-50% vegetable oil, they also contain very high levels (90%) of ricinoleic acid (12-hydroxy C18:1Δ9). Efforts have been made in order to overcome those problems in the biodiesel production in the presence of free fatty acids.156156 Vieira, J. S. C.; Sousa, T. L.; Rosas, L. S.; Lima, A. L.; Ronconi, C. M.; Mota, C. J. A.; Quim Nova 2018, 41, 10. If problems like those ones could be circumvented, raw materials rich in free fatty acids such as castor seeds could have participation in the biodiesel production. This possibility becomes advantageous for less developed Brazilian regions, since this feedstock normally demands less water for its cultivation.155155 Sánchez, A. S.; Almeida, M. B.; Torres, E. A.; Kalid, R. A.; Cohim, E.; Gasparatos, A.; Renewable Sustainable Energy Rev. 2018, 81, 2744.

2.1. Genetic engineering of feedstocks for biodiesel production

In Biodiesel: An Overview1515 Pinto, A. C.; Guarieiro, L. L. N.; Rezende, M. J. C.; Ribeiro, N. M.; Torres, E. A.; Lopes, W. A.; Pereira, P. A. P.; de Andrade, J. B.; J. Braz. Chem. Soc. 2005, 16, 1313. we mentioned "It may be possible in the future to improve the properties of biodiesel by means of genetic engineering of the parent oils, which could eventually lead to a fuel enriched with certain fatty acids, possibly oleic acid, that exhibits a combination of improved fuel properties." in a reference to Knothe’s article,157157 Knothe, G.; Fuel Process. Technol. 2005, 86, 1059. published in the same year. In the future, genetic engineering’s advances will help the production of fatty acids for biodiesel production.

In fact, research over the past few years has led to significant improvements in manipulation of organisms in order to improve biodiesel production. Genetic engineering methods for producing biodiesel from various sources including plants, yeasts, and algae are one of the latest technology that can be a promising alternative for creating truly sustainable, technically viable and cost-competitive biodiesel.158158 Hegde, K.; Chandra, N.; Sarma, S. J.; Brar, S. K.; Veeranki, V. D.; Mol. Biotechnol. 2015, 57, 606.

159 Majidian, P.; Tabatabaei, M.; Zeinolabedini, M.; Naghshbandi, M. P.; Chisti, Y.; Renewable Sustainable Energy Rev. 2018, 82, 3863.
-160160 Shahid, A.; Rehman, A.; Usman, M.; Ashraf, M. U. F.; Javed, M. R.; Khan, A. Z.; Gill, S. S.; Mehmood, M. A.; Biotechnol. Appl. Biochem. 2020, 67, 41. Two strategies widely used to improve raw materials for biodiesel production are genetic engineering for (i) length-chain fatty acids and (ii) for increasing the production of monounsaturated fatty acids.

2.1.1. Genetic engineering of length-chain fatty acids

Fatty acids are biosynthesized in vivo by either a multifunctional fatty acid synthase type I (FAS I) in eukaryotic cells or the discrete fatty acid synthase complex type II (FAS II) in most bacteria.161161 Jiang, W.; Gu, P.; Zhang, F.; Curr. Opin. Biotechnol. 2018, 53, 26. In FAS, the acetyl transferase (AT), malonyl-palmitoyl transferase (MPT), keto synthase (KS) and thioesterase (TE) determine the fatty acyl chain length. Additionally, the acyl-carrier protein (ACP), which carries fatty acyl intermediates from one enzyme active site to another, is also a key chain-length determinant.162162 Sarria, S.; Kruyer, N. S.; Peralta-Yahya, P.; Nat. Biotechnol. 2017, 35, 1158.

In FAS I, the formation of 3-keto-acyl-ACP occurs by the condensation (Claisen reaction) of acetyl-ACP with malonyl-ACP. The 3-keto-acyl-ACP undergoes a series of reactions: stereospecific carbonyl reduction via keto-acyl-ACP reductase (KR), water elimination via hydroxyl-acyl-ACP dehydratase (DH) and stereospecific reduction of the double bond via enoyl-acyl-ACP reductase (ER). The saturated product enters in a sequence of cycles, which each cycle increases two carbons in the carbon chain. For example, for the formation of palmitic acid (C16:0), this cycle is repeated 7 times. When the required chain length is obtained, the fatty acyl chain can be released as an acyl-Coa (fatty acid with coenzyme A as part of a thioester) or free acid (Scheme 1).161161 Jiang, W.; Gu, P.; Zhang, F.; Curr. Opin. Biotechnol. 2018, 53, 26.

162 Sarria, S.; Kruyer, N. S.; Peralta-Yahya, P.; Nat. Biotechnol. 2017, 35, 1158.

163 Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M.; Nat. Commun. 2017, 8, 14650.
-164164 Dewick, P. M.; Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, Ltd: Chichester, UK, 2009.

Scheme 1
Biosynthesis of saturated fatty acids.

Chain length plays an important role for product properties. For example, gasoline-like and diesel-like biofuels require short/medium-chain fatty acids (C8-C14).165165 Marella, E. R.; Holkenbrink, C.; Siewers, V.; Borodina, I.; Curr. Opin. Biotechnol. 2018, 50, 39. These compounds have lower viscosity and higher cloud points than long-chain fatty acids (C16-C18).158158 Hegde, K.; Chandra, N.; Sarma, S. J.; Brar, S. K.; Veeranki, V. D.; Mol. Biotechnol. 2015, 57, 606. Finding ways to release fatty acyl intermediates of defined lengths as products is one of the main challenges facing metabolic engineers. Both type I and type II FAS have been engineered to increase medium-chain fatty acyl yields.

In fungal FAS, the processes of loading of malonyl and unloading of the fully elongated acyl-chain are performed by the MPT domain and the domains KR, DH and ER presumably have no direct influence on chain-length regulation.163163 Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M.; Nat. Commun. 2017, 8, 14650. In Saccharomyces cerevisiae key active sites of the condensation domain (KS) and the transferase domains (MPT and AT) were rationally engineered. A total of five genes were mutated separately and in several combinations. Three genes of KS (F1279Y, G1250S and M1521W), the domain considered as the most promising target for rewriting chain-length regulation, one gene of MPT domain (R1834K), engineered for reduced malonyl affinity, and one gene of AT(1306A), the domain responsible of loading acetyl in fungal FAS (Scheme 1). The resulting mutated variants of FAS I produced short chain fatty acid, predominantly hexanoic and octanoic, in concentrations which do not occur in the wild type.163163 Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M.; Nat. Commun. 2017, 8, 14650.

2.1.2. Genetic engineering to increase the production of monounsaturated fatty acids

In addition to control the chain length, inexpensive and better quality biodiesel may be produced by changing the level of unsaturation of fatty acids. Blending of a fewer amount of saturated and polyunsaturated fatty acids with a higher amount of monounsaturated fatty acids would potentially yield a better quality biodiesel.158158 Hegde, K.; Chandra, N.; Sarma, S. J.; Brar, S. K.; Veeranki, V. D.; Mol. Biotechnol. 2015, 57, 606.

Unsaturated fatty acids can arise from more than one synthetic route. In most organisms the mechanism is done by a desaturation of the corresponding saturated fatty acid. Most eukaryotes organisms have an enzyme Δ 9-desaturase which introduces a double bond with Z (cis) geometry in the fatty acid. The enzyme can be named in two ways according the position ability of desaturation: from the carboxyl extremity until the unsaturation, designed with the symbol Δ, and from the methyl extremity until the unsaturation, which is represented with the symbol ω. The Z-configuration of the double bond introduces a ‘bend’ into the alkyl chain. This interferes with the close association and aggregation of molecules (possible in saturated structures), which helps to maintain the oils and cellular membranes fluidities.164164 Dewick, P. M.; Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, Ltd: Chichester, UK, 2009.

Soybean oil is composed of five fatty acids: palmitic acid (16:0), stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3). The average percentages of these five fatty acids in soybean oil are 10, 4, 18, 55 and 13%, respectively. This fatty acid profile results in low oxidative stability (oxidative breakdown of soybean oil), which results in materials in soybean-derived biodiesel that clogs oil filters. Oxidative instability of soybean oil is due to the relatively high percentages of the polyunsaturated fatty acids, such as linoleic and linolenic acids.166166 Clemente, T. E.; Cahoon, E. B.; Plant Physiol. 2009, 151, 1030. In biodiesel a monounsaturated oleic acid (C18:1) is a preferred component as an acyl chain in triacylglycerols, because of its high cetane value, low melting point, and resistance to oxidation.167167 Kumar, A.; Ogita, S.; Yau, Y.-Y.; Biofuels: Greenhouse Gas Mitigation and Global Warming; Springer: New Delhi, India, 2018.

Soybean seeds have thioesterases, which have preference for palmitoyl- and oleoyl-ACPs.168168 Kinney, A. J.; Genet. Eng. 1997, 19, 149. Palmitic acid (C16:0) is formed from palmitoyl-ACP by catalytic action of fatty acid thiosterase A (FatB), an acyl-ACP thioesterase enzyme. Towards condensation reaction between palmitoyl-ACP and malonyl-ACP by action of the enzyme β-ketoacyl synthase II (KAS II), stearoyl-ACP is formed. Stearoyl-ACP-Δ9-desaturase (SAD) converts stearoyl-ACP in oleyl-ACP. The enzyme Δ12-desaturase produce linoleoyl-ACP from oleyl-ACP toward a single desaturation step. Linolenoyl-ACP is biosynthesized from linoleoyl-ACP by catalytic action of enzyme Δ15-desaturase (Scheme 2).154154 Vanhercke, T.; Wood, C. C.; Stymne, S.; Singh, S. P.; Green, A. G.; Plant Biotechnol. J. 2013, 11, 197.,168168 Kinney, A. J.; Genet. Eng. 1997, 19, 149.

Scheme 2
Biosynthesis of unsaturated fatty acids.

The Δ12-desaturase enzyme is encoded by the FAD2 gene. There are two FAD2 gene families in soybean, designated as FAD2-1 and FAD2-2.169169 Heppard, E. P.; Kinney, A. J.; Stecca, K. L.; Miao, G. H.; Plant Physiol. 1996, 110, 311. Two different FAD2-1 genes are present in the soybean genome, designated as FAD2-1a and FAD2-1b. Down regulation of FatB would result in decreased levels of saturated fatty acids, primarily a reduction in palmitate, whereas down-regulation of FAD2-1 results in elevated levels of oleate and a reduction in polyunsaturated fatty acids.170170 Buhr, T.; Sato, S.; Ebrahim, F.; Xing, A.; Zhou, Y.; Mathiesen, M.; Schweiger, B.; Kinney, A.; Staswick, P.; Clemente, T.; Plant J. 2002, 30, 155. The expression of FAD2-1 and FatB was simultaneously down-regulated in a seed-specific fashion, thereby generating soybean oil with a reduced level of palmitic acid content (< 5%) and significantly increased oleic acid content (> 85%) (Scheme 2).170170 Buhr, T.; Sato, S.; Ebrahim, F.; Xing, A.; Zhou, Y.; Mathiesen, M.; Schweiger, B.; Kinney, A.; Staswick, P.; Clemente, T.; Plant J. 2002, 30, 155.

These genetic events result simultaneously in the accumulation of oleic acid and a concomitant decrease in polyunsaturated and saturated fatty acids, but not compromised in agronomic performance, including the overall yield, total protein/oil and amino acid profile. Moreover, the biodiesel produced from this extruded oil improved cold flow and enhanced oxidative stability.171171 Graef, G.; laVallee, B. J.; Tenopir, P.; Tat, M.; Schweiger, B.; Kinney, A. J.; van Gerpen, J. H.; Clemente, T. E.; Plant Biotechnol. J. 2009, 7, 411.

Although several genetic engineering processes to improve biodiesel production have yielded satisfactory results at laboratory scale level, commercialization requires scaling up of these processes. In addition, scaling up should reach very high yields and productivities without losing performance, which is the greatest challenge in commercialization.158158 Hegde, K.; Chandra, N.; Sarma, S. J.; Brar, S. K.; Veeranki, V. D.; Mol. Biotechnol. 2015, 57, 606. From the perspective of sustainability, it would be unwise to rely on a single feedstock source to meet diesel fuel demand, even if supply were sufficient to meet demand. The uncertainties surrounding the production of an oilseed crop, as a result of environmental and biotic imposed stresses, could have a significant impact on yield, and thus on supply, in a very unpredictable manner.171171 Graef, G.; laVallee, B. J.; Tenopir, P.; Tat, M.; Schweiger, B.; Kinney, A. J.; van Gerpen, J. H.; Clemente, T. E.; Plant Biotechnol. J. 2009, 7, 411.

3. Development of Catalysts for Biodiesel Production

The catalysts can be classified as acid, basic or enzymatic. Yet, they can still be divided into homogeneous or heterogeneous. Figure 5 shows a schematic representation of the various types of catalysts used for biodiesel production with some examples.172172 Sheikh, R.; Choi, M.; Im, J.; Park, Y.; J. Ind. Eng. Chem. 2013, 19, 1413.,173173 Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.-S.; J. Environ. Manage. 2019, 249, 109316.

Figure 5
Types of catalysts used in biodiesel production.

Basic homogeneous catalysts usually present higher conversion rate, typically 4,000 times higher than acid catalysts, under mild reaction conditions. However, if the free fatty acid content of the feedstock is greater than 2% they cannot be used. The most traditional homogeneous basic catalysts used in the transesterification of oil and fats are NaOH, KOH, CH3ONa and CH3OK.1010 Sharma, Y. C.; Singh, B.; Upadhyay, S. N.; Fuel 2008, 87, 2355. Reactions usually occur at temperatures between 40 and 65 ºC within 15 and 45 min. On the other hand, homogeneous acid catalysts are insensitive to the presence of free fatty acids in the raw material. Some typical homogeneous acid catalysts are H2SO4, HCl and H3PO4. However, reactions are slower compared to basic catalysis.2424 Helwani, Z.; Othman, M. R.; Aziz, N.; Fernando, W. J. N.; Kim, J.; Fuel Process. Technol. 2009, 90, 1502. Some studies174174 Aransiola, E. F.; Ojumu, T. V.; Oyekola, O. O.; Madzimbamuto, T. F.; Ikhu-Omoregbe, D. I. O.; Biomass Bioenergy 2014, 61, 276.,175175 Chua, S. Y.; Periasamy, L. A. P.; Goh, C. M. H.; Tan, Y. H.; Mubarak, N. M.; Kansedo, J.; Khalid, M.; Walvekar, R.; Abdullah, E. C.; J. Ind. Eng. Chem. 2020, 81, 41. have been carried out to develop heterogeneous catalysts for biodiesel production. They allow a number of advantages, such as the possibility of reutilization, regeneration, easy separation of the reaction medium and production of high purity glycerol.174174 Aransiola, E. F.; Ojumu, T. V.; Oyekola, O. O.; Madzimbamuto, T. F.; Ikhu-Omoregbe, D. I. O.; Biomass Bioenergy 2014, 61, 276.,175175 Chua, S. Y.; Periasamy, L. A. P.; Goh, C. M. H.; Tan, Y. H.; Mubarak, N. M.; Kansedo, J.; Khalid, M.; Walvekar, R.; Abdullah, E. C.; J. Ind. Eng. Chem. 2020, 81, 41. Table 5 shows a summary of the different types of catalysts used in the production of biodiesel with their related advantages and drawbacks.

Table 5
Types of catalysts used in the production of biodiesel12,176-17

The industrial application of heterogeneous catalysis in biodiesel production is still not viable on a large scale. Most of these catalysts are expensive and show lower catalytic activity when compared to traditional basic homogeneous catalysts. In addition, much of the materials cited in the literature are deactivated due to leaching of the active phase or poisoning of the active sites, caused by impurities present in the raw material or even after exposure of the catalyst to atmospheric air. In some cases, the regeneration of the catalyst can be carried out by heat treatment, when the material withstands high temperatures. In other cases, regeneration is difficult or not effective. Up to now, there is no promising heterogeneous catalyst for large-scale application. On the other hand, environmental pressures related to waste disposal of the transesterification process, such as washing waters, have motivated studies for the implementation of a heterogeneous catalysis process, and above all, continuous. Solving the problem of leaching and deactivation of heterogeneous catalysts would enable the implementation of continuous processes, with fewer steps of product purification, also including glycerin, which ends up contaminated with most of the homogeneous catalyst.

3.1. Heterogeneous basic catalysts

Alkaline earth oxides, such as CaO, MgO and SrO, hydrotalcites and silica grafted amines are the most common heterogeneous basic catalyst used in the transesterification of oils and fats for biodiesel production.179179 Du, L.; Li, Z.; Ding, S.; Chen, C.; Qu, S.; Yi, W.; Lu, J.; Ding, J.; Fuel 2019, 258, 116122. CaO is environmentally friend, non-toxic, low cost and presents low solubility in methanol. In addition, CaO can be derived from natural sources.180180 Roschat, W.; Phewphong, S.; Thangthong, A.; Moonsin, P.; Yoosuk, B.; Kaewpuang, T.; Promarak, V.; Energy Convers. Manage. 2018, 165, 1.,181181 Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K.; Chem. Soc. Rev. 2014, 43, 7887. Roschat et al.180180 Roschat, W.; Phewphong, S.; Thangthong, A.; Moonsin, P.; Yoosuk, B.; Kaewpuang, T.; Promarak, V.; Energy Convers. Manage. 2018, 165, 1. tested CaO obtained from several sources as a catalyst in the production of biodiesel from palm oil. About 94% yield of biodiesel was obtained with 12:1 molar ratio methanol-to-oil for 5 h at room temperature (30 °C) and 5 wt.% of catalyst loading. Reutilization tests showed the catalyst can be reused for 4 cycles with conversions above 90%. However, conversion was drastically reduced after 9 cycles, which was mostly ascribed to the exposure to the atmosphere, forming Ca(OH)2 and CaCO3 upon reaction with moisture and CO2, respectively.

Mixed oxides of CaO-La2O3, with 1 wt.% of lithium, were tested in the transesterification of canola oil and methanol for biodiesel production. The calcination temperature of the catalyst affected the surface area and basicity of the material. Around 96% yield in methyl esters was observed with 15:1 molar ratio methanol-to-oil for 2.5 h at 65 °C and 5 wt.% of catalyst loading. After 4 reaction cycles, the conversion decreased to 85.6%. The authors attributed the deactivation to the poisoning of the active sites by CO2. Leaching tests showed conversion of only 4% of biodiesel, indicating that it is a minor factor of deactivation.182182 Maleki, H.; Kazemeini, M.; Larimi, A. S.; Khorasheh, F.; J. Ind. Eng. Chem. 2017, 47, 399.

Hydrotalcites are anionic clays of general formula [M2+(1-x) M3+x(OH)2]X+[An-]x/n .yH2O, where M2+ and M3+ are di- (e.g., Ca2+, Mg2+, Zn2+) and trivalent (frequently Al3+) cations in octahedral positions, An− an anion (e.g., CO32−, NO3, Cl) and n is within the 0.1-0.5 range. In the absence of calcination, hydrotalcites do not present significant catalytic activity for biodiesel production. The decomposition of hydrotalcite results in a high surface area material of a mixed oxide that exposes strongly Lewis basic sites.183183 Silva, C. C. C. M.; Ribeiro, N. F. P.; Souza, M. M. V. M.; Aranda, D. A. G.; Fuel Process. Technol. 2010, 91, 205.

184 Dias, A. P. S.; Bernardo, J.; Felizardo, P.; Correia, M. J. N.; Energy 2012, 41, 344.
-185185 Corala, N.; Brasil, H.; Rodrigues, E.; da Costa, C. E. F.; Rumjanek, V.; Sustainable Chem. Pharm. 2019, 11, 49. Navajas et al.186186 Navajas, A.; Campo, I.; Moral, A.; Echave, J.; Sanz, O.; Montes, M.; Odriozola, J. A.; Arzamendi, G.; Gandía, L. M.; Fuel 2018, 211, 173. tested hydrotalcites of Mg/Al using a 12:1 molar ratio methanol-to-oil for 8 h at 60 °C and 2 wt.% of catalyst loading. About 50% conversion of sunflower oil was observed at these conditions. Nowicki et al.187187 Nowicki, J.; Lach, J.; Organek, M.; Sabura, E.; Appl. Catal., A 2016, 524, 17. prepared Zr-dopped Mg-Al hydrotalcites with different Zr/Mg molar ratios. The catalysts were prepared by the co-precipitation method, calcined at 500 °C for 3 h and tested on the transesterification of rapeseed oil using 12:1 molar ratio methanol-to-oil for 6 h at 100 °C and 8 wt.% catalyst loading. The yield of biodiesel was 99.8%.

Mesoporous materials, such as MCM-41 and SBA-15, are formed by siloxane groups in the interior of the pores and silanols groups on the outer surface, where organic or inorganic groups can be grafted (Figure 6). Mesoporous materials present several applications. Among them, as support of heterogeneous catalysts.188188 de Lima, A. L.; Vieira, J. S. C.; Ronconi, C. M.; Mota, C. J. A.; Mol. Catal. 2018, 458, 240.

Figure 6
Ordered structure of MCM-41.178178 de Lima, A. L.; Ronconi, C. M.; Mota, C. J. A.; Catal. Sci. Technol. 2016, 6, 2877.

The amine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was anchored on silica MCM-41 (Figure 7) material by the post-synthesis189189 de Lima, A. L.; Mbengue, A.; San Gil, R. A. S.; Ronconi, C. M.; Mota, C. J. A.; Catal. Today 2014, 226, 210. and co-condensation methods.188188 de Lima, A. L.; Vieira, J. S. C.; Ronconi, C. M.; Mota, C. J. A.; Mol. Catal. 2018, 458, 240. The post-synthesis method favors the functionalization of the active sites on the external surface and at the entrance of the pores, whereas co-condensation allows a better dispersion of the active sites with more internal functionalization. The materials were tested on the transesterification of soybean oil under mild reaction conditions reaching 99% biodiesel conversions. The loss of catalytic activity during reuse was attributed to some leaching, but mainly to the neutralization of the active sites by the small amount of free fatty acids present in the oil.

Figure 7
Synthesis of MCM-41-TBD by the post-synthesis methods.189189 de Lima, A. L.; Mbengue, A.; San Gil, R. A. S.; Ronconi, C. M.; Mota, C. J. A.; Catal. Today 2014, 226, 210.

SBA-15 materials loaded with calcium were used in the transesterification of sunflower oil with methanol at 200 °C for 8 h. The yield of biodiesel at these conditions was 99.1%. Reutilization tests showed no loss of catalytic activity after 5 reaction cycles. The catalysts were simply removed, washed with methanol and dried for further application. The author suggests that the strong interaction between calcium and SBA-15 support (CaSiO3) actually occurred.190190 Sun, H.; Han, J.; Ding, Y.; Li, W.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Appl. Catal., A 2010, 390, 26.

Zeolites are crystalline aluminosilicates with interconnected cavities and channels, forming pores of molecular dimensions. Many ions, such as Na+, Ca2+, Mg2+ and K+ can be exchanged on the zeolite structure. This group includes a large number of natural and synthetic minerals that have adsorption capacity, ionic selectivity and are denominated "molecular sieves" because of their crystalline structure. Figure 8 shows some zeolite structures.191191 Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; van Tendeloo, G.; Microporous Mesoporous Mater. 2015, 210, 185.

192 Al-Ani, A.; Mordvinova, N. E.; Lebedev, O. I.; Khodakov, A. Y.; Zholobenko, V.; Energy Rep. 2019, 5, 357.
-193193 Baerlocher, C.; McCusker, L. B.; Olson, D. H.; Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, 2007.

Figure 8
Structure of (a) zeolite beta, (b) zeolite mordenite and (c) zeolite faujasite.

The transesterification of sunflower oil with methanol was carried out with three different zeolites: mordenite, beta and X, impregnated with sodium metal. The reactions were carried out at 60 °C for 7 h, using 6:1 molar ratio methanol-to-oil, 10 wt.% of catalyst loading and stirring rate of 500 rpm. The yield of biodiesel was 95.1% for zeolite X, 65.4% for zeolite beta and 12.7% for mordenite. The higher catalytic activity of zeolite X can be explained by the greater number of strong basic sites.194194 Ramos, M. J.; Casas, A.; Rodríguez, L.; Romero, R.; Pérez, Á.; Appl. Catal., A 2008, 346, 79. Zeolite X impregnated with sodium was tested in 3 consecutive catalytic cycles and the biodiesel yield decreased from 95.1 to 4.7%. The loss of catalytic activity can be explained by the leaching of the active species, showing that the sodium species occluded in the zeolite pores are responsible for the high catalytic activity of the catalyst.194194 Ramos, M. J.; Casas, A.; Rodríguez, L.; Romero, R.; Pérez, Á.; Appl. Catal., A 2008, 346, 79. Table 6 shows some selected studies on the use of heterogeneous basic catalysts in transesterification of vegetable oil with methanol for biodiesel production.

Table 6
Basic heterogeneous catalysts used for biodiesel production

3.2. Heterogeneous acid catalysts

The use of heterogeneous acid catalysts allows the use of low quality raw material, with high levels of fatty acids and water, as well as the easy separation of the catalyst and possibility of reutilization. Various materials can be highlighted, such as sulfated metal oxides, acid zeolites, mesostructured silica materials, heteropolyacids, ionic liquid and solid acid catalysts derived from biomass, such as biochar, activated carbon, biomass residue and refined carbohydrate.243243 Su, F.; Guo, Y.; Green Chem. 2014, 16, 2934.,244244 Mardhiah, H. H.; Ong, H. C.; Masjuki, H. H.; Lim, S.; Lee, H. V.; Renewable Sustainable Energy Rev. 2017, 67, 1225.

Jiménez-Morales et al.245245 Jiménez-Morales, I.; Santamaría-González, J.; Maireles-Torres, P.; Jiménez-López, A.; Appl. Catal., B 2011, 105, 199. incorporated aluminum atoms into the structure of SBA-15 by the post-synthesis method. The acidity of the material was linked to the aluminum content and the activation temperature. Transesterification of sunflower oil with methanol at 200 °C for 4 h, using 12:1 molar ratio methanol-to-oil and 600 rpm agitation, yielded 82% of biodiesel. The catalyst was reused in three successive reactions, with no pre-treatment, with a loss of 7% of the catalytic activity. Deactivation was explained in terms of the blocking of the active sites of the catalyst. Chemical analysis did not indicate any loss of aluminum atoms, confirming there was no leaching of the active phase.

Heteropolyacid, such as H3PMo12O40 (HPMo) supported on niobia, was tested in the reaction macaw palm oil, with high content of free fatty acids, using 90:1 molar ratio ethanol-to-oil at 210 ºC and 20 wt.% of catalysts. The yield of biodiesel was 99.7%. Reutilization tests indicated a decrease of the yield to 11% after 3 reaction cycles, which was ascribed to the decrease in the acidity of the catalyst due to the blocking of the active sites.246246 da Conceição, L. R. V.; Carneiro, L. M.; Giordani, D. S.; de Castro, H. F.; Renewable Energy 2017, 113, 119.

A matrix of mixed titanium and silicon oxides was tested in the transesterification of waste cooking oil using 30:1 molar ratio of methanol to oil for 4 h at 65 ºC and 5 wt.% of catalyst loading, yielding 98% of biodiesel. Reutilization tests showed no significant loss of catalytic activity after 4 successive cycles. Nevertheless, the catalyst needed to be washed, dried and calcined at 700 °C between the reaction cycles. The loss of catalytic activity in the fifth cycle is due to the leaching of the active species.247247 Kaur, M.; Malhotra, R.; Ali, A.; Renewable Energy 2018, 116, 109.

The use of heterogeneous acid catalysts allows the use of raw materials of high free fatty acids (FFA) content, which are cheaper and can be used without the need of additional pre-treatment. It also allows the simultaneous esterification and transesterification of oils with high content of fatty acids.248248 Zhang, P.; Wu, H.; Fana, M.; Sun, W.; Jiang, P.; Dong, Y.; Fuel 2019, 235, 426. Table 7 shows some selected studies on the use of heterogeneous acid catalysts for biodiesel production.

Table 7
Acid heterogeneous catalysts used for biodiesel production (with methanol)

3.3. Enzymatic catalysts

Enzymes, such as lipases, are capable of producing high purity biodiesel at moderate reaction temperatures. However, the reaction rate is slower than acid and basic catalysis and the high cost of the lipases limits its industrial application. In addition, some enzymes deactivate in the presence of methanol. Although it still is an expensive process, the immobilization of enzymes is an interesting alternative. For instance, immobilization of the enzyme in a polymer or resin can make the process less expensive, while allowing the reutilization of the enzyme.269269 Kimtun, P.; Choonut, O.; Yunu, T.; Paichid, N.; Klomkloa, S.; Sangkharak, K.; Energy Procedia 2015, 79, 822.

270 Soler, L.; Illanes, A.; Wilson, L.; Catal. Today 2016, 259, 177.
-271271 Pollardo, A. A.; Lee, H. S.; Lee, D.; Kim, S.; Kim, J.; J. Cleaner Prod. 2018, 185, 382.

Enzymatic reactions are insensitive to free fatty acids and water content in the raw material, whistle demanding lower energy consumption and producing purer glycerol phase. Notwithstanding, the costs are still high, limiting the process to be used in large scale. Some of the lipases most reported in the literature are: C. antarctica (Novozym 435), Candida sp. 99-125, C. rugosa, Trichosporon asahii MSR54, Yarrowia lipolytica. Table 8 shows some selected literature on biodiesel production with methanol using enzymatic catalysis.272272 Aarthy, M.; Saravanan, P.; Gowthaman, M. K.; Rose, C.; Kamini, N. R.; Chem. Eng. Res. Des. 2014, 92, 1591.

273 Budžaki, S.; Miljić, G.; Tišma, M.; Sundaram, S.; Hessel, V.; Appl. Energy 2017, 201, 124.
-274274 Moazeni, F.; Chen, Y.-C.; Zhang, G.; J. Cleaner Prod. 2019, 216, 117.

Table 8
Enzymatic catalysts used for biodiesel production with methanol

4. Biodiesel Production Technology

Searching for renewable energy sources to ensure economic development with social inclusion without environmental aggression is a challenge all over the world. Over the years, most of researching related to biodiesel production pursues alternative production routes which maintain the high reaction yields. Furthermore, it is interesting these new production routes decrease the operating cost of the processes, which is one of the main disadvantages for the economic viability of biodiesel production and commercialization. The transesterification process is the main technology to produce biodiesel in industrial units in Brazil. Nowadays, that production occurs mostly on an experimental scale with plants of small capacity.

The biodiesel price to the consumer is lower than fossil diesel. This can be explained by the reduction of governmental taxes.295295 https://www2.camara.leg.br/a-camara/estruturaadm/altosestudos/pdf/biodiesel-e-inclusao-social/biodiesel-e-inclusao-social, accessed in February 2021.
https://www2.camara.leg.br/a-camara/estr...
The strategy in Brazil is decreasing vehicle emissions, without changes in conventional diesel engines according to the government law.3030 https://www.gov.br/agricultura/pt-br/assuntos/agricultura-familiar/biodiesel/arquivos/cartilha-do-programa-nacional-de-producao-e-uso-de-biodiesel-pnpb.pdf, accessed in March 2021.
https://www.gov.br/agricultura/pt-br/ass...
The reduction of taxation is very important for biodiesel be used in high proportion.

Biodiesel is mostly produced by the transesterification of triacylglycerides (usually vegetable oils, but it also can be an animal fat or recycled oil). Despite the enormous limitations of homogeneous catalysts, most biodiesel is produced using alkaline and homogeneous catalysis. This is due to the fact it is much faster kinetically than transesterification using solid catalysts and economically viable. Extensive research is being conducted to develop basic heterogeneous catalysts, as discussed on section 3. In addition to the advantages mentioned in the previous section, the use of heterogeneous catalysts does not produce soaps by neutralizing free fatty acids. However, there are still major bottlenecks to be overcome because these processes require expensive refined vegetable oil as a raw material and are sensitive to water and free fatty acid content in the raw material.

In the current process, the triacylglycerides are stored and, after acid correction, it is transferred to the principal reactor. Then, either vegetable oil, animal fat or recycled oil reacts with an alcohol (methanol or ethanol) in the presence of a catalyst (KOH or NaOH) producing a mixture of fatty acid alkyl esters and glycerol.296296 Wright, H. J.; Segur, J. B.; Clark, H. V.; Coburn, S. K.; Langdon, E. E.; Dupuis, E. N.; Oil Soap 1944, 21, 145.,297297 Fredman, B.; Butterfield, R. O.; Pryde, E. H.; J. Am. Oil Chem. Soc. 1986, 63, 1375. The reaction is completed within 40 min, at temperatures between 30 and 40 °C. Following, it is necessary a separation step of the biodiesel (main product) from the raw glycerine (secondary product) by decantation or centrifugation. The separation step is one of the most important steps in the biodiesel production, since it is essential for the product specification according to legislation.298298 Agência Nacional do Petróleo, Gás Natural e Biocombustíveis; Resolução ANP No. 45, de 25 de agosto de 2014, available at https://atosoficiais.com.br/anp/resolucao-n-45-2014-?origin=instituicao, accessed in March 2021.
https://atosoficiais.com.br/anp/resoluca...
The fuel should have similar characteristics to conventional diesel in terms of their main characteristics. In the case it does not scope the requested specification, it needs to be reprocessed. The type of material, reagents and operational conditions (temperature, catalyst, alcohol-to-oil molar ratio, and reaction time) used in the transesterification influence the biodiesel yield.11 Ma, F.; Hanna, M. A.; Bioresour. Technol. 1999, 70, 1.

Generally, alcohol in excess is used in order to increase the biodiesel yielding and to permit its phase separation from the glycerine formed during the transterification reaction. In turn, the alcohol content in the glycerine can be recovered and reused in the process. Accordingly, glycerine can be purified and utilized, for instance, in the cosmetic and personal care applications, pharmaceutical applications, and paper industry, among others.299299 Alves, C. T.: Transesterificação de Óleos e Gorduras Residuais Via Rotas Metílica e Etílica Utilizando o Catalisador Aluminato de Zinco em Presença ou não de CO2 Supercrítico; PhD thesis, Universidade Federal da Bahia, Bahia, Brazil, 2012, available at http://repositorio.ufba.br/ri/handle/ri/23902, accessed in February 2021.
http://repositorio.ufba.br/ri/handle/ri/...

During the transesterification process several steps are required to separate the main product due to the formation of saponified materials. Besides that, another disadvantage of the transesterification process is the raw materials characteristics, which should have low water content and low acidity. In this context, new alternative routes have been researched over the years in order to overcome those disadvantages. For instance, we can refer to the hydro-esterification process, which is a good alternative process for reducing costs related to the separation step. Hydro-esterification is a process that allows the use of any fatty raw material, mainly with high contents of free fatty acids and water. This process is divided in two consecutive steps, hydrolysis followed by esterification. The hydrolysis step consists of chemical reaction between oil and water, producing glycerine and fatty acids. After hydrolysis, the fatty acids are esterified with alcohol (methanol or ethanol), resulting biodiesel in high purity.300300 Ramos, L. P.; Silva, F. R.; Mangrich, A. S.; Cordeiro, C. S.; Rev. Virtual Quim. 2011, 3, 385. Another alternative is the simultaneous esterification and transesterification of vegetable oils with high content of free fatty acid using heterogeneous acid catalysts. These studies have been mentioned in detail on section 3.

The use of sonication during the transesterification and esterification reactions for producing biodiesel has also been explored. The ultrasound-assisted process not only accelerates the reaction rate but also favors the miscibility between oil and methanol, decreasing the amount of catalyst needed for the reaction. Malek et al.301301 Malek, M. N. F. A.; Hussin, N. M.; Embong, N. H.; Bhuyar, P.; Rahim, M. H. A.; Govindan, N.; Maniam, G. P.; Biomass Convers. Biorefin. 2020, DOI: 10.1007/s13399-020-01100-6.
https://doi.org/10.1007/s13399-020-01100...
published a review containing a number of studies with this technology. The use of microwave energy is also worth mentioning. The short reaction time is one of its biggest advantages. On the other hand, this technology cannot be easily scaled-up. There are reviews focusing specifically on the microwave-assisted transesterification processes using homogeneous and heterogeneous catalysts for biodiesel production.302302 Khedri, B.; Mostafaei, M.; Ardebili, S. M. S.; Energy Sources, Part A 2019, 41, 2377; Nayak, S. N.; Bhasin, C. P.; Nayak, M. G.; Renewable Energy 2019, 143, 1366. The results achieved from the use of intensification technologies have been well documented in several reviews available in the literature, which also present advantages, disadvantages and the current status of these technologies.303303 Chuah, L. F.; Klemeš, J. J.; Yusup, S.; Bokhari, A.; Akbar, M. M.; J. Cleaner Prod. 2017, 146, 181; Gude, V. G.; Martinez-Guerra, E.; Environ. Chem. Lett. 2018, 16, 327; Günaya, M. E.; Türkerb, L.; Tapan, N. A.; Fuel 2019, 250, 27; Athar, M.; Zaidi, S.; J. Environ. Chem. Eng. 2020, 8, 104523; Bucciol, F.; Colia, M.; Gaudino, E. C.; Cravotto, G.; Catalysts 2020, 10, 988. Different reactor technologies for biodiesel production are also discussed in detail by Tabatabaei et al.304304 Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H. K. S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M. M.; Prog. Energy Combust. Sci. 2019, 74, 239.

Another alternative that can be used to produce biodiesel are processes at supercritical conditions. Supercritical fluid has been receiving a special attention in different types of processes due to its unique properties. The change of the fluid properties when within supercritical state is directly related to the density and its high compressibility.305305 Carrilho, E.; Tavares, M. C. H.; Lanças, F. M.; Quim Nova 2001, 24, 509. This difference of density reflects in the fluid coefficient of diffusivity, making the mass transfer easier in the supercritical medium. Besides that, the reaching of gases some properties such as surface tension and low viscosity, promote better dynamic characteristics and greater penetrability for the supercritical fluid.

The use of supercritical conditions in the biodiesel production can occur both in the alcohol used to produce the esters and through the addition of co-solvents in order to reduce significantly the operating conditions. The supercritical alcohol can form a single phase in contrast to the two-phase of oil/alcohol mixture at ambient condition. This is due to a decrease of the alcohol dielectric constant at supercritical condition. The most commonly used alcohols in conventional biodiesel, methanol (240 ºC and 78.7 bar) and ethanol (243 ºC and 63.8 bar) production methods have very similar physical characteristics in the supercritical condition.306306 Toralles, L. P.: Hidrólise de Óleos e Gorduras Residuais em Água Subcrítica para Produção de Biodiesel; MSc dissertation, Universidade Federal da Bahia, Bahia, Brazil, 2016, available at http://docplayer.com.br/47467716-Hidrolise-de-oleos-e-gorduras-residuais-em-agua-subcritica-para-producao-de-biodiesel.html, accessed in February 2021.
http://docplayer.com.br/47467716-Hidroli...

The addition of a co-solvent reduces the interfacial tension and promotes better contact between the reactant molecules. Recent studies mainly use water or CO2 as co-solvent to eliminate the use of the catalyst in the process of biodiesel synthesis.307307 Chen, C.-H.; Chen, W.-H.; Chang, C.-M. J.; Lai, S. M.; Tu, C.-H.; J. Supercrit. Fluids 2010, 52, 228. Carbon dioxide offers a plenty of advantages as it is inert, non-toxic, non-polar and does not require very high pressure and temperature conditions to reach its supercritical state (31 bar and 73.8 ºC). So, it can be used for replacing a non-polar solvent without promoting undesired side reactions of oxy-reductions or breakdown of molecules.308308 Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E.; Chem. Eng. J. 1995, 41, 1723.

Recently, Jafari et al.309309 Jafari, A.; Esmaeilzadeh, F.; Mowla, D.; Sadatshojaei, E.; Heidari, S.; Wood, D. A.; Fuel 2021, 285, 119199. directly converted wet microalgae biomass impregnated with ethanol in biodiesel using supercritical carbon dioxide. The lipid extraction and the transesterification process occurred simultaneously in a single step.

The use of supercritical medium offers a shorter residence time and higher purity of both products, biodiesel and glycerine, compared to those produced via conventional transesterification or hydro-esterification processes. Nevertheless, the supercritical process requires a higher operating condition. In this process, more robust equipment is necessary to support operating conditions of high pressures. Therefore, the biodiesel production by the supercritical route is still a laboratory condition, economically unfeasible, due to the costs of the process, either by the cost of the equipment to resist high temperatures and pressures, or by the cost of energy.

4.1. Transesterification in supercritical conditions

Transesterification is the traditional biodiesel production process. Therefore, the studies using supercritical conditions are mostly directed towards to this technological route.

According Dermibas,310310 Dermibas, A.; Energy Convers. Manage. 2002, 43, 2349. Saka and Kusdiana311311 Saka, S.; Kusdiana, D.; Fuel 2001, 80, 225. and Dermibas,312312 Dermibas, A.; Energy Convers. Manage. 2007, 48, 937. transesterification with supercritical methanol requires less reaction time to reach high methyl ester conversions, simplifying subsequent product separation steps, since no catalysts were added. The authors have used different sources of vegetable oils for developing both a catalytic transesterification process and a supercritical methanol transesterification process with the same objective of increasing the alcohol solubility in oil. Even though the reactions using supercritical methanol result in a shorter residence time in the reactor and simplify the separating biodiesel step, it still requires high molar ratios of alcohol-to-oil to achieve good conversions. In addition, the high temperature and pressure conditions bring a high cost of production and high initial investment.312312 Dermibas, A.; Energy Convers. Manage. 2007, 48, 937.

In order to reduce the operational conditions of the alcohol in supercritical medium, studies313313 Cao, W.; Han, H.; Zhang, J.; Fuel 2005, 84, 347; Imahara, H.; Xin, J.; Saka, S.; Fuel 2009, 88, 1329. have added a co-solvent into the process, for achieving smoother critical conditions than it would have by using pure alcohol. Thus, the transesterification reaction can be performed under milder conditions, but still preserving the desired solubility between alcohol and oil. In this context, co-solvents such as carbon dioxide, hexane, propane and nitrogen were tested.313313 Cao, W.; Han, H.; Zhang, J.; Fuel 2005, 84, 347; Imahara, H.; Xin, J.; Saka, S.; Fuel 2009, 88, 1329. On the other hand, in the biodiesel production, the addition of supercritical CO2 to the reaction medium has been highlighted in recent years as the most viable and interesting addition to this process.

Alves299299 Alves, C. T.: Transesterificação de Óleos e Gorduras Residuais Via Rotas Metílica e Etílica Utilizando o Catalisador Aluminato de Zinco em Presença ou não de CO2 Supercrítico; PhD thesis, Universidade Federal da Bahia, Bahia, Brazil, 2012, available at http://repositorio.ufba.br/ri/handle/ri/23902, accessed in February 2021.
http://repositorio.ufba.br/ri/handle/ri/...
and Maçaira et al.314314 Maçaira, J.; Santana, A.; Recasens, F.; Larrayoz, M. A.; Fuel 2011, 90, 2280. carried out experiments using heterogeneous catalyst to perform methyl transesterification in the presence of CO2. The authors obtained a good conversion rate of triacylglycerides to methyl esters. The experiments carried out by Alves299299 Alves, C. T.: Transesterificação de Óleos e Gorduras Residuais Via Rotas Metílica e Etílica Utilizando o Catalisador Aluminato de Zinco em Presença ou não de CO2 Supercrítico; PhD thesis, Universidade Federal da Bahia, Bahia, Brazil, 2012, available at http://repositorio.ufba.br/ri/handle/ri/23902, accessed in February 2021.
http://repositorio.ufba.br/ri/handle/ri/...
were in the presence of zinc aluminate as a heterogeneous catalyst. These experiments were conducted with and without supercritical CO2 in order to evaluate each route separately. The results indicated the best reaction yields were obtained for methyl transesterification with supercritical CO2 (96.5% with 30 min residence time). Using supercritical CO2 as co-solvent demonstrated that it is an alternative to overcome solubility and reactional homogeneity problems.

4.2. Esterification in supercritical conditions

The esterification reaction is the second step of the hydrothermal production process. The first reaction step is the hydrolysis. The esterification is commonly conducted when the raw material has a high acidity level, resulted from the presence of free fatty acids in the oil and/or fat. This reaction is responsible for ensuring the predominance of free fatty acids when the raw material is not yet completely converted. As in the transesterification process, esterification can also be conducted in the presence of acidic or alkaline, homogeneous or heterogeneous catalysts, and may or may not be associated with supercritical conditions in the process.306306 Toralles, L. P.: Hidrólise de Óleos e Gorduras Residuais em Água Subcrítica para Produção de Biodiesel; MSc dissertation, Universidade Federal da Bahia, Bahia, Brazil, 2016, available at http://docplayer.com.br/47467716-Hidrolise-de-oleos-e-gorduras-residuais-em-agua-subcritica-para-producao-de-biodiesel.html, accessed in February 2021.
http://docplayer.com.br/47467716-Hidroli...

In recent years, some authors have published the use of supercritical conditions to produce biodiesel via esterification. Alenezi et al.315315 Alenezi, R.; Leeke, G. A.; Winterbotton, J. M.; Santos, R. C. D.; Khan, A. R.; Energy Convers. Manage. 2010, 51, 1055. and Koh316316 Koh, A. D.: Two-Step Biodiesel Production Using Supercritical Methanol and Ethanol; PhD thesis, University of Iowa, Iowa, USA, 2011, available at https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2623&context=etd, accessed in February 2021.
https://ir.uiowa.edu/cgi/viewcontent.cgi...
performed esterification experiments using supercritical methanol with temperatures ranging from 250 to 320 ºC. In both studies, the authors report the strong influence of temperature and alcohol-to-oil molar ratio, whose increase leads to a better reaction yield. Koh 316316 Koh, A. D.: Two-Step Biodiesel Production Using Supercritical Methanol and Ethanol; PhD thesis, University of Iowa, Iowa, USA, 2011, available at https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2623&context=etd, accessed in February 2021.
https://ir.uiowa.edu/cgi/viewcontent.cgi...
had also noticed that the quality of the raw material does not influence the process and high conversions are reached in a short time for methanol and ethanol.

Tsai et al.317317 Tsai, Y.; Lin, H.; Lee, M.; Bioresour. Technol. 2013, 145, 362. conducted supercritical methanol experiments using carbon dioxide as co-solvent aiming to improve the yield of biodiesel production reactions. Therefore, as in transesterification, it is observed the use of supercritical alcohol modifies the esterification reaction performance. Although eliminating the catalyst separation subsequent steps, this process needs higher temperature and pressure operating conditions and higher amount of alcohol. Within the context of esterification by enzymatic catalysis, the addition of supercritical carbon dioxide also brings considerable improvements in results.318318 Vieville, C.; Moulooungui, Z.; Gaset, A.; Ind. Eng. Chem. Res. 1993, 32, 2065.

5. Additives for Blended and Unblended Biodiesel

Biodiesel is a renewable fuel which has been proposed as a viable alternative for partial diesel replacement by possibly reducing engine emissions and providing greater lubrication. However, biodiesel has some disadvantages. Among them, we should point the low stability to oxidation and biodegradation as main disadvantages. The maintenance of oxidative stability and the inhibition of microbial growth in biodiesel are extremely important for the biofuel market, both in terms of preserving its quality and the saved costs involved. Oxidative stability has been partly maintained through the addition of synthetic antioxidants originally developed for food products. In addition to increasing the biofuel costs, these products compromise the "green fuel seal".

Some countries are already adding biocides to biodiesel as well. This is derived from studies319319 Passman, F. J.; Int. Biodeterior. Biodegrad. 2013, 81, 88. performed for evaluating the degradation of methyl ester mixture caused by microorganisms. However, there are quite a few studies specifically reporting the performance of new compounds acting as biocides. Additionally, biodiesel is hygroscopic and the amount of water absorbed acts directly on the corrosion of the metallic materials which it comes into contact. Regarding that, there also are quite a few studies involving the addition of corrosion inhibitors to this biofuel. Following, we discuss in more detail biodiesel additives.

5.1. Antioxidant additives

A strategy widely discussed in the literature to overcome the biodiesel low oxidative stability is the use of antioxidant additives. Additives are substances added to the fuel to improve their properties. In the case of the antioxidant additives, they act by preventing or retarding the biodiesel degradation, by donating an electron or hydrogen to the free radicals to neutralize the oxidation reaction. Thus, it avoids the formation of insoluble gums and sediments which increase biodiesel viscosity, may clog fuel filters or make deposits in the fuel injector. This should also be avoided in order to improve engine’s functioning.320320 Varatharajan, K.; Pushparani, D. S.; Renewable Sustainable Energy Rev. 2018, 82, 2017.

The importance of antioxidant additives is critically discussed in a number of reviews published about this subject from 2005 to 2020. One of the first reviews was published by Dunn in 2008.321321 Dunn, R. O.; Biofuels, Bioprod. Biorefin. 2008, 2, 304. The author summarized the research progress in the development of effective antioxidants for use in biodiesel from soybean oil, rapeseed oil, used cooking oil, tallow and palm oil.321321 Dunn, R. O.; Biofuels, Bioprod. Biorefin. 2008, 2, 304. Several authors have published reviews on the oxidative stability of biodiesel, such as Knothe,322322 Knothe, G.; Fuel Process. Technol. 2007, 88, 669. Jain and Sharma,2222 Jain, S.; Sharma, M. P.; Renewable Sustainable Energy Rev. 2010, 14, 667. Bannister et al.,323323 Bannister, C. D.; Chuck, C. J.; Bounds, M.; Hawley, J. G.; Proc. Inst. Mech. Eng., Part D 2011, 225, 99. Pullen and Saeed,2525 Pullen, J.; Saeed, K.; Renewable Sustainable Energy Rev. 2012, 16, 5924. Fattah et al.,324324 Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Hazrat, M. A.; Masum, B. M.; Imtenan, S.; Ashraful, A. M.; Renewable Sustainable Energy Rev. 2014, 30, 356. Yaakob et al.,325325 Yaakob, Z.; Narayanan, B. N.; Padikkaparambil, S.; Unni, K. S.; Akbar, P. M.; Renewable Sustainable Energy Rev. 2014, 35, 136. Angelovic et al.,326326 Angelovič, M.; Jablonickỳ, J.; Tkáč, Z.; Angelovič, M.; Potravinarstvo 2015, 9, 417. Kumar,327327 Kumar, N.; Fuel 2017, 190, 328. Agarwal et al.328328 Agarwal, S.; Singhal, S.; Singh, M.; Arora, S.; Tanwer, M.; ACS Sustainable Chem. Eng. 2018, 6, 11036. and Varatharajan and Pushparani.320320 Varatharajan, K.; Pushparani, D. S.; Renewable Sustainable Energy Rev. 2018, 82, 2017. In addition to the effects of antioxidants on the biodiesel oxidative stability, the most recent reviews also discuss the impact of these additives on performance, combustion and emission of vehicles.329329 Madiwale, S.; Karthikeyan, A.; Bhojwani, V.; IOP Conf. Ser.: Mater. Sci. Eng. 2017, 197, 012015; Kumar, M. V.; Babu, A. V.; Kumar, P. R.; Alexandria Eng. J. 2018, 57, 121; Ramalingam, S.; Rajendran, S.; Ganesan, P.; Govindasamy, M.; Renewable Sustainable Energy Rev. 2018, 81, 775. The antioxidant additives are divided into two groups: synthetic additives and additives from natural sources. In turn, the synthetic additives are sequentially subdivided into usual synthetic antioxidants, analogues and/or derivatives from the usual synthetic antioxidants and structurally different substances, which do not fall into the two previous classifications.

5.1.1. Usual synthetic antioxidants

The synthetic antioxidants usually added to commercial biodiesel generally are phenolic derivatives that exhibit high antioxidant activity. Those phenolic compounds act by stabilizing the radical generated in the oxidation reactions by the aromatic ring resonance, thus interrupting the free radical propagation reactions. These antioxidants are widely used in vegetable oils sold in the food market.330330 Ramalho, V. C.; Jorge, N.; Quim. Nova 2006, 29, 755. For instance, BHT (butylated hydroxytoluene), TBHQ (tert-butylhydroxyquinone), PG (propyl gallate), PY (pyrogallol) and BHA (butylated hydroxyanisole) are the most used ones. Their chemical structures are presented in Figure 9.

Figure 9
Chemical structures of usual synthetic antioxidant additives.

These antioxidants have been evaluated in several studies on biodiesel from different raw materials. The most commonly used biodiesels were those derived from soybean oil,331331 Dunn, R. O.; J. Am. Oil Chem. Soc. 2005, 82, 381; Dunn, R. O.; Fuel Process. Technol. 2005, 86, 1071; Valle, M. L. M.; Leonardo, R. S.; Dweck, J.; J. Therm. Anal. Calorim. 2014, 116, 113; Domingos, A. K.; Saad, E. B.; Vechiatto, W. W. D.; Wilhelm, H. M.; Ramos, L. P.; J. Braz. Chem. Soc. 2007, 18, 416; Ryu, K.; J. Mech. Sci. Technol. 2010, 23, 3105; Borsato, D.; Dall’Antonia, L. H.; Guedes, C. L. B.; Maia, E. C. R.; Freitas, H. R.; Moreira, I.; Spacino, K. R.; Quim. Nova 2010, 33, 1726; Tang, H.; Guzman, R. C. D.; Ng, K. Y. S.; Salley, S. O.; Energy Fuels 2010, 24, 2028; Tavares, M. L. A.; Queiroz, N.; Santos, I. M. G.; Souza, A. L.; Cavalcanti, E. H. S.; Barros, A. K. D.; Rosenhaim, R.; Soledade, L. E. B.; Souza, A. G.; J. Therm. Anal. Calorim. 2011, 106, 575; Maia, E. C. R.; Borsato, D.; Moreira, I.; Spacino, K. R.; Rodrigues, P. R. P.; Gallina, A. L.; Fuel Process. Technol. 2011, 92, 1750; Souza, F. H. N.; Maia, F. J. N.; Mazzetto, S. E.; Nascimento, T. L.; de Andrade, N.; Chem. Biochem. Eng. Q. 2013, 27, 327.,332332 Focke, W. W.; van der Westhuizen, I.; Grobler, A. B. L.; Nshoane, K. T.; Reddy, J. K.; Luyt, A. S.; Fuel 2012, 94, 227. sunflower oil,332332 Focke, W. W.; van der Westhuizen, I.; Grobler, A. B. L.; Nshoane, K. T.; Reddy, J. K.; Luyt, A. S.; Fuel 2012, 94, 227.

333 Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J.; Fuel 2013, 113, 50.

334 Deligiannis, A.; Anastasakos, A.; Anastopoulos, G.; Dodos, G. S.; Zannikos, F.; SAE Tech. Pap. 2013, 1, 1128.

335 Serqueira, D. S.; Fernandes, D. M.; Cunha, R. R.; Squissato, A. L.; Santos, D. Q.; Richter, E. M.; Munoz, R. A. A.; Fuel 2014, 118, 16.
-336336 Ferrari, R. A.; de Souza, W. L.; Quim. Nova 2009, 32, 106; Karavalakis, G.; Hilari, D.; Givalou, L.; Karonis, D.; Stournas, S.; Energy 2011, 36, 369; Cursaru, D.; Neagu, M.; Bogatu, L.; Rev. Chim. 2013, 64, 438; van der Westhuizen, I.; Focke, W. W.; Fuel 2018, 219, 126. and palm oil.333333 Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J.; Fuel 2013, 113, 50.,337337 Loh, S. K.; Chew, S. M.; Choo, Y. M.; J. Am. Oil Chem. Soc. 2006, 83, 947; Liang, Y. C.; May, C. Y.; Foon, C. S.; Ngan, M. A.; Hock, C. C.; Basiron, Y.; Fuel 2006, 85, 867; Lin, C. Y.; Chiu, C. C.; Energy Fuels 2009, 23, 3285; Lin, C. Y.; Chiu, C. C.; Energy Convers. Manage. 2010, 51, 1464; Pullen, J.; Saeed, K.; Fuel Process. Technol. 2014, 125, 223; Susanto, B. H.; Lukman; Sutanto, H.; Nasikin, M.; IOP Conf. Ser.: Earth Environ. Sci. 2018, 105, 2. The most recent publications have already started to pay attention in evaluating the effect of these antioxidants on the emissions, combustion and performance studies.338338 Gan, S.; Ng, H. K.; Energy Convers. Manage. 2010, 51, 1536; Ryu, K.; Bioresour. Technol. 2010, 101, S78; Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Wakil, M. A.; Ashraful, A. M.; Shahir, S. A.; Energy Convers. Manage. 2014, 83, 232.

339 Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Teoh, Y. H.; How, H. G.; Rizwanul Fattah, I. M.; Energy Convers. Manage. 2015, 106, 849.

340 Ramalingam, S.; Govindasamy, M.; Rajendran, S.; Therm. Sci. 2016, 20, S991; Velmurugan, K.; Sathiyagnanam, A. P.; Alexandria Eng. J. 2016, 55, 715; Ashok, B.; Nanthagopal, K.; Jeevanantham, A. K.; Bhowmick, P.; Malhotra, D.; Agarwal, P.; Energy Convers. Manage. 2017, 148, 935.

341 Adam, I. K.; Aziz, A. R. A.; Heikal, M. R.; Yusup, S.; Energy Fuels 2017, 31, 4424.

342 Rashedul, H. K.; Kalam, M. A.; Masjuki, H. H.; Teoh, Y. H.; How, H. G.; Monirul, I. M.; Imdadul, H. K.; Environ. Sci. Pollut. Res. 2017, 24, 9305.

343 Sharma, A.; Murugan, S.; Appl. Therm. Eng. 2017, 118, 365; Prabu, S. S.; Asokan, M. A.; Roy, R.; Francis, S.; Sreelekh, M. K.; Energy 2017, 122, 638.

344 Alagu, K.; Nagappan, B.; Jayaraman, J.; Arul Gnana Dhas, A.; Environ. Sci. Pollut. Res. 2018, 25, 17634.

345 Kivevele, T. T.; Kristóf, L.; Bereczky, Á.; Mbarawa, M. M.; Fuel 2011, 90, 2782.

346 Prabu, A.; Premkumar, I. J. I.; Pradeep, A.; Int. J. Ambient Energy 2020, 41, 121.

347 Reddy, V. P. K.; Kumar, D. S.; Thirumalini, S.; IOP Conf. Ser.: Mater. Sci. Eng. 2018, 310, 12116.

348 Sachuthananthan, B.; Balaji, G.; Krupakaran, R. L.; Int. J. Ambient Energy 2020, 41, 889.

349 Afzal, S.; Mumtaz, M. W.; Rashid, U.; Danish, M.; Raza, M. A.; Raza, A.; Mukhtar, H.; Al-Resayes, S. I.; Clean Technol. Environ. Policy 2018, 20, 589.

350 Halek, F.; Kavousi-Rahim, A.; Energy Environ. 2018, 29, 732.

351 Yamane, K.; Komiya, K.; Kondo, C.; Kawasaki, K.; SAE Int. J. Fuels Lubr. 2013, 6, 2013.

352 Ileri, E.; Koçar, G.; Energy Convers. Manage. 2013, 76, 145.

353 Jain, S.; Sharma, M. P.; Fuel 2013, 106, 152.

354 Balaji, G.; Cheralathan, M.; J. Energy Inst. 2014, 87, 188.

355 Fattah, I. M. R.; Hassan, M. H.; Kalam, M. A.; Atabani, A. E.; Abedin, M. J.; J. Cleaner Prod. 2014, 79, 82.

356 Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Mofijur, M.; Abedin, M. J.; Energy Convers. Manage. 2014, 79, 265.
-357357 Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Wakil, M. A.; Rashedul, H. K.; Abedin, M. J.; Ind. Crops Prod. 2014, 57, 132. In addition to these properties, conventional antioxidants have also been evaluated for antimicrobial activity. Beker et al.358358 Beker, S. A.; da Silva, Y. P.; Bücker, F.; Cazarolli, J. C.; de Quadros, P. D.; Peralba, M. C. R.; Piatnicki, C. M. S.; Bento, F. M.; Fuel 2016, 184, 701. evaluated the effect of BHT and TBHQ antioxidants on the growth of microorganisms in soybean biodiesel. Dodos et al.359359 Dodos, G. S.; Tsesmeli, C. E.; Zannikos, F.; Fuel 2017, 209, 150. evaluated the microbial action of synthetic and natural additives in soybean and olive biodiesels.

5.1.2. Analogues and/or derivatives from usual synthetic antioxidants-phenolic compounds

Most of the new antioxidant candidates are derived from commercially available antioxidant additives. There are commercial products which can be considered derivatives from the usual antioxidants. Two examples are Ionol,339339 Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Teoh, Y. H.; How, H. G.; Rizwanul Fattah, I. M.; Energy Convers. Manage. 2015, 106, 849.,360360 Tang, H.; Wang, A.; Salley, S. O.; Ng, K. Y. S.; J. Am. Oil Chem. Soc. 2008, 85, 373.

361 Zaleckas, E.; Makarevičienė, V.; Sendžikienė, E.; Transport 2012, 27, 60.

362 Machado, Y. L.; Teles, U. M.; Dantas Neto, A. A.; Dantas, T. N. C.; Fonseca, J. L. C.; Fuel 2013, 112, 172.

363 Karčauskiene, D.; Sendžikiene, E.; Makarevičiene, V.; Zaleckas, E.; Repšiene, R.; Ambrazaitiene, D.; Zemdirbyste 2014, 101, 161.
-364364 Sirviö, K.; Niemi, S.; Vauhkonen, V.; Hiltunen, E.; Agron. Res. 2014, 12, 407. which is a mixture of phenolic compounds, and Vulkanox or BPH (2,2’-methylenebis(6-tert-butyl-4-methylphenol)).339339 Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Teoh, Y. H.; How, H. G.; Rizwanul Fattah, I. M.; Energy Convers. Manage. 2015, 106, 849.,342342 Rashedul, H. K.; Kalam, M. A.; Masjuki, H. H.; Teoh, Y. H.; How, H. G.; Monirul, I. M.; Imdadul, H. K.; Environ. Sci. Pollut. Res. 2017, 24, 9305.,365365 Leonardo, R. S.; Valle, M. L. M.; Dweck, J.; J. Therm. Anal. Calorim. 2018, 131, 343.,366366 Dweck, J.; Leonardo, R. S.; Valle, M. L. M.; J. Therm. Anal. Calorim. 2013, 113, 1317. The chemical structures of these components are presented in Figure 10.

Figure 10
Constituents of the Ionol and BPH products derived from conventional synthetic additives.

Li et al.367367 Li, F.; Li, M.; Bao, G.; Wang, H.; Li, Y.; Du, W.; Li, X.; Asian J. Chem. 2014, 26, S217. synthesized a number of gallic acid-derived esters with different short-chain alcohols. Their antioxidant effects were evaluated in relation to Jatropha curcas L. seed oil biodiesel using the Rancimat method. The structures are shown in Figure 11. Singh et al.368368 Singh, R. K.; Kukrety, A.; Sharma, O. P.; Baranwal, S.; Atray, N.; Ray, S. S.; J. Ind. Eng. Chem. 2016, 37, 27.

369 Singh, R. K.; Kukrety, A.; Sharma, O. P.; Poddar, M. K.; Atray, N.; Thakre, G. D.; Ray, S. S.; Waste Biomass Valorization 2016, 7, 1437.
-370370 Singh, R. K.; Kukrety, A.; Sharma, O. P.; Poddar, M. K.; Atray, N.; Ray, S. S.; Pet. Chem. 2017, 57, 100. published a sequence of three studies which they synthesized BHT (2,6-di-tert-butyl-4-methylphenol) derivatives. The BHT derivatives chemical structures are presented in Figure 12.

Figure 11
Substances derived from gallic acid.

Figure 12
BHT synthetic derivatives.

Muniz-Wypych et al.371371 Muniz-Wypych, A. S.; da Costa, M. M.; Oliveira, A. R. S.; Neu, P. M.; Schober, S.; Mittelbach, M.; Ramos, L. P.; César-Oliveira, M. A. F.; Eur. J. Lipid Sci. Technol. 2017, 119, 1700179. proposed new phenolic antioxidant additives derived from alkyl oleates (Figure 13). This class of compounds is more soluble in biodiesel and showed to be very promising to enhance methyl rapeseed biodiesel oxidative stability.

Figure 13
New phenolic derivatives obtained by Muniz-Wypych et al.371371 Muniz-Wypych, A. S.; da Costa, M. M.; Oliveira, A. R. S.; Neu, P. M.; Schober, S.; Mittelbach, M.; Ramos, L. P.; César-Oliveira, M. A. F.; Eur. J. Lipid Sci. Technol. 2017, 119, 1700179. from the reaction with alkyl oleates.

5.1.3. Unconventional synthetic antioxidants-non-phenolic compounds

The group of so-called structurally different substances (non-conventional synthetic additives) is mainly composed with nitrogen compounds. Among them, the best known species are DPPD (N’-phenylbenzene-1,4-diamine),332332 Focke, W. W.; van der Westhuizen, I.; Grobler, A. B. L.; Nshoane, K. T.; Reddy, J. K.; Luyt, A. S.; Fuel 2012, 94, 227.,339339 Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Teoh, Y. H.; How, H. G.; Rizwanul Fattah, I. M.; Energy Convers. Manage. 2015, 106, 849.,341341 Adam, I. K.; Aziz, A. R. A.; Heikal, M. R.; Yusup, S.; Energy Fuels 2017, 31, 4424.,372372 Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Rahman, M. M.; Imdadul, H. K.; Rashedul, H. K.; Renewable Energy 2016, 94, 294.

373 Prabu, A.; Environ. Prog. Sustainable Energy 2017, 36, 565.

374 Kolanjiappan, V.; Rev. Fac. Ing., Univ. Antioquia 2017, 2017, 46.

375 Ramalingam, S.; Rajendran, S.; SAE Int. J. Fuels Lubr. 2017, 10, 2017.

376 Ashok, B.; Nanthagopal, K.; Subbarao, R.; Johny, A.; Mohan, A.; Tamilarasu, A.; J. Cleaner Prod. 2017, 166, 474.

377 Palash, S. M.; Kalam, M. A.; Masjuki, H. H.; Masum, B. M.; Adv. Mater. Res. 2013, 774-776, 784.

378 Varatharajan, K.; Cheralathan, M.; Fuel Process. Technol. 2013, 106, 526.

379 Palash, S. M.; Kalam, M. A.; Masjuki, H. H.; Arbab, M. I.; Masum, B. M.; Sanjid, A.; Energy Convers. Manage. 2014, 77, 577.

380 Prabu, A.; Anand, R. B.; Front. Energy 2015, 9, 238.

381 Rashed, M. M.; Kalam, M. A.; Masjuki, H. H.; Habibullah, M.; Imdadul, H. K.; Shahin, M. M.; Rahman, M. M.; Ind. Crops Prod. 2016, 89, 273.
-382382 Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Imdadul, H. K.; Rashedul, H. K.; Shahin, M. M.; Habibullah, M.; RSC Adv. 2016, 6, 22436. NPPD (N,N’-diphenyl-1,4-phenylenediamine),341341 Adam, I. K.; Aziz, A. R. A.; Heikal, M. R.; Yusup, S.; Energy Fuels 2017, 31, 4424.,372372 Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Rahman, M. M.; Imdadul, H. K.; Rashedul, H. K.; Renewable Energy 2016, 94, 294.,373373 Prabu, A.; Environ. Prog. Sustainable Energy 2017, 36, 565.,378378 Varatharajan, K.; Cheralathan, M.; Fuel Process. Technol. 2013, 106, 526.,381381 Rashed, M. M.; Kalam, M. A.; Masjuki, H. H.; Habibullah, M.; Imdadul, H. K.; Shahin, M. M.; Rahman, M. M.; Ind. Crops Prod. 2016, 89, 273.,382382 Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Imdadul, H. K.; Rashedul, H. K.; Shahin, M. M.; Habibullah, M.; RSC Adv. 2016, 6, 22436. succinimide (pyrrolidine-2,5-dione)346346 Prabu, A.; Premkumar, I. J. I.; Pradeep, A.; Int. J. Ambient Energy 2020, 41, 121.,373373 Prabu, A.; Environ. Prog. Sustainable Energy 2017, 36, 565.,380380 Prabu, A.; Anand, R. B.; Front. Energy 2015, 9, 238. and PDA (N,N’-di-sec-butylbenzene-1,4-diamine).365365 Leonardo, R. S.; Valle, M. L. M.; Dweck, J.; J. Therm. Anal. Calorim. 2018, 131, 343.,383383 Alberici, R. M.; Simas, R. C.; Abdelnur, P. V.; Eberlin, M. N.; de Souza, V.; de Sá, G. F.; Daroda, R. J.; Energy Fuels 2010, 24, 6522.

384 Chen, Y. H.; Luo, Y. M.; Fuel Process. Technol. 2011, 92, 1387.

385 Alberici, R. M.; de Souza, V.; de Sá, G. F.; Morelli, S. R.; Eberlin, M. N.; Daroda, R. J.; Bioenergy Res. 2012, 5, 1002.

386 Chen, Y. H.; Tang, T. C.; Chiang, T. H.; Huang, B. Y.; Chang, C. Y.; Chiang, P. C.; Shie, J. L.; Franzreb, M.; Chen, L. Y.; Energies 2012, 5, 3137.
-387387 Subroto, E.; Manurung, R.; Heeres, H. J.; Broekhuis, A. A.; Eur. J. Lipid Sci. Technol. 2013, 115, 909. The structures of these compounds are presented on Figure 14. Bär et al.388388 Bär, F.; Hopf, H.; Knorr, M.; Krahl, J.; Fuel 2018, 215, 249.,389389 Bär, F.; Hopf, H.; Knorr, M.; Krahl, J.; Fuel 2018, 232, 108. studied the antioxidant activity of a series of hydrazide derivatives. Figure 15 presents the hydrazide derivatives evaluated as antioxidants.

Figure 14
Structures of some non-conventional synthetic additives.

Figure 15
Hydrazide derivatives evaluated as antioxidants.

Dodson et al.390390 Dodson, J. R.; Avellar, T.; Athayde, J.; Mota, C. J. A.; Pure Appl. Chem. 2014, 86, 905. synthesized new glycerol acetals from aromatic aldehydes (Figure 16), which their antioxidant activities were quantified through a standard procedure using diphenyl-picryl-hydrazine radical (DPPH·) method. The main objective of this study was to investigate a potential application for glycerol, which is a secondary product from biodiesel synthesis.

Figure 16
Chemical structure of antioxidant candidates derived from glycerol.

El-Boulifi et al.391391 El-Boulifi, N.; Ashari, S. E.; Serrano, M.; Aracil, J.; Martínez, M.; Enzyme Microb. Technol. 2014, 55, 128. obtained kojic acid ricinoleate by lipase-catalyzed esterification in a solvent-free system. The addition of the new kojic acid derivative (Figure 17) improved the rapeseed biodiesel oxidation stability.

Figure 17
Structure of kojic acid ricinoleate.

Schirmann et al.392392 Schirmann, J. G.; Dekker, R. F. H.; Borsato, D.; Barbosa-Dekker, A. M.; Appl. Catal., A 2018, 555, 88. synthesized three dimers of 2,6-dimethoxyphenol through laccase-catalyzed oxidative coupling reactions (Figure 18). The product 3,3’,5,5’-tetramethoxybiphenyl-4,4’-diol (dimer II) was evaluated as antioxidant candidate for soybean biodiesel and showed an efficacy similar to the commercial antioxidant BHT.393393 Schirmann, J. G.; Angilelli, K. G.; Dekker, R. F. H.; Borsato, D.; Barbosa-Dekker, A. M.; Fuel 2019, 237, 593. Sui and Li394394 Sui, M.; Li, F.; Renewable Energy 2019, 143, 352. investigated the antioxidant effect of tetraethylenepentamine on rapeseed biodiesel oxidation resistance at different concentrations. The use of 2.1% of the additive increased the induction time in the Rancimat test by more than 10 times compared to pure biodiesel. Recently, Figueredo et al.395395 Figueredo, I. D. M.; Rios, M. A. D. S.; Cavalcante, C. L.; Luna, F. M. T.; Ind. Eng. Chem. Res. 2020, 59, 18. tested the antioxidant activity of N,N’-disec-butyl-p-phenylenediamine in babassu biodiesel by the Rancimat method and differential scanning calorimetry. The results showed a significant improvement in the biodiesel oxidative stability.

Figure 18
Coupled oxidative products of 2,6-dimethoxyphenol catalyzed by laccase.

5.1.4. Natural antioxidants

Most vegetable oils used to produce biodiesel have in their composition natural antioxidants which are removed during the process of transesterification or esterification. In the literature, there are several studies applying these antioxidants in the exogenous form, as it is the case of (-tocopherol384384 Chen, Y. H.; Luo, Y. M.; Fuel Process. Technol. 2011, 92, 1387.,396396 Varatharajan, K.; Cheralathan, M.; Velraj, R.; Fuel 2011, 90, 2721.

397 Usta, N.; Aydoǧan, B.; On, A. H.; Uǧuzdǒan, E.; Özkal, S. G.; Energy Convers. Manage. 2011, 52, 2031.

398 Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Carvalho Filho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Fuel 2012, 97, 638.

399 Moser, B. R.; Renewable Energy 2012, 40, 65.

400 Luo, M.; Zhang, R. Y.; Zheng, Z.; Wang, J. L.; Ji, J. B.; J. Braz. Chem. Soc. 2012, 23, 241.

401 Pinto, L. M.; de Souza, A. L.; Souza, A. G.; Santos, I. M. G.; Queiroz, N.; J. Therm. Anal. Calorim. 2015, 120, 277.

402 Balaji, G.; Cheralathan, M.; Energy Sources, Part A 2016, 38, 2454.

403 Ramalingam, S.; Ganesan, P.; Rajendran, S.; Therm. Sci. 2016, 20, S967.

404 Tahmasebi, S. E.; Rabiei, Z.; Vannozzi, G. P.; Helia 2006, 29, 25.

405 Moser, B. R.; Eur. J. Lipid Sci. Technol. 2008, 110, 1167.

406 El Diwani, G.; El Rafie, S.; Hawash, S.; Int. J. Environ. Sci. Technol. 2009, 6, 369.
-407407 Sarin, A.; Singh, N. P.; Sarin, R.; Malhotra, R. K.; Energy 2010, 35, 4645. and gossypol (substance found in cottonseed oil) (Figure 19).399399 Moser, B. R.; Renewable Energy 2012, 40, 65.,408408 Joshi, H.; Moser, B. R.; Shah, S. N.; Mandalika, A.; Walker, T.; Eur. J. Lipid Sci. Technol. 2010, 112, 802. Naturally occurring acids commonly used in the cosmetic industry as antioxidants were also evaluated for their action on biodiesel. In this context, it could be highlighted ascorbic acid,374374 Kolanjiappan, V.; Rev. Fac. Ing., Univ. Antioquia 2017, 2017, 46.,396396 Varatharajan, K.; Cheralathan, M.; Velraj, R.; Fuel 2011, 90, 2721.,402402 Balaji, G.; Cheralathan, M.; Energy Sources, Part A 2016, 38, 2454.,403403 Ramalingam, S.; Ganesan, P.; Rajendran, S.; Therm. Sci. 2016, 20, S967.,409409 Balaji, G.; Cheralathan, M.; Int. J. Ambient Energy 2014, 35, 13.

410 Takase, M.; Chen, Y.; Liu, H.; Zhao, T.; Yang, L.; Wu, X.; Ultrason. Sonochem. 2014, 21, 1752.
-411411 Ramalingam, S.; Kaliyaperumal, A.; Govindasamy, M.; Ezhumalai, M.; Kumar, C.; Therm. Sci. 2016, 20, S999. caffeic acid,359359 Dodos, G. S.; Tsesmeli, C. E.; Zannikos, F.; Fuel 2017, 209, 150.,398398 Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Carvalho Filho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Fuel 2012, 97, 638.,400400 Luo, M.; Zhang, R. Y.; Zheng, Z.; Wang, J. L.; Ji, J. B.; J. Braz. Chem. Soc. 2012, 23, 241.,412412 Santos, N. A.; Damasceno, S. S.; de Araújo, P. H. M.; Marques, V. C.; Rosenhaim, R.; Fernandes, V. J.; Queiroz, N.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Energy Fuels 2011, 25, 4190.

413 Damasceno, S. S.; Santos, N. A.; Santos, I. M. G.; Souza, A. L.; Souza, A. G.; Queiroz, N.; Fuel 2013, 107, 641.
-414414 Saifuddin, N.; Refal, H.; Res. J. Appl. Sci. Eng. Technol. 2014, 8, 1149. ferulic acid,398398 Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Carvalho Filho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Fuel 2012, 97, 638.,400400 Luo, M.; Zhang, R. Y.; Zheng, Z.; Wang, J. L.; Ji, J. B.; J. Braz. Chem. Soc. 2012, 23, 241.,413413 Damasceno, S. S.; Santos, N. A.; Santos, I. M. G.; Souza, A. L.; Souza, A. G.; Queiroz, N.; Fuel 2013, 107, 641. and gallic acid (Figure 19).398398 Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Carvalho Filho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Fuel 2012, 97, 638.,415415 Alexandrino, C. D.; Morais, S. M.; Oliveira, M. S. C.; Machado, L. K. A.; Martins, C. G.; Craveiro, A. A.; Rocha, N. C.; Valle, C. P.; Malveira, J. Q.; Jorge, F. A. S.; Eur. J. Lipid Sci. Technol. 2013, 115, 709.

Figure 19
Chemical structures of natural antioxidants.

Several plant extracts were also used to improve the biodiesel oxidative stability.416416 Romagnoli, É. S.; Borsato, D.; Silva, L. R. C.; Tashima, D. L. M.; Canesin, E. A.; Biofuels 2020, 11, 839.

417 Nogueira, T. R.; Figueredo, I. M.; Luna, F. M. T.; Cavalcante, C. L.; dos Santos Jr., J. E. Á.; Lima, M. A. S.; da Silva, T. S. J.; Leal, L. K. A. M.; Nunes, F. M.; Rios, M. A. S.; Pimenta, A. T. Á.; Renewable Energy 2020, 159, 767.

418 Yatish, K.V.; Lalithamba, H. S.; Sakar, M.; Balakrishna, G. R.; Omkaresh, B. R.; Arun, S. B.; Int. J. Energy Res. 2020, 44, 11711.

419 Correia, I. A. S.; Borsato, D.; Savada, F. Y.; Pauli, E. D.; Mantovani, A. C. G.; Cremasco, H.; Chendynski, L. T.; Renewable Energy 2020, 160, 288.
-420420 Rial, R. C.; Merlo, T. C.; Santos, P. H. M.; Melo, L. F. D.; Barbosa, R. A.; de Freitas, O. N.; Nazário, C. E. D.; Viana, L. H.; Renewable Energy 2020, 152, 1079. The most reported in the literature are the extracts of rosemary leaves,421421 Medeiros, M. L.; Cordeiro, A. M. M. T.; Queiroz, N.; Soledade, L. E. B.; Souza, A. L.; Souza, A. G.; Energy Fuels 2014, 28, 1074.

422 Coppo, R. L.; Pereira, J. L.; Da, H. C. S.; Angilelli, K. G.; Rodrigues, P. R. P.; Galvan, D.; Borsato, D.; J. Biobased Mater. Bioenergy 2014, 8, 545.

423 Spacino, K. R.; Borsato, D.; Buosi, G. M.; Chendynski, L. T.; Fuel Process. Technol. 2015, 137, 366.

424 Buosi, G. M.; da Silva, E. T.; Spacino, K.; Silva, L. R. C.; Ferreira, B. A. D.; Borsato, D.; Fuel 2016, 181, 759.

425 Spacino, K. R.; Silva, E. T. da; Angilelli, K. G.; Moreira, I.; Galão, O. F.; Borsato, D.; Ind. Crops Prod. 2016, 80, 109.
-426426 Chendynski, L. T.; Signori Romagnoli, É.; da Silva, P. R. C.; Borsato, D.; Energy Fuels 2017, 31, 9613. basil leaves,422422 Coppo, R. L.; Pereira, J. L.; Da, H. C. S.; Angilelli, K. G.; Rodrigues, P. R. P.; Galvan, D.; Borsato, D.; J. Biobased Mater. Bioenergy 2014, 8, 545.,423423 Spacino, K. R.; Borsato, D.; Buosi, G. M.; Chendynski, L. T.; Fuel Process. Technol. 2015, 137, 366.,427427 Narayanasamy, B.; Jeyakumar, N.; Manoharan, D. K.; Energy Sources, Part A 2018, 40, 680. oregano leaves,422422 Coppo, R. L.; Pereira, J. L.; Da, H. C. S.; Angilelli, K. G.; Rodrigues, P. R. P.; Galvan, D.; Borsato, D.; J. Biobased Mater. Bioenergy 2014, 8, 545.,424424 Buosi, G. M.; da Silva, E. T.; Spacino, K.; Silva, L. R. C.; Ferreira, B. A. D.; Borsato, D.; Fuel 2016, 181, 759.,425425 Spacino, K. R.; Silva, E. T. da; Angilelli, K. G.; Moreira, I.; Galão, O. F.; Borsato, D.; Ind. Crops Prod. 2016, 80, 109.,427427 Narayanasamy, B.; Jeyakumar, N.; Manoharan, D. K.; Energy Sources, Part A 2018, 40, 680. and green tea.401401 Pinto, L. M.; de Souza, A. L.; Souza, A. G.; Santos, I. M. G.; Queiroz, N.; J. Therm. Anal. Calorim. 2015, 120, 277.,428428 Nivetha, S.; Roy, D. V.; J. Energy Chem. 2013, 22, 935.

Some authors also have been studying the antioxidant potential of co-products from the pulp industry, the lignocellulosic bio-oils,429429 Kang, S.; Li, X.; Li, B.; Fan, J.; Chang, J.; Energy Fuels 2011, 25, 2746.

430 Barsberg, S.; Thygesen, L. G.; Sanadi, A. R.; Energy Fuels 2014, 28, 4539.

431 Chandrasekaran, S. R.; Murali, D.; Marley, K. A.; Larson, R. A.; Doll, K. M.; Moser, B. R.; Scott, J.; Sharma, B. K.; ACS Sustainable Chem. Eng. 2016, 4, 1414.

432 Gil-Lalaguna, N.; Bautista, A.; Gonzalo, A.; Sánchez, J. L.; Arauzo, J.; Fuel Process. Technol. 2017, 166, 1.
-433433 Larson, R. A.; Sharma, B. K.; Marley, K. A.; Kunwar, B.; Murali, D.; Scott, J.; Ind. Crops Prod. 2017, 109, 476. and cashew nut processing industry (cashew nut shell liquid (CNSL)),434434 da Silva-Araújo, F. D.; de Moura, C. V. R.; Chaves, M. H.; Quim. Nova 2010, 33, 1671.

435 Sánchez, L.; Chávez, J.; Ríos, L. A.; Cardona, S. M.; Inf. Tecnol. 2015, 26, 19.

436 Kleinberg, M. N.; Rios, M. A. S.; Buarque, H. L. B.; Parente, M. M. V.; Cavalcante, C. L.; Luna, F. M. T.; Waste Biomass Valorization 2017, 10, 797.
-437437 Bastos, F. A.; Tubino, M.; J. Braz. Chem. Soc. 2017, 28, 747. which is composed by a mixture of alkylphenols.

Regarding to CNSL, its isolated constituents as well as the synthetic derivatives of these alkylphenols have also been evaluated as antioxidant for biodiesel. Rodrigues et al.438438 Rodrigues, F. M. G.; Souza, A. G.; Santos, I. M. G.; Bicudo, T. C.; Silva, M. C. D.; Sinfrônio, F. S. M.; Vasconselos, A. F. F.; J. Therm. Anal. Calorim. 2009, 97, 605. evaluated the antioxidant activity of hydrogenated cardanol. In turn, Lomonaco et al.439439 Lomonaco, D.; Maia, F. J. N.; Clemente, C. S.; Mota, J. P. F.; Costa, A. E.; Mazzetto, S. E.; Fuel 2012, 97, 552. synthesized and evaluated phosphorylated compounds derived from cardanol. Maia et al.440440 Maia, F. J. N.; Ribeiro, F. W. P.; Rangel, J. H. G.; Lomonaco, D.; Luna, F. M. T.; de Lima-Neto, P.; Correia, A. N.; Mazzetto, S. E.; Ind. Crops Prod. 2015, 67, 281. evaluated the antioxidant activity of saturated and unsaturated tert-butylated cardanol. dos Santos et al.441441 dos Santos, R. C.; Amorim, A. D. G. N.; Thomasi, S. S.; Figueiredo, F. C.; Carneiro, C. S.; da Silva, P. R. P.; de Vasconcelos Neto, W. R.; Ferreira, A. G.; dos Santos Jr., J. R.; Leite, J. R. D. S. D. A.; Fuel 2015, 144, 415. submitted a portion of technical CNSL to an electrolytic process, which resulted in a product with improved antioxidant activity. According to the authors, the electrolysis process may lead to the formation of dimers or oligomers by reaction between phenols in technical CNSL. And these compounds may be the responsible for the observed higher oxidative stability. Liu et al.442442 Liu, Z.; Chen, J.; Knothe, G.; Nie, X.; Jiang, J.; ACS Sustainable Chem. Eng. 2016, 4, 901. synthesized cardanol epoxide, being the pioneers in the cardanol alkyl chain transformation. Recently, Costa et al.443443 Costa, K. P.; de Viveiros, B. M.; Schmidt Jr., M. A. S.; Suarez, P. A. Z.; Rezende, M. J. C.; Fuel 2019, 235, 1010. evaluated the antioxidant potential and thermal stability of CNSL and cardanols oxygenated derivatives. They synthesized five novel oxygenated derivatives. From those derivatives the one obtained from the cardanol epoxide hydrolysis increased the commercial biodiesel oxidative stability by three times. Some cardanol synthetic derivatives evaluated as antioxidant are presented in Figure 20.

Figure 20
Chemical structures of some cardanol synthetic derivatives evaluated as antioxidants for biodiesel.

5.2. Biocide additives

Microbial contamination is also one of the important problems associated with fuel storage. Indeed, the proliferation of fungi and bacteria are more common in diesel systems.444444 Bento, F. M.; Gaylarde, C. C.; Int. Biodeterior. Biodegrad. 2001, 47, 107. Microorganisms present in biodiesel/diesel blends are likely to affect the overall fuel quality due to their metabolites, which act accelerating fuel deterioration.319319 Passman, F. J.; Int. Biodeterior. Biodegrad. 2013, 81, 88. This kind of biomass can damage the engine fuel injection system by clogging pipes and filters as well as by adhering a biofilm onto material surfaces (then forming a type of fouling). In addition, it may lead to storage tanks corrosion, known as microbiologically influenced corrosion (MIC).445445 Bücker, F.; Barbosa, C. S.; Quadros, P. D.; Bueno, M. K.; Fiori, P.; Huang, C.; Frazzon, A. P. G.; Ferrão, M. F.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 346.,446446 Gaylarde, C. C.; Bento, F. M.; Kelley, J.; Rev. Microbiol. 1999, 30, 1. The fuel, used as a source of nutrients together to its water content, becomes a propitious environment for microbial growth. In this way, a practice of performing periodic drainage of accumulated water at the bottom tanks is an important method of prevention of microbial activity. In addition, the adoption of reduced fuel storage times could also prevent fuel contamination. The literature has been addressing the development of alternative methods for prevention of microbial growth. It has been proposed, for instance, treatment with ultraviolet radiation, safe use of sonication, addition of hydrogen peroxide and biocides.447447 Bautista, L. F.; Vargas, C.; González, N.; Molina, M. C.; Simarro, R.; Salmerón, A.; Murillo, Y.; Fuel Process. Technol. 2016, 152, 56.

Since the beginning biodiesel emerged as a renewable fuel and the fact of being biodegradable as one of the main advantages. The biodegradability of fossil diesel increases with the addition of biodiesel, which is a gain in the case of accidental spill of biodiesel/diesel blends.448448 Meyer, D. D.; Beker, S. A.; Bücker, F.; Peralba, M. C. R.; Frazzon, A. P. G.; Osti, J. F.; Andreazza, R.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 356. Accordingly, the use of biodiesel to remediate fuel contaminated areas was considered since the operation is affordable and it does not require high technology.449449 Pasqualino, J. C.; Montané, D.; Salvadó, J.; Biomass Bioenergy 2006, 30, 874. However, soon after its implementation, what previously was considered an advantage, became a concern. The accumulation of deposits in diesel storage tanks has considerably increased, as well as the need for diesel vehicles maintenance. For instance, the replacement of fuel filters and the cleaning of injection system started to be done at shorter intervals. The main cause why this was happening is the substantial increase of the biomass growth. Furthermore, biodiesel is 30 times more hygroscopic than mineral diesel. Therefore, keeping the water content to a minimum in the biodiesel/diesel blends storage tanks becomes essential. And exercise the water content control in the pure biodiesel (B100) storage tanks is an even more difficult task. Within this context, one plausible strategy to prevent microbial contamination is the addition of biocides to both blended and unblended biodiesel.

In 2013, Passman319319 Passman, F. J.; Int. Biodeterior. Biodegrad. 2013, 81, 88. provided an excellent survey about microbial contamination and its control in fuels and fuel systems. The review reports about biodeterioration of diesel and biodiesel fuels, factors contributing for microorganism’s contamination and proliferation through fuel storage tanks and engine fuel systems, methods of microbial contamination control, and decontamination practices, among others. In the following year, Jakeria et al.450450 Jakeria, M. R.; Fazal, M. A.; Haseeb, A. S. M. A.; Renewable Sustainable Energy Rev. 2014, 30, 154. reviewed different factors affecting biodiesel stability, including microbial growth. They comment about the degradation mechanism of fatty acid methyl esters by microorganisms, known as cometabolic biodegradation, and the reasons why biodiesel and biodiesel/diesel blends degrade faster than diesel. In our review, we discuss three segments related to microbial growth. The first part presents a brief survey of the microorganisms identified in biodiesel/diesel blends and pure biodiesel storage tanks. The second part describes some studies regarding the evaluation of favorable conditions for microbial growth. This knowledge is important for studying ways to control the growth of these microorganisms. The last part presents products that have been commercially added as biocide in biodiesel/diesel blends and in pure biodiesel, as well as products tested for this purpose.

5.2.1. Identification of microorganisms content in biodiesel and biodiesel/diesel blends storage tanks

Studies have shown, as it happens for diesel, that biodiesel biodegradation is performed by either bacteria, yeasts and/or fungi. The isolation of the microorganisms present in the sludge from biodiesel and biodiesel/diesel blends requires the use of specific culture media for different microorganisms’ growth.451451 Chao, Y.; Liu, N.; Zhang, T.; Chen, S.; Fuel 2010, 89, 3358. For instance, potato dextrin agar is used to detect potential fungi, peptone casein agar and tryptic soy agar usually are employed for detecting bacteria. In addition, malt extract agar is used to detect possible yeasts and anaerobic agar is specifically used to grow anaerobic microorganisms. In turn, the identification of the microorganism species is based on a set of morphological, biochemical, physiological and molecular evidences of the isolates. Table 9 presents some microorganisms isolated in sludge generated from biodiesel/diesel blend or pure biodiesel.

Table 9
Microorganisms isolated in sludge generated from biodiesel/diesel blend or pure biodiesel

5.2.2. Susceptibility of microorganism growth in biodiesel and biodiesel/diesel blends

Studies involving the evaluation of microbial growth conditions on biodiesel from different raw materials are found in the literature. Some examples are cited on Table 10 and more details are found in their respective references. Some of them used microorganisms isolated from contaminated biodiesel and biodiesel/diesel blends storage systems, as indicated in the table.

Table 10
Data from susceptibility of microorganism growth in biodiesel or biodiesel/diesel blend

5.2.3. Biocide additives for biodiesel and biodiesel/diesel blends

There are three biocides approved and registered by U.S. Military Specification as diesel fuel biocides.460460 Military Specification, Stabilizer Additive, Diesel Fuel, MIL-S-53021A, 1988, available at http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MIL-S-53021A_8396/, accessed in March 2021.
http://everyspec.com/MIL-SPECS/MIL-SPECS...
The first additive (DOB) consists of 2,2-oxybis-(4,4,6-trimethyl-1,3,2-dioxaborinane) and 2,2-(1-methyl-trimethylenedioxy)-bis-(4-methyl-1,3,2-dioxaborinane). The second biocide formulation (CMIT/MIT) is an isothiazolinone blend (5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one) and the third (NBM/ENDM) is a mixture of 4-(2-nitrobutyl)-morpholine and 4,4’-(2-ethyl-2-nitrotrimethylene)-dimorpholine. There is also a fourth product used for microbicidal fuel treatment, 3,3-methylenebis(5-methyloxazolidine), known as MBO.319319 Passman, F. J.; Int. Biodeterior. Biodegrad. 2013, 81, 88. MBO can be purchased in its pure form or formulated in multifunctional additives which may contain different percentuals of this antimicrobial product. Their chemical structures are presented in Figure 21.

Figure 21
Chemical structures of products used as a fuel-treatment biocide.

In the last years, some of these products have been studied by researchers from the Federal University of Rio Grande do Sul, Brazil. Zimmer et al.461461 Zimmer, A.; Cazarolli, J.; Teixeira, R. M.; Viscardi, S. L. C.; Cavalcanti, E. S. H.; Gerbase, A. E.; Ferrão, M. F.; Piatnicki, C. M. S.; Bento, F. M.; Fuel 2013, 112, 153. investigated the effectiveness of MBO, using a multifunctional additive formulation for fuel which contains 50% of this biocide, and MIT/CMIT product, that contains 1.5% of active ingredient, in biodiesel (produced from 60% of soybean oil and 40% of beef tallow), low sulfur conventional diesel, B7 and B10 blends. The efficacy of both biocides was evaluated for 60 days using the fuel phase and two types of aqueous phase (natural bottom-water formed in a biodiesel/diesel blend and synthetic water with low, medium and high levels of contamination). A mix of uncharacterized microbial sludge obtained from different fuels (diesel, biodiesel and biodiesel/diesel blends) was used as inoculum. MIT/CMIT performed better in all conditions tested. The authors suggest the presence of other additives in the formulation is interfering negatively in the action of MBO, since in previous studies pure MBO had performance comparable to MIT/CMIT.

Cazarolli et al.457457 Cazarolli, J. C.; Guzatto, R.; Samios, D.; Peralba, M. C. R.; Cavalcanti, E. H. S.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 364. evaluated the efficiency of 100% MBO, 8% MBO, 50% MBO and 100% NBM in the control of Pseudallescheria boydii growth using the broth dilution method. According to the values of the minimum inhibitory concentration (MIC) and minimum biocide concentration (MBC), 100% NBM was the most effective in containing growth and presented sporicidal action. The authors did not investigate the effect of the antimicrobial products on a biodiesel or biodiesel/diesel blend system inoculated with fungus. In the same year, Bücker et al.445445 Bücker, F.; Barbosa, C. S.; Quadros, P. D.; Bueno, M. K.; Fiori, P.; Huang, C.; Frazzon, A. P. G.; Ferrão, M. F.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 346. studied the effect of MBO in stored B10 with and without an inoculum derived from diesel sludge. The biodiesel used to prepare B10 blend was originated from soybean oil (80%) and beef tallow (20%). Pure active ingredient (100% MBO) and an additive formulation containing 50% MBO were evaluated. The study revealed microbial growth was effectively controlled with the use of pure MBO in all experiments. The microbial number in the aqueous and oil phases was reduced using the formulation at 50% MBO and the results indicated that 500 ppm of this formulation led to fungistatic activity. The same additive formulation was used by Zimmer et al.462462 Zimmer, A. R.; Oliboni, A.; Viscardi, S. L. C.; Teixeira, R. M.; Ferrão, M. F.; Bento, F. M.; Biofuel Res. J. 2017, 14, 627. to compare the microbial growth in a B10 blend stored under simulated conditions in laboratory scale (250 mL microcosms) and field scale (20 L tanks). They used an uncharacterized microbial sludge obtained from biodiesel/diesel blend as inoculum. The results showed the condition often defined in the laboratory may demand adjustments under real situations.

5.2.4. Evaluation of biocide candidates for pure biodiesel and biodiesel/diesel blends

Despite the need to control microbial growth, there are few studies available in the literature specifically focusing on the development of biocide candidates for use in pure biodiesel and biodiesel/diesel blends. Meanwhile, some researchers have evaluated if antioxidant additives also have biocide action. Beker et al.358358 Beker, S. A.; da Silva, Y. P.; Bücker, F.; Cazarolli, J. C.; de Quadros, P. D.; Peralba, M. C. R.; Piatnicki, C. M. S.; Bento, F. M.; Fuel 2016, 184, 701. evaluated the effect of the commercial antioxidants tert-butylhidroquinone (TBHQ) and butylated hydroxytoluene (BHT) on microorganisms isolated from diesel and biodiesel storage tanks (fungi Paecilomyces variotii, Pseudallescheria boydii and Candida guilliermondii, and the bacterium Bacillus pumilus). Firstly, the authors evaluated the minimum inhibitory concentration (MIC) of BHT and TBHQ using the broth dilution method. The experiment was also carried out with an uncharacterized inoculum prepared according to ASTM E1259463463 ASTM E1259-10: Standard Practice for Evaluation of Antimicrobials in Liquid Fuels Boiling Below 390 ºC, West Conshohocken, PA, 2010. using microbiological sludge from a contaminated tank. No antimicrobial effect was observed for BHT in all tested concentrations. In laboratory scale, the uncharacterized inoculum medium was added to soybean biodiesel containing different TBHQ concentrations. The vials were incubated for 45 days at 30 ºC. TBHQ appears to be neither a promoter nor an inhibitor of microbial growth in biodiesel under the conditions tested. Santos et al.464464 Santos, G. A.; Vila, M. M. D. C.; Chaud, M. V.; Silva, W. L.; Castro, A. G.; Oliveira Jr., J. M.; Tubino, M.; Balcão, V. M.; Biofuels 2016, 7, 581. tested the growth of the filamentous mold Paecilomyces variotii Bainier in presence of biodiesel added with curcumin and pyrocatechol. The study includes biodiesel from various fatty acid sources (waste frying oil, soybean oil, cottonseed oil, sesame oil, macaúba almond oil and microalgae oil). The experiments were carried out in Petri dishes containing solid Sabouraud dextrose agar incubated at 25 ºC for 48 h. After this time, the plates were visually inspected for the presence of inhibition zones of fungal growth. The best fungistatic effect was observed in the presence of 0.1 to 0.5% (m m-1) curcumin, depending on the biodiesel sample, and 1% (m m-1) water.

Dodos et al.359359 Dodos, G. S.; Tsesmeli, C. E.; Zannikos, F.; Fuel 2017, 209, 150. evaluated the antimicrobial activity of six synthetic phenolic antioxidants (butylated hydroxyanisole, BHA; butylated hydroxytoluene, BHT; tert-butyl hydroquinone, TBHQ; propyl gallate, PG; pyrogallol, PY; and tert-butyl catechol, TBC) and four natural phenolic antioxidants (caffeic acid, CFA; gentisic acid, GA; methyl catechol, MCT; and protocatechuic acid, PCA) in B100 and B7 blends from refined pomace olive oil and soybean oil. Initially, the ability of the phenolic additives to inhibit microbial growth was tested against Bacillus stearothermophilus, a Gram-positive bacterium, at 64 ºC for 3.5 h. TBHQ, PG, MCT and TBC were the most efficient in inhibiting the growth of Bacillus stearothermophilus in fatty acid methyl esters (FAME) from both refined pomace olive oil and soybean oil. BHA, BHT, GA and PCA did not show antibacterial activity under the conditions tested. B7 blends were treated with TBHQ, PG, MCT, TBC, PY and CFA. Only TBHQ, PG, MCT and TBC depicted antimicrobial action. In the second part of the study, the authors investigated the antimicrobial activity of the most active phenolic compounds in simulated diesel/biodiesel fuel storage conditions. The inoculum was prepared according to ASTM E1259463463 ASTM E1259-10: Standard Practice for Evaluation of Antimicrobials in Liquid Fuels Boiling Below 390 ºC, West Conshohocken, PA, 2010. using the aqueous phase of a microbially contaminated commercial diesel. B100 and B7 blends were also treated with the commercially fuel biocide MBO for comparison. As expected, the MBO product practically eliminates the active microbial contamination in FAME from both vegetable oils tested. The microcosm was significantly suppressed in those containing TBHQ and MCT. In both B7 blends microcosms, the two catechol derivatives (MCT and TBC) proved to be more effective antimicrobial additives.

Recently, some studies have evaluated the biocide activity of triacylglyceride derivatives. The objective was to reveal potential additives from chemical modifications in the same raw material used for biodiesel production. Ramalho et al.465465 Ramalho, H. F.; Ferreira, K. M. C.; Machado, P. M. A.; Silva, T. B.; Rangel, E. T.; Prauchner, M. J.; Suarez, P. A. Z.; J. Braz. Chem. Soc. 2016, 27, 321. synthesized an imine product via hydroformylation of the double bonds present in the hydrocarbon chain of soybean fatty acid methyl esters, followed by n-butylamine condensation. In other words, the authors synthesized biodiesel-based molecules whose antimicrobial activity was evaluated towards a set of fungi and bacteria commonly present in fuel storage tanks. The addition of 5% of the imine product in soybean biodiesel presented positive antimicrobial activity in both agar diffusion test and antimicrobial susceptibility test, for fungi Candida krusei, Candida parapsilosis, Candida albicans, Aspergillus niger, Aspergillus fumigatus and Saccharomyces cerevisae, and for bacteria Escherichia coli, Bacillus subtillis and Staphylococcus aureus. Oliveira et al.466466 Oliveira, R. S.; Machado, P. M. A.; Ramalho, H. F.; Rangel, E. T.; Suarez, P. A. Z.; Ind. Crops Prod. 2017, 104, 201. tested the product of acetylation of epoxidized soybean biodiesel against three fungi species (Aspergillus fumigatus, Trichophyton rubrum and Microsporum canis) and four species of bacteria (Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). The antimicrobial activity was evaluated by agar diffusion test with soybean biodiesel containing 1 to 50% of the biocide candidate. According to the authors, this method is widely used in microbiology laboratories to select substances with potential antimicrobial activity for pharmacological areas. The acetylation product showed fungicidal activity to Trichophyton rubrum and Aspergillus fumigatus. Costa et al.467467 Costa, K. P.; do Valle, S. F.; dos Santos, T. F. L.; Rangel, E. T.; Pinto, A. C.; Suarez, P. A. Z.; Rezende, M. J. C.; J. Braz. Chem. Soc. 2018, 29, 2605. synthesized nitrated derivatives using soybean oil as starting material. The products were evaluated against fungi and bacteria which have been isolated from biodiesel/diesel blends (fungi Aspergillus niger, Aspergillus fumigatus, Candida albicans and Saccharomyces cerevisiae; and bacteria Bacillus subtilis and Acinetobacter baumannii). None of the products inhibited the bacteria growth. Four nitrated derivatives presented modest fungicidal activity against A. niger and A. fumigatus. Three products derived from the vegetable oil (Figure 22). The chemical structures are represented by linoleic chain, which is the major hydrocarbon chain of soybean triacylglycerides, for illustration. The fourth product is the pure nitrate of ethylene glycol linoleate.

Figure 22
Derivatives from soybean oil with activity against A. niger and A. fumigatus.

6. Emissions

Estimates from the World Health Organization (WHO) state that 4.2 million people die every year due to the exposure to outdoor air pollution and 91% of world’s population lives in places where the air quality is inappropriate, according to the WHO’s guidelines.468468 http://www.who.int/airpollution/en/, accessed in February 2021; https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/ambient-air-pollution, accessed in February 2021; https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths, accessed in February 2021.
http://www.who.int/airpollution/en/...
These deaths are mainly linked to chronicle diseases, such as pulmonary obstruction, but also lung cancer, cardiovascular diseases and acute respiratory infections in children. According to the WHO’s report, worldwide ambient air pollution accounts for 29% of all deaths and disease from lung cancer, 17% of all deaths and disease from acute lower respiratory infection, 24% of all deaths from stroke, 25% of all deaths and disease from ischaemic heart disease and 43% of all deaths and disease from chronic obstructive pulmonary disease.468468 http://www.who.int/airpollution/en/, accessed in February 2021; https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/ambient-air-pollution, accessed in February 2021; https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths, accessed in February 2021.
http://www.who.int/airpollution/en/...

Pollutants which play an important role for the air quality and public health issues include, amongst others, particulate matter (PM), nitrogen dioxide, ozone and sulfur dioxide. Regarding particulate matter, especially particles with a diameter ≤ 10 µm (PM10) and fine particles with a diameter ≤ 2.5 µm (PM2.5), it is prone to deeply penetrate in the lungs and bloodstream. Its composition may include, amongst other species, metals, sulfate, nitrates and black carbon, and normally it will play a role in the transportation of different kinds of toxic species adsorbed on its surface, such as organic compounds. In 2013, it was classified by the International Agency for Research on Cancer (IARC) as cause of lung cancer.469469 https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf, accessed in March 2021.
https://www.iarc.who.int/wp-content/uplo...
According to the WHO,468468 http://www.who.int/airpollution/en/, accessed in February 2021; https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/ambient-air-pollution, accessed in February 2021; https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths, accessed in February 2021.
http://www.who.int/airpollution/en/...
the effects of PM on health occur at levels of exposure currently present in urban and rural areas and in developed and developing countries. Furthermore, exposures in many fast-developing cities are even much higher than in developed cities of the same size.

Exhaust emissions from diesel burning contain hundreds of compounds, either in the gas or in the particulate phases, which are proved, or suspected to be carcinogenics. Representants of those exhausted species which may be cited are formaldehyde, acrolein, polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, benzene, and sulfate, among others. Besides, they also produce large amount of fine particulate matter (PM2.5), which are able to go deep into respiratory systems and may cause different health-related endpoints. As a consequence, the use of alternative fuels is likely to contribute for reducing the health and environmental impacts of diesel emissions, and it has been extensively investigated.

In the last years, several researchers have as main objective the search for solutions which can help to mitigate the emissions of pollutants to the atmosphere. This scenario is not different with respect to emissions from the incomplete combustion process of diesel cycle engines. A lot of technologies have been developed and incorporated in diesel engines, in order to reduce pollutant emissions although there is a special attention in the application of alternative fuels which are not of fossil origin. Biodiesel is the main substitute for the diesel fuel because it does not require modifications to the diesel engine. Besides it may present several benefits, such as reduction of atmospheric pollutants emission and a greater cetane number, among others.

Through a brief research using the keyword "biodiesel emission" in scientific databases, it is possible to map a growing interest on the subject, given the number of papers that aimed at evaluating emissions from biodiesel use. In 2005, when the first article Biodiesel: An Overview1515 Pinto, A. C.; Guarieiro, L. L. N.; Rezende, M. J. C.; Ribeiro, N. M.; Torres, E. A.; Lopes, W. A.; Pereira, P. A. P.; de Andrade, J. B.; J. Braz. Chem. Soc. 2005, 16, 1313. was published, the number of publications on the subject was already significative. However, more than ten years later, this number has practically increased by 17 times. This demonstrates how significant and effective has been the employment of biodiesel/diesel blends, as a way to mitigate the emission of pollutants from the incomplete combustion of diesel engines.

When the focus of publications is evaluated (Figure 23), it is possible to observe that different parameters are considered in studies as possibly affecting the emissions, such as the use of a third fuel in a ternary mixture, as well as the main types of pollutant emitted, with focus on both regulated and non-regulated pollutants, due to their environment and health impacts. One topic addressed is related to the biodiesel source, since it can be produced either from edible or non-edible parts of different leguminous plants. In order to comply with the current regulations, regarding restrictions on diesel emissions, several technologies have been used. Meanwhile studies have been conducted in order to evaluate the impact of using biodiesel in different combinations to other fuels. Other parameters also evaluated are diesel engines performance (load and power) as well as the use of different types of fuel additives in order to improve fuel lubricity, cetane number, and processes of early oxidation, among others.

Figure 23
Main subjects related to emission studies with biodiesel, according to databases accessed in the last 15 years.

Investigations using ternary fuel mixtures containing biodiesel have focused on compounds which do not affect the biodiesel’s miscibility in diesel fuel and if they may contribute for reducing pollutant emissions. Short chain alcohols (e.g., ethanol and n-butanol),470470 Mofijur, M.; Rasul, M. G.; Hyde, J.; Azad, A. K.; Mamat, R.; Bhuiya, M. M. K. Renewable Sustainable Energy Rev. 2016, 53, 265.

471 Shamuna, S.; Belgiornob, G.; Di Blasiob, G.; Beatriceb, C.; Tunéra, M.; Tuneståla, P.; Appl. Therm. Eng. 2018, 145, 444.

472 Zheng, Z.; Xia, M.; Liu, H.; Wang, X.; Yao, M.; Energy 2018, 148, 824.
-473473 Wei, L; Cheung, C. S.; Ning, Z.; Energy 2018, 155, 957. ethers (2,5-dimethylfuran)472472 Zheng, Z.; Xia, M.; Liu, H.; Wang, X.; Yao, M.; Energy 2018, 148, 824. and kerosene474474 Bayındır, H.; Zerrakki, M.; Argunhan, Z.; Yücel, H. L.; Aydın, H.; Energy 2017, 123, 241. are examples of compounds which having been added in the fuel blends.

Several studies are available which evaluate the impacts on the pollutants emission profile from using ternary fuel mixtures. In a review published by Mofijur et al.,470470 Mofijur, M.; Rasul, M. G.; Hyde, J.; Azad, A. K.; Mamat, R.; Bhuiya, M. M. K. Renewable Sustainable Energy Rev. 2016, 53, 265. the latest studies carried out to evaluate emissions of ternary mixtures with the addition of ethanol were summarized. The fuel blends evaluated had ethanol concentrations added to biodiesel/diesel blends ranging from 2 to 40%.475475 Guarieiro, L. L. N.; Guerreiro, E. T. A.; Amparo, K. K. S.; Manera, V. B.; Regis, A. C. D.; Santos, A. G.; Ferreira, V. P.; Leão, D. J.; Torres, E. A.; de Andrade, J. B.; Microchem. J. 2014, 117, 94. In general, the addition of ethanol in biodiesel/diesel blends does not cause a clear increasing nor decreasing trend for CO, NOx and HC emissions (regulated compounds). The emissions depended directly on the test conditions and technologies used.470470 Mofijur, M.; Rasul, M. G.; Hyde, J.; Azad, A. K.; Mamat, R.; Bhuiya, M. M. K. Renewable Sustainable Energy Rev. 2016, 53, 265. Meanwhile, there are other studies which state the ethanol addition to diesel/biodiesel/ethanol ternary mixtures could increase CO and HC emissions although they bring contributions by reducing NOx emissions, particulate matter and particle number concentrations.471471 Shamuna, S.; Belgiornob, G.; Di Blasiob, G.; Beatriceb, C.; Tunéra, M.; Tuneståla, P.; Appl. Therm. Eng. 2018, 145, 444.

472 Zheng, Z.; Xia, M.; Liu, H.; Wang, X.; Yao, M.; Energy 2018, 148, 824.
-473473 Wei, L; Cheung, C. S.; Ning, Z.; Energy 2018, 155, 957.

Although the vast majority of studies regarding vehicle emissions focused their analysis on regulated pollutants (NOx, CO, PM, and HC) attention has been given to a large number of non-regulated compounds, which have potential carcinogenic and mutagenic effects. Among them, volatile (VOC) and semivolatile organic compounds (SVOC), such as PAHs, nitro-PAHs, quinones, carbonyl compounds (CC) and others476476 Melo, C. I. M.; Sousa, E. T.; da Rocha, G. O.; dos Anjos, J. P.; de Andrade, J. B.; Talanta 2020, 217, 121033.

477 de Jesus, R. M.; Mosca, A. C.; Guarieiro, A. L. N.; da Rocha, G. O.; de Andrade, J. B.; J. Braz. Chem. Soc. 2018, 29, 1268.

478 Santos, A. G.; Regis, A. C. D.; da Rocha, G. O.; Bezerra, M.; de Jesus, R. M.; de Andrade, J. B.; J. Chromatogr., A 2016, 1435, 6.

479 Sousa, E. T.; Cardoso, M. P.; Silva, L.A.; de Andrade, J. B.; Microchem. J. 2015, 118, 26.

480 Guarieiro, A. L. N.; Santos, J. V. S.; Fernandez, A. E.; Torres, E. A.; da Rocha, G. O.; de Andrade, J. B.; Fuel 2014, 116, 490.

481 Martins, L. D.; Júnior, C. R. S.; Solci, M. C.; Pinto, J. P.; Souza, D. Z.; Vasconcellos, P.; Guarieiro, A. L. N.; Guarieiro, L. L. N.; Sousa, E. T.; de Andrade, J. B.; Environ. Monit. Assess. 2012, 184, 2663.

482 da Rocha, G. O.; Lopes, W. A.; Pereira, P. A. P.; Vasconcellos, P. C.; Oliveira, F. S.; Carvalho, L. S.; Conceição, L. S.; de Andrade, J. B.; J. Braz. Chem. Soc. 2009, 20, 680.

483 Guarieiro, L. L. N.; de Souza, A. F.; Torres, E. A.; de Andrade, J. B.; Atmos. Environ. 2009, 43, 2754.
-484484 Rodrigues, M. C.; Guarieiro, L. L. N.; Cardoso, M. P.; Carvalho, L. S.; da Rocha, G. O.; de Andrade, J. B.; Fuel 2011, 92, 258. can be highlighted. The addition of biodiesel in diesel can bring some benefits in reducing the emissions of those compounds. It should be noted, however, that different results can be observed, depending on the applied conditions. For instance, when 10% n-butanol was added to biodiesel, the PAH emissions have decreased, while addition of a larger amount of n-butanol has led to the opposite result. Thus, the PAH production is driven not only by the combustion process but also by the fuel origin.485485 Yilmaz, N.; Davis, S. M.; Fuel 2016, 181, 729. Table 11 shows the main studies about the effect of the use of biodiesel on emissions of both regulated and unregulated pollutants. The complete table, including observed results and details from the use of biodiesel and other fuels, is found in the Supplementary Information section.

Table 11
Main studies recently published regarding pollutants exhausted through blended or unblended biodiesel fuel

In terms of pollutant emissions, the increase of biodiesel added to diesel must be carefully evaluated. In general, there are pollutants emitted in lower concentrations when biodiesel is added (such as HPAs, CO and n-alkanes), while other pollutants are emitted in a higher concentration (carbonyl compounds, major ions and NOx) when compared to pure diesel. In this sense, it is of utmost importance to develop solutions able to mitigate negative impacts caused by emissions from high biodiesel content blends. The use of combustion-enhancing additives could be a viable alternative. In addition, there is a significant number of studies which highlights some carcinogenic compounds emitted during the incomplete combustion process. Those carcinogenic compounds could be regulated by law in a near future, imposing emission limits. The increase in the biodiesel content should consider these contributions.

7. Trends in Biodiesel Patents

In January 2021, a technological prospecting mapping on biodiesel was carried out on the Derwent World Patents Index platform.508508 https://clarivate.com/derwent/solutions/derwent-innovation/, accessed in April 2021.
https://clarivate.com/derwent/solutions/...
An increasing number of patent deposits were observed over the last 10 years, currently existing more than 7,000 active patents. The companies that have filed the most patents in recent years on biodiesel were BASF (1942), Xyleco (1826), Monsanto Technology LLC (1074) and Ford Global Tech LLC (1052). The inventors who most published patents on biodiesel were Medoff, Marshall (1513); Eby, William H. (837); Masterman, Thomas Craig (746) and Masterman, Thomas (626). Figure 24 presents a technological trend map of the patents filed on biodiesel. There are three major areas of interest related to the topic: (i) combustion process, (ii) production plants, and (iii) biodiesel production process. In addition, it is interesting to note new areas regarding biodiesel which are emerging recently (highlighted in green in Figure 24). Among the new applications, it is interesting to highlight the insertion of biodiesel in the production line of mineral diesel (stream hydrocarbon diesel), with biomass coprocessing in refining processes where two or more biofuels are incorporated into the mineral fuel. This opens up great development opportunities, in which methodologies for determining renewable content in mineral fuels become an important demand with a view to producing intellectual property.

Figure 24
Technological trend map of patents filed on biodiesel.

8. Conclusions

Biodiesel/diesel blends are available at gas stations over the world. Particularly in Brazil, there is legal provision for the market to provide the B15 until 2023, and expected to reach B20 in 2028. The use of this biofuel has been consolidated over the years, as a result of intense collaboration between the productive and academic sectors. The number of scientific publications on biodiesel per year is quite significant and covers all the subjects associated with its use, from the raw material to the vehicle emission profile.

In the last 15 years, several feedstocks have been evaluated in relation to oil productivity and physico-chemical characteristics. The growing number of studies aiming at evaluating microalgae biomass is worth mentioning. The knowledge that has been accumulated on this type of raw material connected with advances in genetic engineering can make its use feasible and make it a raw material with great potential for the production of biodiesel.

The main process of biodiesel production from the transesterification of oils and fats still uses homogeneous basic catalysis. The fast rates, together with the catalysts affordable prices, are responsible for the success of this process, in spite of the fact these catalysts cannot be recovered, the need of laborious purification steps and waste generation. The forefront scenario indicates heterogeneous catalysis will emerge as the future of biodiesel processes. The main benefits are the possibility of catalyst reutilization or use in continuous flow mode, the reduction of purification steps and generation of less waste. Heterogeneous basic catalysts still present some drawbacks, like leaching of the active phase or the necessity of energy demanding regeneration. Heterogeneous acid catalysts require more severe reaction conditions and they also can suffer deactivation. Therefore, more research is needed to overcome these problems, before a commercial process of biodiesel production using heterogeneous catalysts can be implemented. Enzymes are active and selective for biodiesel production. However, the slow reaction rates, together with the associated highly costs, enzymatic catalysis is still far from being commercially used in biodiesel production processes. In parallel with efforts to make the use of heterogeneous catalysis feasible, studies involving the use of intensification technologies have been advancing on laboratory and industrial scales.

Regarding additives for biodiesel, there are still few studies of corrosion inhibitors evaluated under conditions of biodiesel storage. Research on innovative products with biocidal action for biodiesel/diesel blends also deserve more attention. In Brazil, the use of this type of additive needs to be regulated. The search for multifunctional products is certainly the biggest challenge for biodiesel quality assurance and preservation of vehicular metallic materials, transport and storage systems of this biofuel.

Finally, the publications on the effect of biodiesel/diesel blends in emissions of pollutants have been collecting an important set of results on the impact of increasing the biodiesel content in the emission profile. These studies indicated, in terms of pollutants emission, the increment of biodiesel content in diesel should be carefully evaluated since some pollutants (e.g., carbonyl compounds, major ions and NOx) are emitted in higher concentrations in those conditions.

9. Challenges and Perspectives

The use of biodiesel has been consolidated in the energy matrix of several countries, at the same time some of them are announcing their plans to ban fossil-fuel based vehicles in the following years.509509 https://news.trust.org/item/20201118095737-8h1uh, accessed in February 2021.
https://news.trust.org/item/202011180957...
Despite the enormous volume of studies carried out in the last 15 years and the advances achieved, there still are many challenges in this field, which require more investments in research and innovation. We highlight some relevant topics: (i) intensification of genetic researches in oil plants to improve the productivity and yield of oil for biodiesel; (ii) development of sustainable, technically viable and cost-competitive microalgae production technologies; (iii) development of viable heterogeneous catalysts and implementation of a continuous process; (iv) optimization of intensification technologies (such as microwave heating, ultrasonic irradiation, among others) for biodiesel production; (v) development of multifunctional additives in order to guarantee the quality of both pure biodiesel and biodiesel/diesel blends under storage conditions; (vi) establishment of new uses for glycerin; (vii) evaluation of the impacts on the pollutants emission profile derived from the increasing the biodiesel content in mineral diesel, which could, in turn, contribute to guide decisions in possibly expanding the use of this biofuel; and (viii) development of combustion improver additives as an strategy to mitigate the worsening of some pollutants emission profile when high biodiesel content blends are combusted.

  • Supplementary Information
    Supplementary information associated with this article can be found available free of charge at http://jbcs.sbq.org.br as PDF file.

Acknowledgments

The authors would like to thank the Agência Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Serviço Nacional de Treinamento Industrial, Departamento Regional da Bahia (SENAI/CIMATEC) the National Institute of Science and Technology (INCT) for Energy & Environment (INCT E&A, project CNPq No. 465497/2014-4), Project ‘Pesquisando Kirimurê: Convergindo Educação, Ciência, Tecnologia e Inovação’ (CNPq No. 442187/2018-1) and the Interdisciplinary Center for Energy and Environment (CIEnAm) from Universidade Federal da Bahia. We are also thankful for funding from CAPES (finance code 001). In addition, funding from Fundação de Apoio à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and from Fundação de Apoio à Pesquisa do Estado da Bahia (FAPESB) are also acknowledged.

References

  • 1
    Ma, F.; Hanna, M. A.; Bioresour. Technol. 1999, 70, 1.
  • 2
    Mata, T. M.; Martins, A. A.; Caetano, N. S.; Renewable Sustainable Energy Rev. 2010, 14, 217.
  • 3
    Meher, L. C.; Sagar, D. V.; Naik, S. N.; Renewable Sustainable Energy Rev. 2006, 10, 248.
  • 4
    Leung, D. Y. C.; Wu, X.; Leung, M. K. H.; Appl. Energy 2010, 87, 1083.
  • 5
    Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S.; Bioresour. Technol. 2011, 102, 71.
  • 6
    Hoekman, S. K.; Broch, A.; Robbins, C.; Ceniceros, E.; Natarajan, M.; Renewable Sustainable Energy Rev. 2012, 16, 143.
  • 7
    Atabani, A. E.; Silitonga, A. S.; Badruddin, I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S.; Renewable Sustainable Energy Rev. 2012, 16, 2070.
  • 8
    Kulkarni, M. G.; Dalai, A. K.; Ind. Eng. Chem. Res. 2006, 45, 2901.
  • 9
    Singh, S. P.; Singh, D.; Renewable Sustainable Energy Rev. 2010, 14, 200.
  • 10
    Sharma, Y. C.; Singh, B.; Upadhyay, S. N.; Fuel 2008, 87, 2355.
  • 11
    Williams, P. J. B.; Laurens, L. M. L.; Energy Environ. Sci. 2010, 3, 554.
  • 12
    Lam, M. K.; Lee, K. T.; Mohamed, A. R.; Biotechnol. Adv. 2010, 28, 500.
  • 13
    Halim, R.; Danquah, M. K.; Webley, P. A.; Biotechnol. Adv. 2012, 30, 709.
  • 14
    Ahmad, A. L.; Yasin, N. H. M.; Derek, C. J. C.; Lim, J. K.; Renewable Sustainable Energy Rev. 2011, 15, 584.
  • 15
    Pinto, A. C.; Guarieiro, L. L. N.; Rezende, M. J. C.; Ribeiro, N. M.; Torres, E. A.; Lopes, W. A.; Pereira, P. A. P.; de Andrade, J. B.; J. Braz. Chem. Soc. 2005, 16, 1313.
  • 16
    Zabeti, M.; Daud, W. M. A. W.; Aroua, M. K.; Fuel Process. Technol. 2009, 90, 770.
  • 17
    Basha, S. A.; Gopal, K. R.; Jebaraj, S.; Renewable Sustainable Energy Rev. 2009, 13, 1628.
  • 18
    Fjerbaek, L.; Christensen, K. V.; Norddahl, B.; Biotechnol. Bioeng. 2009, 102, 1298.
  • 19
    Ranganathan, S. V.; Narasimhan, S. L.; Muthukumar, K.; Bioresour. Technol. 2008, 99, 3975.
  • 20
    Tan, T.; Lu, J.; Nie, K.; Deng, L.; Wang, F.; Biotechnol. Adv. 2010, 28, 628.
  • 21
    Monteiro, M. R.; Ambrozin, A. R. P.; Lião, L. M.; Ferreira, A. G.; Talanta 2008, 77, 593.
  • 22
    Jain, S.; Sharma, M. P.; Renewable Sustainable Energy Rev. 2010, 14, 667.
  • 23
    Talebian-Kiakalaieh, A.; Amin, N. A. S.; Mazaheri, H.; Appl. Energy 2013, 104, 683.
  • 24
    Helwani, Z.; Othman, M. R.; Aziz, N.; Fernando, W. J. N.; Kim, J.; Fuel Process. Technol. 2009, 90, 1502.
  • 25
    Pullen, J.; Saeed, K.; Renewable Sustainable Energy Rev. 2012, 16, 5924.
  • 26
    Menezes, R. S.; Biodiesel no Brasil: Impulso Tecnológico, vol. 1, 1st ed.; Artecor Gráfica e Editora Ltda: Lavras, BR, 2016.
  • 27
    https://www.politize.com.br/eco-92/, accessed in March 2021.
    » https://www.politize.com.br/eco-92/
  • 28
    Ministério da Ciência e Tecnologia; Portaria MCT No. 702, de 30 de outubro de 2002, available at https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra;jsessionid=8362AE01F515A95B019F0C252F60C72C.proposicoesWebExterno2?codteor=122459&filename=LegislacaoCitada+-PL+526/2003, accessed in March 2021.
    » https://www.camara.leg.br/proposicoesWeb/prop_mostrarintegra;jsessionid=8362AE01F515A95B019F0C252F60C72C.proposicoesWebExterno2?codteor=122459&filename=LegislacaoCitada+-PL+526/2003
  • 29
    Pousa, G. P. A. G.; Santos, A. L. F.; Suarez, P. A. Z.; Energy Policy 2007, 35, 5393.
  • 30
    https://www.gov.br/agricultura/pt-br/assuntos/agricultura-familiar/biodiesel/arquivos/cartilha-do-programa-nacional-de-producao-e-uso-de-biodiesel-pnpb.pdf, accessed in March 2021.
    » https://www.gov.br/agricultura/pt-br/assuntos/agricultura-familiar/biodiesel/arquivos/cartilha-do-programa-nacional-de-producao-e-uso-de-biodiesel-pnpb.pdf
  • 31
    Presidência da República Casa Civil; Lei No. 11.097, de 13 de janeiro de 2005, Dispõe sobre a Introdução do Biodiesel na Matriz Energética Brasileira; Diário Oficial da União (DOU), Brasília, Brazil, 2005, available at https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11097.htm, accessed in March 2021.
    » https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2005/lei/l11097.htm
  • 32
    Suarez, P. A. Z.; Meneghetti, S. M. P.; Quim. Nova 2007, 30, 2068.
  • 33
    http://www.anp.gov.br/biocombustiveis/biodiesel, accessed in February 2021.
    » http://www.anp.gov.br/biocombustiveis/biodiesel
  • 34
    http://g20.org.tr/about-g20/g20-members/, accessed in February 2021.
    » http://g20.org.tr/about-g20/g20-members/
  • 35
    https://sta.uwi.edu/iir/normangirvanlibrary/sites/default/files/normangirvanlibrary/documents/The%20OECD%20in%20the%20G20%20A%20Natural%20Partner%20In%20Global%20Governance.pdf, accessed in February 2021.
    » https://sta.uwi.edu/iir/normangirvanlibrary/sites/default/files/normangirvanlibrary/documents/The%20OECD%20in%20the%20G20%20A%20Natural%20Partner%20In%20Global%20Governance.pdf
  • 36
    https://www.biofuelsdigest.com/bdigest/2018/07/30/german-biodiesel-and-ethanol-blending-both-jump-in-may/, accessed in February 2021.
    » https://www.biofuelsdigest.com/bdigest/2018/07/30/german-biodiesel-and-ethanol-blending-both-jump-in-may/
  • 37
    https://www.ifeu.de/landwirtschaft/pdf/premia-biodiesel-germany.pdf, accessed in February 2021.
    » https://www.ifeu.de/landwirtschaft/pdf/premia-biodiesel-germany.pdf
  • 38
    https://www.etipbioenergy.eu/databases/reports/376-overview-of-biofuel-policies-and-markets-across-the-eu-28, accessed in April 2021.
    » https://www.etipbioenergy.eu/databases/reports/376-overview-of-biofuel-policies-and-markets-across-the-eu-28
  • 39
    https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/072618-analysis-german-jan-may-biodiesel-sales-rise-129-on-year-ethanol-sales-up-76, accessed in February 2021.
    » https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/072618-analysis-german-jan-may-biodiesel-sales-rise-129-on-year-ethanol-sales-up-76
  • 40
    https://www.biofuelsdigest.com/bdigest/2013/07/15/german-biodiesel-feedstocks-are-diversifying/, accessed in February 2021.
    » https://www.biofuelsdigest.com/bdigest/2013/07/15/german-biodiesel-feedstocks-are-diversifying/
  • 41
    https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000024562958/, accessed in March 2021.
    » https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000024562958/
  • 42
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_The%20Hague_EU-28_6-19-2017.pdf
  • 43
    https://www.russiangost.com/p-71805-gost-r-52368-2005.aspx, accessed in March 2021.
    » https://www.russiangost.com/p-71805-gost-r-52368-2005.aspx
  • 44
    https://mpra.ub.uni-muenchen.de/76729/1/MPRA_paper_76729.pdf, accessed in February 2021.
    » https://mpra.ub.uni-muenchen.de/76729/1/MPRA_paper_76729.pdf
  • 45
    https://www.biofuelsdigest.com/bdigest/2017/09/19/uk-sets-out-policy-to-raise-biofuels-blends-through-2032/, accessed in February 2021.
    » https://www.biofuelsdigest.com/bdigest/2017/09/19/uk-sets-out-policy-to-raise-biofuels-blends-through-2032/
  • 46
    https://eneken.ieej.or.jp/data/6380.pdf, accessed in February 2021.
    » https://eneken.ieej.or.jp/data/6380.pdf
  • 47
    Masiero, G.; Rev. Bras. Polit. Int. 2011, 54, 97.
  • 48
    https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Annual_Seoul_Korea%20-%20Republic%20of_3-5-2019, accessed in March 2021.
    » https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Oilseeds%20and%20Products%20Annual_Seoul_Korea%20-%20Republic%20of_3-5-2019
  • 49
    Pradhan, A.; Mbohwa, C.; Renewable Sustainable Energy Rev. 2014, 39, 1089.
  • 50
    https://www.tralac.org/discussions/article/10962-prospects-for-a-regional-biofuels-industry-in-southern-africa.html, accessed in February 2021.
    » https://www.tralac.org/discussions/article/10962-prospects-for-a-regional-biofuels-industry-in-southern-africa.html
  • 51
    http://www.miningweekly.com/article/biodiesel-not-an-affordable-solution-for-s-african-mines-2018-02-07, accessed in February 2021.
    » http://www.miningweekly.com/article/biodiesel-not-an-affordable-solution-for-s-african-mines-2018-02-07
  • 52
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Buenos%20Aires_Argentina_7-17-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Buenos%20Aires_Argentina_7-17-2017.pdf
  • 53
    https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/020520-argentina-data-biodiesel-output-fell-in-november-on-year-on-lower-exports, accessed in February 2021.
    » https://www.spglobal.com/platts/en/market-insights/latest-news/agriculture/020520-argentina-data-biodiesel-output-fell-in-november-on-year-on-lower-exports
  • 54
    https://www.biodieselbr.com/noticias/inter/argentina/industria-de-biodiesel-na-argentina-sofre-com-paralisia-nas-exportacoes-300519, accessed in February 2021.
    » https://www.biodieselbr.com/noticias/inter/argentina/industria-de-biodiesel-na-argentina-sofre-com-paralisia-nas-exportacoes-300519
  • 55
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Buenos%20Aires_Argentina_7-21-2016.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Buenos%20Aires_Argentina_7-21-2016.pdf
  • 56
    http://www.biodieselmagazine.com/articles/2516872/2020-biodiesel-plant-map-reflections, accessed in February 2021.
    » http://www.biodieselmagazine.com/articles/2516872/2020-biodiesel-plant-map-reflections
  • 57
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Ottawa_Canada_4-6-2018.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Ottawa_Canada_4-6-2018.pdf
  • 58
    https://www.afdc.energy.gov/fuels/biodiesel_blends.html, accessed in February 2021.
    » https://www.afdc.energy.gov/fuels/biodiesel_blends.html
  • 59
    https://afdc.energy.gov/files/pdfs/2527.pdf, accessed in March 2021.
    » https://afdc.energy.gov/files/pdfs/2527.pdf
  • 60
    https://www.eia.gov/biofuels/biodiesel/production/, accessed in February 2021.
    » https://www.eia.gov/biofuels/biodiesel/production/
  • 61
    http://task39.sites.olt.ubc.ca/files/2013/05/The-Potential-of-biofuels-in-China-IEA-Bioenergy-Task-39-September-2016.pdf, accessed in February 2021.
    » http://task39.sites.olt.ubc.ca/files/2013/05/The-Potential-of-biofuels-in-China-IEA-Bioenergy-Task-39-September-2016.pdf
  • 62
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Tokyo_Japan_8-15-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Tokyo_Japan_8-15-2017.pdf
  • 63
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6-27-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_New%20Delhi_India_6-27-2017.pdf
  • 64
    https://www.deccanherald.com/business/business-news/union-budget-2020-what-the-biofuels-industry-expects-798643.html, accessed in February 2021.
    » https://www.deccanherald.com/business/business-news/union-budget-2020-what-the-biofuels-industry-expects-798643.html
  • 65
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Jakarta_Indonesia_6-20-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Jakarta_Indonesia_6-20-2017.pdf
  • 66
    https://www.reuters.com/article/idUSKCN1IP18L, accessed in April 2021.
    » https://www.reuters.com/article/idUSKCN1IP18L
  • 67
    https://www.reuters.com/article/indonesia-biodiesel/indonesia-biodiesel-group-says-more-capacity-in-2020-could-help-exports-idUSL4N2A32V4, accessed in February 2021.
    » https://www.reuters.com/article/indonesia-biodiesel/indonesia-biodiesel-group-says-more-capacity-in-2020-could-help-exports-idUSL4N2A32V4
  • 68
    https://www.reuters.com/article/us-indonesia-biodiesel/indonesia-bets-big-on-biodiesel-to-limit-costs-of-oil-imports-idUSKBN1KS0CC, accessed in February 2021.
    » https://www.reuters.com/article/us-indonesia-biodiesel/indonesia-bets-big-on-biodiesel-to-limit-costs-of-oil-imports-idUSKBN1KS0CC
  • 69
    Rehan, M.; Gardy, J.; Demirbas, A.; Rashid, U.; Budzianowski, W. M.; Pant, D.; Nizami, A. S.; Bioresour. Technol. 2018, 250, 17.
  • 70
    Bölük, G.; Koç, A. A.; Int. J. Energy Econ. Policy 2013, 3, 14; https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Ankara_Turkey_8-13-2010.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Ankara_Turkey_8-13-2010.pdf
  • 71
    Coronado, M. A.; Montero, G.; García, C.; Valdez, B.; Ayala, R.; Pérez, A.; Energies 2017, 10, 631.
  • 72
    http://www.cedrssa.gob.mx/files/b/13/56Producci%C3%B3n%20y%20comercio%20de%20biocombustibles.pdf, accessed in April 2021.
    » http://www.cedrssa.gob.mx/files/b/13/56Producci%C3%B3n%20y%20comercio%20de%20biocombustibles.pdf
  • 73
    http://www.diputados.gob.mx/LeyesBiblio/pdf/LPDB.pdf, accessed in February 2021.
    » http://www.diputados.gob.mx/LeyesBiblio/pdf/LPDB.pdf
  • 74
    http://www.biofuelsdigest.com/bdigest/2017/05/22/mexican-biodiesel-producer-growing-thanks-to-higher-fossil-prices-but-margins-thin/, accessed in February 2021.
    » http://www.biofuelsdigest.com/bdigest/2017/05/22/mexican-biodiesel-producer-growing-thanks-to-higher-fossil-prices-but-margins-thin/
  • 75
    https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Canberra_Australia_8-15-2017.pdf, accessed in February 2021.
    » https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Biofuels%20Annual_Canberra_Australia_8-15-2017.pdf
  • 76
    Miglietta, P. P.; Giove, S.; Toma, P.; Ecol. Indic. 2018, 85, 1231.
  • 77
    Zentou, H.; Rosli, N. S.; Wen, C. H.; Abdul Azeez, K.; Gomes, C.; Iran. J. Chem. Chem. Eng. 2019, 38, 173.
  • 78
    https://www.ufop.de/files/7215/7953/0161/WEB_UFOP_Global_Supply_Report_A5_EN_19_20.pdf, accessed in February 2021.
    » https://www.ufop.de/files/7215/7953/0161/WEB_UFOP_Global_Supply_Report_A5_EN_19_20.pdf
  • 79
    http://www.anp.gov.br/publicacoes/anuario-estatistico/5809-anuario-estatistico-2020, accessed in February 2021.
    » http://www.anp.gov.br/publicacoes/anuario-estatistico/5809-anuario-estatistico-2020
  • 80
    http://www.anp.gov.br/producao-de-biocombustiveis/biodiesel/informacoes-de-mercado, accessed in February 2021.
    » http://www.anp.gov.br/producao-de-biocombustiveis/biodiesel/informacoes-de-mercado
  • 81
    César, A. S.; Werderits, D. E.; Saraiva, G. L. O.; Guabiroba, R. C. S.; Renewable Sustainable Energy Rev. 2017, 72, 246.
  • 82
    Deeba, F.; Patel, A.; Arora, N.; Pruthi, V.; Pruthi, P. A.; Negi, Y. S.; Environ. Sci. Pollut. Res. 2018, 25, 353.
  • 83
    Górnaś, P.; Ramos, M. J.; Montano, M. C.; Rudzińska, M.; Radziejewska-Kubzdela, E.; Grygier, A.; Eur. J. Lipid Sci. Technol. 2018, 120, 1700147.
  • 84
    Anwar, M.; Rasul, M. G.; Ashwath, N.; Nabi, M. D. N.; Energy Rep. 2019, 5, 280.
  • 85
    Yesilyurt, M. K.; Cesur, C.; Aslan, V.; Yilbasi, Z.; Renewable Sustainable Energy Rev. 2020, 119, 109574.
  • 86
    Niju, S.; Balajii, M.; Anushya, C.; Int. J. Green Energy 2019, 16, 702.
  • 87
    Arumugam, A.; Ponnusami, V.; Renewable Energy 2019, 131, 459.
  • 88
    Yesilyurt, M. K.; Cesur, C.; Fuel 2020, 265, 117025.
  • 89
    Abraham, J.; Kumar, R. S.; Xavier, F.; Mathew, D. M.; Int. J. Agric. Biosys. Eng. 2015, 9, 1190.
  • 90
    Chung, K. H.; Kim, J.; Lee, K. Y.; Biomass Bioenergy 2009, 33, 155.
  • 91
    Sivaramakrishnan, R.; Muthukumar, K.; Energy Fuels 2012, 26, 6387; Sivaramakrishnan, R.; Muthukumar, K.; J. Biosci. Bioeng. 2014, 117, 86; Jalilian, N.; Najafpour, G. D.; Khajouei, M.; ChemBioEng Rev. 2020, 7, 18.
  • 92
    Kim, K. H.; Lee, O. K.; Kim, C. H.; Seo, J.-W.; Oh, B.-R.; Lee, E. Y.; Bioresour. Technol. 2016, 211, 472.
  • 93
    Patel, A.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Biotechnol. Biofuels 2018, 11, 169.
  • 94
    Ashokkumar, V.; Agila, E.; Sivakumar, P.; Salam, Z.; Rengasamy, R.; Ani, F. N.; Energy Convers. Manage. 2014, 88, 936.
  • 95
    Sivaramakrishnan, R.; Incharoensakdi, A.; Fuel 2017, 191, 363.
  • 96
    Al-lwayzy, S. H.; Yusaf, T.; Renewable Energy 2017, 101, 690; Chen, Y. H.; Huang, B. Y.; Chiang, T. H.; Tang, T. C.; Fuel 2012, 94, 270; Cheng, Y.; Zhou, W.; Gao, C.; Lan, K.; Gao, Y.; Wu, Q.; J. Chem. Technol. Biotechnol. 2009, 84, 777.
  • 97
    Cao, H.; Zhang, Z.; Wu, X.; Miao, X.; BioMed Res. Int. 2013, 2013, 930686; Elystia, S.; Muria, S. R.; Erlangga, H. F.; Environ. Health Eng. Manage. J. 2020, 7, 1.
  • 98
    Ehimen, E. A.; Sun, Z. F.; Carrington, C. G.; Fuel 2010, 89, 677; Ehimen, E. A.; Sun, Z.; Carrington, G. C.; Procedia Environ. Sci. 2012, 15, 47.
  • 99
    Jo, Y. J.; Lee, O. K.; Lee, E. Y.; Bioresour. Technol. 2014, 158, 105.
  • 100
    Arroussi, H. E.; Benhima, R.; Mernissi, N. E.; Bouhfid, R.; Tilsaghani, C.; Bennis, I.; Wahby, I.; Renewable Energy 2017, 113, 1515.
  • 101
    Suganya, T.; Kasirajan, R.; Renganathan, S.; Bioresour. Technol. 2014, 156, 283.
  • 102
    Kings, A. J.; Raj, R. E.; Miriam, L. R. M.; Visvanathan, M. A.; Energy Convers. Manage. 2017, 141, 224.
  • 103
    Razon, L. F.; Tan, R. R.; Appl. Energy 2011, 88, 3507.
  • 104
    Srinuanpan, S.; Cheirsilp, B.; Prasertsan, P.; Kato, Y.; Asano, Y.; Renewable Energy 2018, 122, 507.
  • 105
    Jazzar, S.; Olivares-Carrillo, P.; de los Ríos, A. P.; Marzouki, M. N.; Acién-Fernández, F. G.; Fernández-Sevilla, J. M.; Molina-Grima, E.; Smaali, I.; Quesada-Medina, J.; Appl. Energy 2015, 148, 210.
  • 106
    Moazami, N.; Ashori, A.; Ranjbar, R.; Tangestani, M.; Eghtesadi, R.; Nejad, A. S.; Biomass Bioenergy 2012, 39, 449; Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A.; Bioresour. Technol. 2011, 102, 4265.
  • 107
    Zendejas, F. J.; Benke, P. I.; Lane, P. D.; Simmons, B. A.; Lane, T. W.; Biotechnol. Bioeng. 2012, 109, 1146.
  • 108
    Siqueira, S. F.; Francisco, É. C.; Queiroz, M. I.; de Menezes, C. R.; Zepka, L. Q.; Jacob-Lopes, E.; Braz. J. Chem. Eng. 2016, 33, 427.
  • 109
    Wu, H.; Miao, X.; Bioresour. Technol. 2014, 170, 421.
  • 110
    Sivaramakrishnan, R.; Incharoensakdi, A.; Environ. Sci. Pollut. Res. 2017, 24, 4950.
  • 111
    Bi, Z.; He, B. B.; McDonald, A. G.; Energy Fuels 2015, 29, 5018.
  • 112
    Rahman, M. A.; Aziz, M. A.; Ruhul, A. M.; Rashid, M. M.; J. Mech. Eng. Sci. 2017, 31, 3025.
  • 113
    Rahman, M. A.; Aziz, M. A.; Al-khulaidi, R. A.; Sakib, N.; Islam, M.; J. Radiat. Res. Appl. Sci. 2017, 10, 140.
  • 114
    Martínez, N.; Callejas, N.; Morais, E. G.; Costa, J. A. V.; Jachmanián, I.; Vieitez, I.; Fuel 2017, 202, 512.
  • 115
    Wang, H.; Gao, L.; Chen, L.; Guo, F.; Liu, T.; Bioresour. Technol. 2013, 142, 39.
  • 116
    Hossain, J.; Mod. Mech. Eng. 2011, 1, 77.
  • 117
    Kaur, N.; Ali, A.; Energy Sources, Part A 2013, 35, 184.
  • 118
    Nguyen, T.; Do, L.; Sabatini, D. A.; Fuel 2010, 89, 2285.
  • 119
    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.; Appl. Energy 2014, 130, 466.
  • 120
    Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E.; Biomass Bioenergy 2009, 33, 44.
  • 121
    Atabania, A. E.; Silitonga, A. S.; Ong, H. C.; Mahlia, T. M. I.; Masjuki, H. H.; Badruddin, I. A.; Fayaz, H.; Renewable Sustainable Energy Rev. 2013, 18, 211.
  • 122
    Chen, Y. H.; Chiang, T. H.; Chen, J. H.; Biomass Bioenergy 2013, 52, 15.
  • 123
    Tuntiwiwattanapun, N.; Tongcumpou, C.; Ind. Crops Prod. 2018, 117, 359.
  • 124
    Kamil, M.; Ramadan, K. M.; Olabi, A. G.; Al-Ali, E. I.; Ma, X.; Awad, O. I.; Renewable Energy 2020, 147, 1880.
  • 125
    Shah, S. N.; Iha, O. K.; Alves, F. C. S. C.; Sharma, B. K.; Erhan, S. Z.; Suarez, P. A. Z.; Bioenergy Res. 2013, 6, 841.
  • 126
    Yahyaee, R.; Ghobadian, B.; Najafi, G.; Renewable Sustainable Energy Rev. 2013, 17, 312.
  • 127
    Capodaglio, A. G.; Callegari, A. J.; Environ. Manage. 2018, 216, 176.
  • 128
    da Silva, M. J.; de Souza, S. N. M.; Chaves, L. I.; Baricatti, R. A.; Nogueira, C. E. C.; Renewable Sustainable Energy Rev. 2013, 17, 278.
  • 129
    Nguyen, H. C.; Nguyen, N. T.; Su, C.-H.; Wang, F.-M.; Tran, T. N.; Liao, Y.-T.; Liang, S.-H.; Curr. Org. Chem. 2019, 23, 1499.
  • 130
    Wang, Q.; Sen, B.; Liu, X.; He, Y.; Xie, Y.; Wang, G.; Sci. Total Environ. 2018, 631-632, 994.
  • 131
    Guerfali, M.; Ayadi, I.; Sassi, H.-E.; Belhassen, A.; Gargouri, A.; Belghith, H.; Ind. Crops Prod. 2020, 145, 112103.
  • 132
    Passarinho, P. C.; Oliveira, B.; Dias, C.; Teles, M.; Reis, A.; da Silva, T. L.; Waste Biomass Valorization 2020, 11, 2075.
  • 133
    Callegari, A.; Bolognesi, S.; Cecconet, D.; Capodaglio, A. G.; Crit. Rev. Environ. Sci. Technol. 2020, 50, 384.
  • 134
    Adeniyi, O. M.; Azimov, U.; Burluka, A.; Renewable Sustainable Energy Rev. 2018, 90, 316.
  • 135
    Schneider, R. C. S.; Lima, M. M.; Hoeltz, M.; Neves, F. F.; John, D. K.; de Azevedo, A.; Algal Res. 2018, 32, 280.
  • 136
    Duarte, J. H.; Costa, J. A. V.; Bioresour. Technol. 2018, 247, 1242.
  • 137
    Ferreira, S. P.; Holz, J. C. P.; Costa, J. A. V.; Int. Food Res. J. 2018, 25, 408.
  • 138
    Lima, Â. M. F.; Torres, E. A.; Kiperstok, A.; Santos, G. F. M.; Clean Technol. Environ. Policy 2017, 19, 1523.
  • 139
    Freitas, B. C. B.; Cassuriaga, A. P. A.; Morais, M. G.; Costa, J. A. V.; Bioresour. Technol. 2017, 238, 248.
  • 140
    Pinho, D. M. M.; Oliveira, R. S.; dos Santos, V. M. L.; Marques, W. F.; Pinto, A. C.; Rezende, M. J. C.; Suarez, P. A. Z.; J. Braz. Chem. Soc. 2017, 28, 2429.
  • 141
    Zukovski, L.; Fontana, R. C.; Pauletti, G.; Camassola, M.; Dillon, A. J. P.; Braz. J. Chem. Eng. 2017, 34, 709.
  • 142
    Brennan, L.; Owende, P.; Renewable Sustainable Energy Rev. 2010, 14, 557.
  • 143
    Leong, W. H.; Lim, J. W.; Lam, M. K.; Uemura, Y.; Ho, Y. C.; Renewable Sustainable Energy Rev. 2018, 91, 950.
  • 144
    Chowdhury, H.; Loganathan, B.; Curr. Opin. Green Sustainable Chem. 2019, 20, 39.
  • 145
    Vadivel, M.; Arvindnarayan, S.; Kumar, G.; Shobana, S.; Dharmaraja, J.; Nguyen, D. D.; Chang, S. W.; Prabhu, K. K. S.; Waste Biomass Valorization 2020, 11, 1671.
  • 146
    Ma, Y.; Gao, Z.; Wang, Q.; Liu, Y.; Bioresour. Technol. 2018, 263, 631.
  • 147
    Klein, B. C.; Bonomi, A.; Maciel Filho, R.; Renewable Sustainable Energy Rev. 2018, 82, 1376.
  • 148
    Anto, S.; Mukherjee, S. S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S. S.; Verma, T. N.; Pugazhendhi, A.; Chemosphere 2020, 242, 125079.
  • 149
    Farrokh, P.; Sheikhpour, M.; Kasaeian, A.; Asadi, H.; Bavandi, R.; Biotechnol. Prog. 2019, 35, 1.
  • 150
    Souza, S. P.; Seabra, J. E. A.; Nogueira, L. A. H.; Biofuels 2018, 9, 455.
  • 151
    Maximo, G. J.; Magalhães, A. M. S.; Gonçalves, M. M.; Esperança, E. S.; Costa, M. C.; Meirelles, A. J. A.; Coutinho, A. A. P.; Fuel 2018, 226, 87.
  • 152
    Tang, H.; Abunasser, N.; Garcia, M. E. D.; Chen, M.; Ng, K. Y. S.; Salley, S. O.; Appl. Energy 2011, 88, 3324.
  • 153
    Wen, L.; Wang, Y.; Lu, D.; Hu, S.; Han, H.; Fuel 2010, 89, 2267.
  • 154
    Vanhercke, T.; Wood, C. C.; Stymne, S.; Singh, S. P.; Green, A. G.; Plant Biotechnol. J. 2013, 11, 197.
  • 155
    Sánchez, A. S.; Almeida, M. B.; Torres, E. A.; Kalid, R. A.; Cohim, E.; Gasparatos, A.; Renewable Sustainable Energy Rev. 2018, 81, 2744.
  • 156
    Vieira, J. S. C.; Sousa, T. L.; Rosas, L. S.; Lima, A. L.; Ronconi, C. M.; Mota, C. J. A.; Quim Nova 2018, 41, 10.
  • 157
    Knothe, G.; Fuel Process. Technol. 2005, 86, 1059.
  • 158
    Hegde, K.; Chandra, N.; Sarma, S. J.; Brar, S. K.; Veeranki, V. D.; Mol. Biotechnol. 2015, 57, 606.
  • 159
    Majidian, P.; Tabatabaei, M.; Zeinolabedini, M.; Naghshbandi, M. P.; Chisti, Y.; Renewable Sustainable Energy Rev. 2018, 82, 3863.
  • 160
    Shahid, A.; Rehman, A.; Usman, M.; Ashraf, M. U. F.; Javed, M. R.; Khan, A. Z.; Gill, S. S.; Mehmood, M. A.; Biotechnol. Appl. Biochem. 2020, 67, 41.
  • 161
    Jiang, W.; Gu, P.; Zhang, F.; Curr. Opin. Biotechnol. 2018, 53, 26.
  • 162
    Sarria, S.; Kruyer, N. S.; Peralta-Yahya, P.; Nat. Biotechnol. 2017, 35, 1158.
  • 163
    Gajewski, J.; Pavlovic, R.; Fischer, M.; Boles, E.; Grininger, M.; Nat. Commun. 2017, 8, 14650.
  • 164
    Dewick, P. M.; Medicinal Natural Products: A Biosynthetic Approach, 3rd ed.; John Wiley & Sons, Ltd: Chichester, UK, 2009.
  • 165
    Marella, E. R.; Holkenbrink, C.; Siewers, V.; Borodina, I.; Curr. Opin. Biotechnol. 2018, 50, 39.
  • 166
    Clemente, T. E.; Cahoon, E. B.; Plant Physiol. 2009, 151, 1030.
  • 167
    Kumar, A.; Ogita, S.; Yau, Y.-Y.; Biofuels: Greenhouse Gas Mitigation and Global Warming; Springer: New Delhi, India, 2018.
  • 168
    Kinney, A. J.; Genet. Eng. 1997, 19, 149.
  • 169
    Heppard, E. P.; Kinney, A. J.; Stecca, K. L.; Miao, G. H.; Plant Physiol. 1996, 110, 311.
  • 170
    Buhr, T.; Sato, S.; Ebrahim, F.; Xing, A.; Zhou, Y.; Mathiesen, M.; Schweiger, B.; Kinney, A.; Staswick, P.; Clemente, T.; Plant J. 2002, 30, 155.
  • 171
    Graef, G.; laVallee, B. J.; Tenopir, P.; Tat, M.; Schweiger, B.; Kinney, A. J.; van Gerpen, J. H.; Clemente, T. E.; Plant Biotechnol. J. 2009, 7, 411.
  • 172
    Sheikh, R.; Choi, M.; Im, J.; Park, Y.; J. Ind. Eng. Chem. 2013, 19, 1413.
  • 173
    Gardy, J.; Rehan, M.; Hassanpour, A.; Lai, X.; Nizami, A.-S.; J. Environ. Manage. 2019, 249, 109316.
  • 174
    Aransiola, E. F.; Ojumu, T. V.; Oyekola, O. O.; Madzimbamuto, T. F.; Ikhu-Omoregbe, D. I. O.; Biomass Bioenergy 2014, 61, 276.
  • 175
    Chua, S. Y.; Periasamy, L. A. P.; Goh, C. M. H.; Tan, Y. H.; Mubarak, N. M.; Kansedo, J.; Khalid, M.; Walvekar, R.; Abdullah, E. C.; J. Ind. Eng. Chem. 2020, 81, 41.
  • 176
    Sani, Y. M.; Daud, W. M. A. W.; Aziz, A. R. A.; Appl. Catal., A 2014, 470, 140.
  • 177
    Sharma, S.; Saxena, V.; Baranwal, A.; Chandra, P.; Pandey, L. M.; Mater. Sci. Energy Technol. 2018, 1, 11.
  • 178
    de Lima, A. L.; Ronconi, C. M.; Mota, C. J. A.; Catal. Sci. Technol. 2016, 6, 2877.
  • 179
    Du, L.; Li, Z.; Ding, S.; Chen, C.; Qu, S.; Yi, W.; Lu, J.; Ding, J.; Fuel 2019, 258, 116122.
  • 180
    Roschat, W.; Phewphong, S.; Thangthong, A.; Moonsin, P.; Yoosuk, B.; Kaewpuang, T.; Promarak, V.; Energy Convers. Manage. 2018, 165, 1.
  • 181
    Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K.; Chem. Soc. Rev. 2014, 43, 7887.
  • 182
    Maleki, H.; Kazemeini, M.; Larimi, A. S.; Khorasheh, F.; J. Ind. Eng. Chem. 2017, 47, 399.
  • 183
    Silva, C. C. C. M.; Ribeiro, N. F. P.; Souza, M. M. V. M.; Aranda, D. A. G.; Fuel Process. Technol. 2010, 91, 205.
  • 184
    Dias, A. P. S.; Bernardo, J.; Felizardo, P.; Correia, M. J. N.; Energy 2012, 41, 344.
  • 185
    Corala, N.; Brasil, H.; Rodrigues, E.; da Costa, C. E. F.; Rumjanek, V.; Sustainable Chem. Pharm. 2019, 11, 49.
  • 186
    Navajas, A.; Campo, I.; Moral, A.; Echave, J.; Sanz, O.; Montes, M.; Odriozola, J. A.; Arzamendi, G.; Gandía, L. M.; Fuel 2018, 211, 173.
  • 187
    Nowicki, J.; Lach, J.; Organek, M.; Sabura, E.; Appl. Catal., A 2016, 524, 17.
  • 188
    de Lima, A. L.; Vieira, J. S. C.; Ronconi, C. M.; Mota, C. J. A.; Mol. Catal. 2018, 458, 240.
  • 189
    de Lima, A. L.; Mbengue, A.; San Gil, R. A. S.; Ronconi, C. M.; Mota, C. J. A.; Catal. Today 2014, 226, 210.
  • 190
    Sun, H.; Han, J.; Ding, Y.; Li, W.; Duan, J.; Chen, P.; Lou, H.; Zheng, X.; Appl. Catal., A 2010, 390, 26.
  • 191
    Filippousi, M.; Turner, S.; Katsikini, M.; Pinakidou, F.; Zamboulis, D.; Pavlidou, E.; van Tendeloo, G.; Microporous Mesoporous Mater. 2015, 210, 185.
  • 192
    Al-Ani, A.; Mordvinova, N. E.; Lebedev, O. I.; Khodakov, A. Y.; Zholobenko, V.; Energy Rep. 2019, 5, 357.
  • 193
    Baerlocher, C.; McCusker, L. B.; Olson, D. H.; Atlas of Zeolite Framework Types, 6th ed.; Elsevier: Amsterdam, 2007.
  • 194
    Ramos, M. J.; Casas, A.; Rodríguez, L.; Romero, R.; Pérez, Á.; Appl. Catal., A 2008, 346, 79.
  • 195
    Ferrero, G. O.; Almeida, M. F.; Alvim-Ferraz, M. C. M.; Dias, J. M.; Fuel Process. Technol. 2014, 121, 114.
  • 196
    Maneerung, T.; Kawi, S.; Dai, Y.; Wang, C. H.; Energy Convers. Manage. 2016, 123, 487.
  • 197
    Teo, S. H.; Rashid, U.; Taufiq-Yap, Y. H.; Fuel 2014, 136, 244.
  • 198
    Mootabadi, H.; Salamatinia, B.; Bhatia, S.; Abdullah, A. Z.; Fuel 2010, 89, 1818.
  • 199
    Roschat, W.; Siritanon, T.; Yoosuk, B.; Promarak, V.; Energy Convers. Manage. 2016, 108, 459.
  • 200
    Calero, J.; Luna, D.; Sancho, E. D.; Luna, C.; Bautista, F. M.; Romero, A. A.; Posadillo, A.; Verdugo, C.; Fuel 2014, 122, 94.
  • 201
    Taufiq-Yap, Y. H.; Lee, H. V.; Yunus, R.; Juan, J. C.; Chem. Eng. J. 2011, 178, 342.
  • 202
    Teo, S. H.; Rashid, U.; Choong, S. Y. T.; Taufiq-Yap, Y. H.; Energy Convers. Manage. 2017, 141, 20.
  • 203
    Lee, H. V.; Taufiq-Yap, Y. H.; Hussein, M. Z.; Yunus, R.; Energy 2013, 49, 12.
  • 204
    Su, J.; Li, Y.; Wang, H.; Yan, X.; Pan, D.; Fan, B.; Li, R.; Chem. Phys. Lett. 2016, 663, 61.
  • 205
    Taufiq-Yap, Y. H.; Teo, S. H.; Rashid, U.; Islam, A.; Hussien, M. Z.; Lee, K. T.; Energy Convers. Manage. 2014, 88, 290.
  • 206
    Fan, M.; Liu, Y.; Zhang, P.; Jiang, P.; Fuel Process. Technol. 2016, 149, 163.
  • 207
    Xie, W.; Zhao, L.; Energy Convers. Manage. 2013, 76, 55.
  • 208
    Wen, Z.; Yu, X.; Tu, S. T.; Yan, J.; Dahlquist, E.; Bioresour. Technol. 2010, 101, 9570.
  • 209
    Mahesh, S. E.; Ramanathan, A.; Begum, K. M. M. S.; Narayanan, A.; Energy Convers. Manage. 2015, 91, 442.
  • 210
    Kaur, N.; Ali, A.; Fuel Process. Technol. 2014, 119, 173.
  • 211
    Wu, H.; Zhang, J.; Wei, Q.; Zheng, J.; Zhang, J.; Fuel Process. Technol., 2013, 109, 13.
  • 212
    Borges, L. D.; Moura, N. N.; Costa, A. A.; Braga, P. R. S.; Dias, J. A.; Dias, S. C. L.; de MacEdo, J. L.; Ghesti, G. F.; Appl. Catal., A 2013, 450, 114.
  • 213
    Noiroj, K.; Intarapong, P.; Luengnaruemitchai, A.; Jai-In, S.; Renewable Energy 2009, 34, 1145.
  • 214
    Kusuma, R. I.; Hadinoto, J. P.; Ayucitra, A.; Soetaredjo, F. E.; Ismadji, S.; Appl. Clay Sci. 2013, 74, 121.
  • 215
    Manadee, S.; Sophiphun, O.; Osakoo, N.; Supamathanon, N.; Kidkhunthod, P.; Chanlek, N.; Wittayakun, J.; Prayoonpokarach, S.; Fuel Process. Technol. 2017, 156, 62.
  • 216
    Saba, T.; Estephane, J.; El Khoury, B.; El Khoury, M.; Khazma, M.; El Zakhem, H.; Aouad, S.; Renewable Energy 2016, 90, 301.
  • 217
    Trakarnpruk, W.; Porntangjitlikit, S.; Renewable Energy 2008, 33, 1558.
  • 218
    Santiago-Torres, N.; Romero-Ibarra, I. C.; Pfeiffer, H.; Fuel Process. Technol. 2014, 120, 34.
  • 219
    Xie, W.; Fan, M.; Bioresour. Technol. 2013, 139, 388.
  • 220
    Helwani, Z.; Aziz, N.; Bakar, M. Z. A.; Mukhtar, H.; Kim, J.; Othman, M. R.; Energy Convers. Manage. 2013, 73, 128.
  • 221
    Reyero, I.; Velasco, I.; Sanz, O.; Montes, M.; Arzamendi, G.; Gandía, L. M.; Catal. Today 2013, 216, 211.
  • 222
    Ma, Y.; Wang, Q.; Zheng, L.; Gao, Z.; Wang, Q.; Ma, Y.; Energy 2016, 107, 523.
  • 223
    Gomes, J. F. P.; Puna, J. F. B.; Gonçalves, L. M.; Bordado, J. C. M.; Energy 2011, 36, 6770.
  • 224
    Deng, X.; Fang, Z.; Liu, Y.; Yu, C. L.; Energy 2011, 36, 777.
  • 225
    Lu, Y.; Zhang, Z.; Xu, Y.; Liu, Q.; Qian, G.; Bioresour. Technol. 2015, 190, 438.
  • 226
    Salinas, D.; Araya, P.; Guerrero, S.; Appl. Catal., B 2012, 117-118, 260.
  • 227
    Chen, G.; Shan, R.; Li, S.; Shi, J.; Fuel 2015, 153, 48.
  • 228
    Samart, C.; Chaiya, C.; Reubroycharoen, P.; Energy Convers. Manage. 2010, 51, 1428.
  • 229
    Mahdavi, V.; Monajemi, A.; J. Taiwan Inst. Chem. Eng. 2014, 45, 2286.
  • 230
    Agarwal, M.; Chauhan, G.; Chaurasia, S. P.; Singh, K.; J. Taiwan Inst. Chem. Eng. 2012, 43, 89.
  • 231
    Chen, Y. H.; Huang, Y. H.; Lin, R. H.; Shang, N. C.; Chang, C. Y.; Chang, C. C.; Chiang, P. C.; Hu, C. Y.; J. Taiwan Inst. Chem. Eng. 2011, 42, 937.
  • 232
    Uprety, B. K.; Chaiwong, W.; Ewelike, C.; Rakshit, S. K.; Energy Convers. Manage. 2016, 115, 191.
  • 233
    Li, Y.; Qiu, F.; Yang, D.; Li, X.; Sun, P.; Biomass Bioenergy 2011, 35, 2787.
  • 234
    Kesić, Ž.; Lukić, I.; Zdujić, M.; Jovalekić, Č.; Veljković, V.; Skala, D.; Fuel Process. Technol. 2016, 143, 162.
  • 235
    Sandesh, S.; Kristachar, P. K. R.; Manjunathan, P.; Halgeri, A. B.; Shanbhag, G. V.; Appl. Catal., A 2016, 523, 1.
  • 236
    Kawashima, A.; Matsubara, K.; Honda, K.; Bioresour. Technol. 2008, 99, 3439.
  • 237
    Zhang, P.; Han, Q.; Fan, M.; Jiang, P.; Appl. Surf. Sci 2014, 317, 1125.
  • 238
    Xie, W.; Peng, H.; Chen, L.; Appl. Catal., A 2006, 300, 67.
  • 239
    Xie, W.; Yang, X.; Fan, M.; Renewable Energy 2015, 80, 230.
  • 240
    Balbino, J. M.; de Menezes, E. W.; Benvenutti, E. V.; Cataluña, R.; Ebeling, G.; Dupont, J.; Green Chem 2011, 13, 3111.
  • 241
    Xie, W.; Fan, M.; Chem. Eng. J. 2014, 239, 60.
  • 242
    Meloni, D.; Monaci, R.; Zedde, Z.; Cutrufello, M. G.; Fiorilli, S.; Ferino, I.; Appl. Catal., B 2011, 102, 505.
  • 243
    Su, F.; Guo, Y.; Green Chem 2014, 16, 2934.
  • 244
    Mardhiah, H. H.; Ong, H. C.; Masjuki, H. H.; Lim, S.; Lee, H. V.; Renewable Sustainable Energy Rev. 2017, 67, 1225.
  • 245
    Jiménez-Morales, I.; Santamaría-González, J.; Maireles-Torres, P.; Jiménez-López, A.; Appl. Catal., B 2011, 105, 199.
  • 246
    da Conceição, L. R. V.; Carneiro, L. M.; Giordani, D. S.; de Castro, H. F.; Renewable Energy 2017, 113, 119.
  • 247
    Kaur, M.; Malhotra, R.; Ali, A.; Renewable Energy 2018, 116, 109.
  • 248
    Zhang, P.; Wu, H.; Fana, M.; Sun, W.; Jiang, P.; Dong, Y.; Fuel 2019, 235, 426.
  • 249
    Chen, H.; Peng, B.; Wang, D.; Wang, J.; Front. Chem. Eng. China 2007, 1, 11.
  • 250
    Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P.; Chem. Eng. J. 2006, 116, 61.
  • 251
    Feng, Y.; Qiu, T.; Yang, J.; Li, L.; Wang, X.; Wang, H.; Chin. J. Chem. Eng. 2017, 25, 1222.
  • 252
    Shin, H. Y.; An, S. H.; Sheikh, R.; Park, Y. H.; Bae, S. Y.; Fuel 2012, 96, 572.
  • 253
    Babadi, F. E.; Hosseini, S.; Soltani, S. M.; Aroua, M. K.; Shamiri, A.; Samadi, M.; J. Am. Oil Chem. Soc. 2016, 93, 319.
  • 254
    Deshmane, C. A.; Wright, M. W.; Lachgar, A.; Rohlfing, M.; Liu, Z.; Le, J.; Hanson, B. E.; Bioresour. Technol. 2013, 147, 597.
  • 255
    Zhang, M.; Sun, A.; Meng, Y.; Wang, L.; Jiang, H.; Li, G.; Catal. Surv. Asia 2015, 19, 61.
  • 256
    Sandouqa, A.; Al-Hamamre, Z.; Asfar, J.; Renewable Energy 2019, 132, 667.
  • 257
    Jiménez-Morales, I.; Santamaría-González, J.; Maireles-Torres, P.; Jiménez-López, A.; Appl. Catal., B 2011, 103, 91.
  • 258
    Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X.; Lee, A. F.; Wilson, K.; Rehan, M.; Appl. Catal., B 2018, 234, 268.
  • 259
    Peng, B. X.; Shu, Q.; Wang, J. F.; Wang, G. R.; Wang, D. Z.; Han, M. H.; Process Saf. Environ. Prot. 2008, 86, 441.
  • 260
    Lathiya, D. R.; Bhatt, D. V.; Maheria, K. C.; Bioresour. Technol. Rep. 2018, 2, 69.
  • 261
    Ding, H.; Ye, W.; Wang, Y.; Wang, X.; Li, L.; Liu, D.; Gui, J.; Song, C.; Ji, N.; Energy 2018, 144, 957.
  • 262
    Negm, N. A.; Sayed, G. H.; Yehia, F. Z.; Habib, O. I.; Mohamed, E. A.; J. Mol. Liq. 2017, 234, 157.
  • 263
    Nongbe, M. C.; Ekou, T.; Ekou, L.; Yao, K. B.; le Grognec, E.; Felpin, F. X.; Renewable Energy 2017, 106, 135.
  • 264
    Thushari, I.; Babel, S.; Bioresour. Technol. 2018, 248, 199.
  • 265
    Zhang, D.; Zhang, X.; Li, Y.; Wang, S.; Wang, X.; Jiang, Z.; Mater. Sci. Eng., C 2018, 92, 922.
  • 266
    Endut, A.; Abdullah, S. H. Y. S.; Hanapi, N. H. M.; Hamid, S. H. A.; Lananan, F.; Kamarudin, M. K. A.; Umar, R.; Juahir, H.; Khatoon, H.; Int. Biodeterior. Biodegrad. 2017, 124, 250.
  • 267
    Ma, Y.; Wang, Q.; Sun, X.; Wu, C.; Gao, Z.; Renewable Energy 2017, 107, 522.
  • 268
    Bala, D. D.; Misra, M.; Chidambaram, D.; J. Cleaner Prod. 2017, 142, 4169.
  • 269
    Kimtun, P.; Choonut, O.; Yunu, T.; Paichid, N.; Klomkloa, S.; Sangkharak, K.; Energy Procedia 2015, 79, 822.
  • 270
    Soler, L.; Illanes, A.; Wilson, L.; Catal. Today 2016, 259, 177.
  • 271
    Pollardo, A. A.; Lee, H. S.; Lee, D.; Kim, S.; Kim, J.; J. Cleaner Prod. 2018, 185, 382.
  • 272
    Aarthy, M.; Saravanan, P.; Gowthaman, M. K.; Rose, C.; Kamini, N. R.; Chem. Eng. Res. Des. 2014, 92, 1591.
  • 273
    Budžaki, S.; Miljić, G.; Tišma, M.; Sundaram, S.; Hessel, V.; Appl. Energy 2017, 201, 124.
  • 274
    Moazeni, F.; Chen, Y.-C.; Zhang, G.; J. Cleaner Prod. 2019, 216, 117.
  • 275
    Ognjanovic, N.; Bezbradica, D.; Knezevic-Jugovic, Z.; Bioresour. Technol. 2009, 100, 5146.
  • 276
    Köse, Ö.; Tüter, M.; Aksoy, H. A.; Bioresour. Technol. 2002, 83, 125.
  • 277
    Oliveira, D.; Oliveira, J. V.; J. Supercrit. Fluids 2001, 19, 141.
  • 278
    Royon, D.; Daz, M.; Ellenrieder, G.; Locatelli, S.; Bioresour. Technol. 2007, 98, 648.
  • 279
    Li, L.; Du, W.; Liu, D.; Wang, L.; Li, Z.; J. Mol. Catal. B: Enzym. 2006, 43, 58.
  • 280
    Gao, Y.; Tan, T. W.; Nie, K. L.; Wang, F.; Chin. J. Biotechnol. 2006, 22, 114.
  • 281
    Soumanou, M. M.; Bornscheuer, U. T.; Enzyme Microb. Technol. 2003, 33, 97.
  • 282
    Bélafi-Bakó, K.; Kovács, F.; Gubicza, L.; Hancsók, J.; Biocatal. Biotransform. 2002, 20, 437.
  • 283
    Shieh, C. J.; Liao, H. F.; Lee, C. C.; Bioresour. Technol. 2003, 88, 103.
  • 284
    Abigor, R. D.; Uadia, P. O.; Foglia, T. A.; Haas, M. J.; Jones, K. C.; Okpefa, E.; Obibuzor, J. U.; Bafor, M. E.; Biochem. Soc. Trans. 2000, 28, 979.
  • 285
    Kumari, A.; Mahapatra, P.; Garlapati, V. K.; Banerjee, R.; Biotechnol. Biofuels 2009, 2, 1.
  • 286
    Kaieda, M.; Samukawa, T.; Kondo, A.; Fukuda, H.; J. Biosci. Bioeng. 2001, 91, 12.
  • 287
    de Oliveira, D.; do Nascimento Filho, I.; di Luccio, M.; Faccio, C.; Dalla Rosa, C.; Bender, J. P.; Lipke, N.; Amroginski, C.; Dariva, C.; de Oliveira, J. V.; Appl. Biochem. Biotechnol. 2005, 121-124, 231.
  • 288
    Jegannathan, K. R.; Jun-Yee, L.; Chan, E. S.; Ravindra, P.; Fuel 2010, 89, 2272.
  • 289
    Xie, W.; Wang, J.; Biomass Bioenergy 2012, 36, 373.
  • 290
    Tamalampudi, S.; Talukder, M. R.; Hama, S.; Numata, T.; Kondo, A.; Fukuda, H.; Biochem. Eng. J. 2008, 39, 185.
  • 291
    Zhang, K. P.; Lai, J. Q.; Huang, Z. L.; Yang, Z.; Bioresour. Technol. 2011, 102, 2767.
  • 292
    Yan, J.; Yan, Y.; Liu, S.; Hu, J.; Wang, G.; Bioresour. Technol. 2011, 102, 4755.
  • 293
    Sim, J. H.; Kamaruddin, A. H.; Bhatia, S.; J. Am. Oil Chem. Soc. 2010, 87, 1027.
  • 294
    Oliveira, A. C.; Rosa, M. F.; J. Am. Oil Chem. Soc. 2006, 83, 21.
  • 295
    https://www2.camara.leg.br/a-camara/estruturaadm/altosestudos/pdf/biodiesel-e-inclusao-social/biodiesel-e-inclusao-social, accessed in February 2021.
    » https://www2.camara.leg.br/a-camara/estruturaadm/altosestudos/pdf/biodiesel-e-inclusao-social/biodiesel-e-inclusao-social
  • 296
    Wright, H. J.; Segur, J. B.; Clark, H. V.; Coburn, S. K.; Langdon, E. E.; Dupuis, E. N.; Oil Soap 1944, 21, 145.
  • 297
    Fredman, B.; Butterfield, R. O.; Pryde, E. H.; J. Am. Oil Chem. Soc. 1986, 63, 1375.
  • 298
    Agência Nacional do Petróleo, Gás Natural e Biocombustíveis; Resolução ANP No. 45, de 25 de agosto de 2014, available at https://atosoficiais.com.br/anp/resolucao-n-45-2014-?origin=instituicao, accessed in March 2021.
    » https://atosoficiais.com.br/anp/resolucao-n-45-2014-?origin=instituicao
  • 299
    Alves, C. T.: Transesterificação de Óleos e Gorduras Residuais Via Rotas Metílica e Etílica Utilizando o Catalisador Aluminato de Zinco em Presença ou não de CO2 Supercrítico; PhD thesis, Universidade Federal da Bahia, Bahia, Brazil, 2012, available at http://repositorio.ufba.br/ri/handle/ri/23902, accessed in February 2021.
    » http://repositorio.ufba.br/ri/handle/ri/23902
  • 300
    Ramos, L. P.; Silva, F. R.; Mangrich, A. S.; Cordeiro, C. S.; Rev. Virtual Quim. 2011, 3, 385.
  • 301
    Malek, M. N. F. A.; Hussin, N. M.; Embong, N. H.; Bhuyar, P.; Rahim, M. H. A.; Govindan, N.; Maniam, G. P.; Biomass Convers. Biorefin. 2020, DOI: 10.1007/s13399-020-01100-6.
    » https://doi.org/10.1007/s13399-020-01100-6
  • 302
    Khedri, B.; Mostafaei, M.; Ardebili, S. M. S.; Energy Sources, Part A 2019, 41, 2377; Nayak, S. N.; Bhasin, C. P.; Nayak, M. G.; Renewable Energy 2019, 143, 1366.
  • 303
    Chuah, L. F.; Klemeš, J. J.; Yusup, S.; Bokhari, A.; Akbar, M. M.; J. Cleaner Prod. 2017, 146, 181; Gude, V. G.; Martinez-Guerra, E.; Environ. Chem. Lett. 2018, 16, 327; Günaya, M. E.; Türkerb, L.; Tapan, N. A.; Fuel 2019, 250, 27; Athar, M.; Zaidi, S.; J. Environ. Chem. Eng. 2020, 8, 104523; Bucciol, F.; Colia, M.; Gaudino, E. C.; Cravotto, G.; Catalysts 2020, 10, 988.
  • 304
    Tabatabaei, M.; Aghbashlo, M.; Dehhaghi, M.; Panahi, H. K. S.; Mollahosseini, A.; Hosseini, M.; Soufiyan, M. M.; Prog. Energy Combust. Sci. 2019, 74, 239.
  • 305
    Carrilho, E.; Tavares, M. C. H.; Lanças, F. M.; Quim Nova 2001, 24, 509.
  • 306
    Toralles, L. P.: Hidrólise de Óleos e Gorduras Residuais em Água Subcrítica para Produção de Biodiesel; MSc dissertation, Universidade Federal da Bahia, Bahia, Brazil, 2016, available at http://docplayer.com.br/47467716-Hidrolise-de-oleos-e-gorduras-residuais-em-agua-subcritica-para-producao-de-biodiesel.html, accessed in February 2021.
    » http://docplayer.com.br/47467716-Hidrolise-de-oleos-e-gorduras-residuais-em-agua-subcritica-para-producao-de-biodiesel.html
  • 307
    Chen, C.-H.; Chen, W.-H.; Chang, C.-M. J.; Lai, S. M.; Tu, C.-H.; J. Supercrit. Fluids 2010, 52, 228.
  • 308
    Savage, P. E.; Gopalan, S.; Mizan, T. I.; Martino, C. J.; Brock, E. E.; Chem. Eng. J. 1995, 41, 1723.
  • 309
    Jafari, A.; Esmaeilzadeh, F.; Mowla, D.; Sadatshojaei, E.; Heidari, S.; Wood, D. A.; Fuel 2021, 285, 119199.
  • 310
    Dermibas, A.; Energy Convers. Manage. 2002, 43, 2349.
  • 311
    Saka, S.; Kusdiana, D.; Fuel 2001, 80, 225.
  • 312
    Dermibas, A.; Energy Convers. Manage. 2007, 48, 937.
  • 313
    Cao, W.; Han, H.; Zhang, J.; Fuel 2005, 84, 347; Imahara, H.; Xin, J.; Saka, S.; Fuel 2009, 88, 1329.
  • 314
    Maçaira, J.; Santana, A.; Recasens, F.; Larrayoz, M. A.; Fuel 2011, 90, 2280.
  • 315
    Alenezi, R.; Leeke, G. A.; Winterbotton, J. M.; Santos, R. C. D.; Khan, A. R.; Energy Convers. Manage. 2010, 51, 1055.
  • 316
    Koh, A. D.: Two-Step Biodiesel Production Using Supercritical Methanol and Ethanol; PhD thesis, University of Iowa, Iowa, USA, 2011, available at https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2623&context=etd, accessed in February 2021.
    » https://ir.uiowa.edu/cgi/viewcontent.cgi?article=2623&context=etd
  • 317
    Tsai, Y.; Lin, H.; Lee, M.; Bioresour. Technol. 2013, 145, 362.
  • 318
    Vieville, C.; Moulooungui, Z.; Gaset, A.; Ind. Eng. Chem. Res. 1993, 32, 2065.
  • 319
    Passman, F. J.; Int. Biodeterior. Biodegrad. 2013, 81, 88.
  • 320
    Varatharajan, K.; Pushparani, D. S.; Renewable Sustainable Energy Rev. 2018, 82, 2017.
  • 321
    Dunn, R. O.; Biofuels, Bioprod. Biorefin. 2008, 2, 304.
  • 322
    Knothe, G.; Fuel Process. Technol. 2007, 88, 669.
  • 323
    Bannister, C. D.; Chuck, C. J.; Bounds, M.; Hawley, J. G.; Proc. Inst. Mech. Eng., Part D 2011, 225, 99.
  • 324
    Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Hazrat, M. A.; Masum, B. M.; Imtenan, S.; Ashraful, A. M.; Renewable Sustainable Energy Rev. 2014, 30, 356.
  • 325
    Yaakob, Z.; Narayanan, B. N.; Padikkaparambil, S.; Unni, K. S.; Akbar, P. M.; Renewable Sustainable Energy Rev. 2014, 35, 136.
  • 326
    Angelovič, M.; Jablonickỳ, J.; Tkáč, Z.; Angelovič, M.; Potravinarstvo 2015, 9, 417.
  • 327
    Kumar, N.; Fuel 2017, 190, 328.
  • 328
    Agarwal, S.; Singhal, S.; Singh, M.; Arora, S.; Tanwer, M.; ACS Sustainable Chem. Eng. 2018, 6, 11036.
  • 329
    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.; IOP Conf. Ser.: Mater. Sci. Eng. 2017, 197, 012015; Kumar, M. V.; Babu, A. V.; Kumar, P. R.; Alexandria Eng. J. 2018, 57, 121; Ramalingam, S.; Rajendran, S.; Ganesan, P.; Govindasamy, M.; Renewable Sustainable Energy Rev. 2018, 81, 775.
  • 330
    Ramalho, V. C.; Jorge, N.; Quim. Nova 2006, 29, 755.
  • 331
    Dunn, R. O.; J. Am. Oil Chem. Soc. 2005, 82, 381; Dunn, R. O.; Fuel Process. Technol. 2005, 86, 1071; Valle, M. L. M.; Leonardo, R. S.; Dweck, J.; J. Therm. Anal. Calorim. 2014, 116, 113; Domingos, A. K.; Saad, E. B.; Vechiatto, W. W. D.; Wilhelm, H. M.; Ramos, L. P.; J. Braz. Chem. Soc. 2007, 18, 416; Ryu, K.; J. Mech. Sci. Technol. 2010, 23, 3105; Borsato, D.; Dall’Antonia, L. H.; Guedes, C. L. B.; Maia, E. C. R.; Freitas, H. R.; Moreira, I.; Spacino, K. R.; Quim. Nova 2010, 33, 1726; Tang, H.; Guzman, R. C. D.; Ng, K. Y. S.; Salley, S. O.; Energy Fuels 2010, 24, 2028; Tavares, M. L. A.; Queiroz, N.; Santos, I. M. G.; Souza, A. L.; Cavalcanti, E. H. S.; Barros, A. K. D.; Rosenhaim, R.; Soledade, L. E. B.; Souza, A. G.; J. Therm. Anal. Calorim. 2011, 106, 575; Maia, E. C. R.; Borsato, D.; Moreira, I.; Spacino, K. R.; Rodrigues, P. R. P.; Gallina, A. L.; Fuel Process. Technol. 2011, 92, 1750; Souza, F. H. N.; Maia, F. J. N.; Mazzetto, S. E.; Nascimento, T. L.; de Andrade, N.; Chem. Biochem. Eng. Q. 2013, 27, 327.
  • 332
    Focke, W. W.; van der Westhuizen, I.; Grobler, A. B. L.; Nshoane, K. T.; Reddy, J. K.; Luyt, A. S.; Fuel 2012, 94, 227.
  • 333
    Serrano, M.; Bouaid, A.; Martínez, M.; Aracil, J.; Fuel 2013, 113, 50.
  • 334
    Deligiannis, A.; Anastasakos, A.; Anastopoulos, G.; Dodos, G. S.; Zannikos, F.; SAE Tech. Pap. 2013, 1, 1128.
  • 335
    Serqueira, D. S.; Fernandes, D. M.; Cunha, R. R.; Squissato, A. L.; Santos, D. Q.; Richter, E. M.; Munoz, R. A. A.; Fuel 2014, 118, 16.
  • 336
    Ferrari, R. A.; de Souza, W. L.; Quim. Nova 2009, 32, 106; Karavalakis, G.; Hilari, D.; Givalou, L.; Karonis, D.; Stournas, S.; Energy 2011, 36, 369; Cursaru, D.; Neagu, M.; Bogatu, L.; Rev. Chim. 2013, 64, 438; van der Westhuizen, I.; Focke, W. W.; Fuel 2018, 219, 126.
  • 337
    Loh, S. K.; Chew, S. M.; Choo, Y. M.; J. Am. Oil Chem. Soc. 2006, 83, 947; Liang, Y. C.; May, C. Y.; Foon, C. S.; Ngan, M. A.; Hock, C. C.; Basiron, Y.; Fuel 2006, 85, 867; Lin, C. Y.; Chiu, C. C.; Energy Fuels 2009, 23, 3285; Lin, C. Y.; Chiu, C. C.; Energy Convers. Manage. 2010, 51, 1464; Pullen, J.; Saeed, K.; Fuel Process. Technol. 2014, 125, 223; Susanto, B. H.; Lukman; Sutanto, H.; Nasikin, M.; IOP Conf. Ser.: Earth Environ. Sci. 2018, 105, 2.
  • 338
    Gan, S.; Ng, H. K.; Energy Convers. Manage. 2010, 51, 1536; Ryu, K.; Bioresour. Technol. 2010, 101, S78; Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Wakil, M. A.; Ashraful, A. M.; Shahir, S. A.; Energy Convers. Manage. 2014, 83, 232.
  • 339
    Rashedul, H. K.; Masjuki, H. H.; Kalam, M. A.; Teoh, Y. H.; How, H. G.; Rizwanul Fattah, I. M.; Energy Convers. Manage. 2015, 106, 849.
  • 340
    Ramalingam, S.; Govindasamy, M.; Rajendran, S.; Therm. Sci. 2016, 20, S991; Velmurugan, K.; Sathiyagnanam, A. P.; Alexandria Eng. J. 2016, 55, 715; Ashok, B.; Nanthagopal, K.; Jeevanantham, A. K.; Bhowmick, P.; Malhotra, D.; Agarwal, P.; Energy Convers. Manage. 2017, 148, 935.
  • 341
    Adam, I. K.; Aziz, A. R. A.; Heikal, M. R.; Yusup, S.; Energy Fuels 2017, 31, 4424.
  • 342
    Rashedul, H. K.; Kalam, M. A.; Masjuki, H. H.; Teoh, Y. H.; How, H. G.; Monirul, I. M.; Imdadul, H. K.; Environ. Sci. Pollut. Res. 2017, 24, 9305.
  • 343
    Sharma, A.; Murugan, S.; Appl. Therm. Eng. 2017, 118, 365; Prabu, S. S.; Asokan, M. A.; Roy, R.; Francis, S.; Sreelekh, M. K.; Energy 2017, 122, 638.
  • 344
    Alagu, K.; Nagappan, B.; Jayaraman, J.; Arul Gnana Dhas, A.; Environ. Sci. Pollut. Res. 2018, 25, 17634.
  • 345
    Kivevele, T. T.; Kristóf, L.; Bereczky, Á.; Mbarawa, M. M.; Fuel 2011, 90, 2782.
  • 346
    Prabu, A.; Premkumar, I. J. I.; Pradeep, A.; Int. J. Ambient Energy 2020, 41, 121.
  • 347
    Reddy, V. P. K.; Kumar, D. S.; Thirumalini, S.; IOP Conf. Ser.: Mater. Sci. Eng. 2018, 310, 12116.
  • 348
    Sachuthananthan, B.; Balaji, G.; Krupakaran, R. L.; Int. J. Ambient Energy 2020, 41, 889.
  • 349
    Afzal, S.; Mumtaz, M. W.; Rashid, U.; Danish, M.; Raza, M. A.; Raza, A.; Mukhtar, H.; Al-Resayes, S. I.; Clean Technol. Environ. Policy 2018, 20, 589.
  • 350
    Halek, F.; Kavousi-Rahim, A.; Energy Environ. 2018, 29, 732.
  • 351
    Yamane, K.; Komiya, K.; Kondo, C.; Kawasaki, K.; SAE Int. J. Fuels Lubr. 2013, 6, 2013.
  • 352
    Ileri, E.; Koçar, G.; Energy Convers. Manage. 2013, 76, 145.
  • 353
    Jain, S.; Sharma, M. P.; Fuel 2013, 106, 152.
  • 354
    Balaji, G.; Cheralathan, M.; J. Energy Inst. 2014, 87, 188.
  • 355
    Fattah, I. M. R.; Hassan, M. H.; Kalam, M. A.; Atabani, A. E.; Abedin, M. J.; J. Cleaner Prod. 2014, 79, 82.
  • 356
    Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Mofijur, M.; Abedin, M. J.; Energy Convers. Manage. 2014, 79, 265.
  • 357
    Fattah, I. M. R.; Masjuki, H. H.; Kalam, M. A.; Wakil, M. A.; Rashedul, H. K.; Abedin, M. J.; Ind. Crops Prod. 2014, 57, 132.
  • 358
    Beker, S. A.; da Silva, Y. P.; Bücker, F.; Cazarolli, J. C.; de Quadros, P. D.; Peralba, M. C. R.; Piatnicki, C. M. S.; Bento, F. M.; Fuel 2016, 184, 701.
  • 359
    Dodos, G. S.; Tsesmeli, C. E.; Zannikos, F.; Fuel 2017, 209, 150.
  • 360
    Tang, H.; Wang, A.; Salley, S. O.; Ng, K. Y. S.; J. Am. Oil Chem. Soc. 2008, 85, 373.
  • 361
    Zaleckas, E.; Makarevičienė, V.; Sendžikienė, E.; Transport 2012, 27, 60.
  • 362
    Machado, Y. L.; Teles, U. M.; Dantas Neto, A. A.; Dantas, T. N. C.; Fonseca, J. L. C.; Fuel 2013, 112, 172.
  • 363
    Karčauskiene, D.; Sendžikiene, E.; Makarevičiene, V.; Zaleckas, E.; Repšiene, R.; Ambrazaitiene, D.; Zemdirbyste 2014, 101, 161.
  • 364
    Sirviö, K.; Niemi, S.; Vauhkonen, V.; Hiltunen, E.; Agron. Res. 2014, 12, 407.
  • 365
    Leonardo, R. S.; Valle, M. L. M.; Dweck, J.; J. Therm. Anal. Calorim. 2018, 131, 343.
  • 366
    Dweck, J.; Leonardo, R. S.; Valle, M. L. M.; J. Therm. Anal. Calorim. 2013, 113, 1317.
  • 367
    Li, F.; Li, M.; Bao, G.; Wang, H.; Li, Y.; Du, W.; Li, X.; Asian J. Chem. 2014, 26, S217.
  • 368
    Singh, R. K.; Kukrety, A.; Sharma, O. P.; Baranwal, S.; Atray, N.; Ray, S. S.; J. Ind. Eng. Chem. 2016, 37, 27.
  • 369
    Singh, R. K.; Kukrety, A.; Sharma, O. P.; Poddar, M. K.; Atray, N.; Thakre, G. D.; Ray, S. S.; Waste Biomass Valorization 2016, 7, 1437.
  • 370
    Singh, R. K.; Kukrety, A.; Sharma, O. P.; Poddar, M. K.; Atray, N.; Ray, S. S.; Pet. Chem. 2017, 57, 100.
  • 371
    Muniz-Wypych, A. S.; da Costa, M. M.; Oliveira, A. R. S.; Neu, P. M.; Schober, S.; Mittelbach, M.; Ramos, L. P.; César-Oliveira, M. A. F.; Eur. J. Lipid Sci. Technol. 2017, 119, 1700179.
  • 372
    Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Rahman, M. M.; Imdadul, H. K.; Rashedul, H. K.; Renewable Energy 2016, 94, 294.
  • 373
    Prabu, A.; Environ. Prog. Sustainable Energy 2017, 36, 565.
  • 374
    Kolanjiappan, V.; Rev. Fac. Ing., Univ. Antioquia 2017, 2017, 46.
  • 375
    Ramalingam, S.; Rajendran, S.; SAE Int. J. Fuels Lubr. 2017, 10, 2017.
  • 376
    Ashok, B.; Nanthagopal, K.; Subbarao, R.; Johny, A.; Mohan, A.; Tamilarasu, A.; J. Cleaner Prod. 2017, 166, 474.
  • 377
    Palash, S. M.; Kalam, M. A.; Masjuki, H. H.; Masum, B. M.; Adv. Mater. Res. 2013, 774-776, 784.
  • 378
    Varatharajan, K.; Cheralathan, M.; Fuel Process. Technol. 2013, 106, 526.
  • 379
    Palash, S. M.; Kalam, M. A.; Masjuki, H. H.; Arbab, M. I.; Masum, B. M.; Sanjid, A.; Energy Convers. Manage. 2014, 77, 577.
  • 380
    Prabu, A.; Anand, R. B.; Front. Energy 2015, 9, 238.
  • 381
    Rashed, M. M.; Kalam, M. A.; Masjuki, H. H.; Habibullah, M.; Imdadul, H. K.; Shahin, M. M.; Rahman, M. M.; Ind. Crops Prod. 2016, 89, 273.
  • 382
    Rashed, M. M.; Masjuki, H. H.; Kalam, M. A.; Alabdulkarem, A.; Imdadul, H. K.; Rashedul, H. K.; Shahin, M. M.; Habibullah, M.; RSC Adv. 2016, 6, 22436.
  • 383
    Alberici, R. M.; Simas, R. C.; Abdelnur, P. V.; Eberlin, M. N.; de Souza, V.; de Sá, G. F.; Daroda, R. J.; Energy Fuels 2010, 24, 6522.
  • 384
    Chen, Y. H.; Luo, Y. M.; Fuel Process. Technol. 2011, 92, 1387.
  • 385
    Alberici, R. M.; de Souza, V.; de Sá, G. F.; Morelli, S. R.; Eberlin, M. N.; Daroda, R. J.; Bioenergy Res. 2012, 5, 1002.
  • 386
    Chen, Y. H.; Tang, T. C.; Chiang, T. H.; Huang, B. Y.; Chang, C. Y.; Chiang, P. C.; Shie, J. L.; Franzreb, M.; Chen, L. Y.; Energies 2012, 5, 3137.
  • 387
    Subroto, E.; Manurung, R.; Heeres, H. J.; Broekhuis, A. A.; Eur. J. Lipid Sci. Technol. 2013, 115, 909.
  • 388
    Bär, F.; Hopf, H.; Knorr, M.; Krahl, J.; Fuel 2018, 215, 249.
  • 389
    Bär, F.; Hopf, H.; Knorr, M.; Krahl, J.; Fuel 2018, 232, 108.
  • 390
    Dodson, J. R.; Avellar, T.; Athayde, J.; Mota, C. J. A.; Pure Appl. Chem. 2014, 86, 905.
  • 391
    El-Boulifi, N.; Ashari, S. E.; Serrano, M.; Aracil, J.; Martínez, M.; Enzyme Microb. Technol. 2014, 55, 128.
  • 392
    Schirmann, J. G.; Dekker, R. F. H.; Borsato, D.; Barbosa-Dekker, A. M.; Appl. Catal., A 2018, 555, 88.
  • 393
    Schirmann, J. G.; Angilelli, K. G.; Dekker, R. F. H.; Borsato, D.; Barbosa-Dekker, A. M.; Fuel 2019, 237, 593.
  • 394
    Sui, M.; Li, F.; Renewable Energy 2019, 143, 352.
  • 395
    Figueredo, I. D. M.; Rios, M. A. D. S.; Cavalcante, C. L.; Luna, F. M. T.; Ind. Eng. Chem. Res. 2020, 59, 18.
  • 396
    Varatharajan, K.; Cheralathan, M.; Velraj, R.; Fuel 2011, 90, 2721.
  • 397
    Usta, N.; Aydoǧan, B.; On, A. H.; Uǧuzdǒan, E.; Özkal, S. G.; Energy Convers. Manage. 2011, 52, 2031.
  • 398
    Santos, N. A.; Cordeiro, A. M. T. M.; Damasceno, S. S.; Aguiar, R. T.; Rosenhaim, R.; Carvalho Filho, J. R.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Fuel 2012, 97, 638.
  • 399
    Moser, B. R.; Renewable Energy 2012, 40, 65.
  • 400
    Luo, M.; Zhang, R. Y.; Zheng, Z.; Wang, J. L.; Ji, J. B.; J. Braz. Chem. Soc. 2012, 23, 241.
  • 401
    Pinto, L. M.; de Souza, A. L.; Souza, A. G.; Santos, I. M. G.; Queiroz, N.; J. Therm. Anal. Calorim. 2015, 120, 277.
  • 402
    Balaji, G.; Cheralathan, M.; Energy Sources, Part A 2016, 38, 2454.
  • 403
    Ramalingam, S.; Ganesan, P.; Rajendran, S.; Therm. Sci. 2016, 20, S967.
  • 404
    Tahmasebi, S. E.; Rabiei, Z.; Vannozzi, G. P.; Helia 2006, 29, 25.
  • 405
    Moser, B. R.; Eur. J. Lipid Sci. Technol. 2008, 110, 1167.
  • 406
    El Diwani, G.; El Rafie, S.; Hawash, S.; Int. J. Environ. Sci. Technol. 2009, 6, 369.
  • 407
    Sarin, A.; Singh, N. P.; Sarin, R.; Malhotra, R. K.; Energy 2010, 35, 4645.
  • 408
    Joshi, H.; Moser, B. R.; Shah, S. N.; Mandalika, A.; Walker, T.; Eur. J. Lipid Sci. Technol. 2010, 112, 802.
  • 409
    Balaji, G.; Cheralathan, M.; Int. J. Ambient Energy 2014, 35, 13.
  • 410
    Takase, M.; Chen, Y.; Liu, H.; Zhao, T.; Yang, L.; Wu, X.; Ultrason. Sonochem. 2014, 21, 1752.
  • 411
    Ramalingam, S.; Kaliyaperumal, A.; Govindasamy, M.; Ezhumalai, M.; Kumar, C.; Therm. Sci. 2016, 20, S999.
  • 412
    Santos, N. A.; Damasceno, S. S.; de Araújo, P. H. M.; Marques, V. C.; Rosenhaim, R.; Fernandes, V. J.; Queiroz, N.; Santos, I. M. G.; Maia, A. S.; Souza, A. G.; Energy Fuels 2011, 25, 4190.
  • 413
    Damasceno, S. S.; Santos, N. A.; Santos, I. M. G.; Souza, A. L.; Souza, A. G.; Queiroz, N.; Fuel 2013, 107, 641.
  • 414
    Saifuddin, N.; Refal, H.; Res. J. Appl. Sci. Eng. Technol. 2014, 8, 1149.
  • 415
    Alexandrino, C. D.; Morais, S. M.; Oliveira, M. S. C.; Machado, L. K. A.; Martins, C. G.; Craveiro, A. A.; Rocha, N. C.; Valle, C. P.; Malveira, J. Q.; Jorge, F. A. S.; Eur. J. Lipid Sci. Technol. 2013, 115, 709.
  • 416
    Romagnoli, É. S.; Borsato, D.; Silva, L. R. C.; Tashima, D. L. M.; Canesin, E. A.; Biofuels 2020, 11, 839.
  • 417
    Nogueira, T. R.; Figueredo, I. M.; Luna, F. M. T.; Cavalcante, C. L.; dos Santos Jr., J. E. Á.; Lima, M. A. S.; da Silva, T. S. J.; Leal, L. K. A. M.; Nunes, F. M.; Rios, M. A. S.; Pimenta, A. T. Á.; Renewable Energy 2020, 159, 767.
  • 418
    Yatish, K.V.; Lalithamba, H. S.; Sakar, M.; Balakrishna, G. R.; Omkaresh, B. R.; Arun, S. B.; Int. J. Energy Res. 2020, 44, 11711.
  • 419
    Correia, I. A. S.; Borsato, D.; Savada, F. Y.; Pauli, E. D.; Mantovani, A. C. G.; Cremasco, H.; Chendynski, L. T.; Renewable Energy 2020, 160, 288.
  • 420
    Rial, R. C.; Merlo, T. C.; Santos, P. H. M.; Melo, L. F. D.; Barbosa, R. A.; de Freitas, O. N.; Nazário, C. E. D.; Viana, L. H.; Renewable Energy 2020, 152, 1079.
  • 421
    Medeiros, M. L.; Cordeiro, A. M. M. T.; Queiroz, N.; Soledade, L. E. B.; Souza, A. L.; Souza, A. G.; Energy Fuels 2014, 28, 1074.
  • 422
    Coppo, R. L.; Pereira, J. L.; Da, H. C. S.; Angilelli, K. G.; Rodrigues, P. R. P.; Galvan, D.; Borsato, D.; J. Biobased Mater. Bioenergy 2014, 8, 545.
  • 423
    Spacino, K. R.; Borsato, D.; Buosi, G. M.; Chendynski, L. T.; Fuel Process. Technol. 2015, 137, 366.
  • 424
    Buosi, G. M.; da Silva, E. T.; Spacino, K.; Silva, L. R. C.; Ferreira, B. A. D.; Borsato, D.; Fuel 2016, 181, 759.
  • 425
    Spacino, K. R.; Silva, E. T. da; Angilelli, K. G.; Moreira, I.; Galão, O. F.; Borsato, D.; Ind. Crops Prod. 2016, 80, 109.
  • 426
    Chendynski, L. T.; Signori Romagnoli, É.; da Silva, P. R. C.; Borsato, D.; Energy Fuels 2017, 31, 9613.
  • 427
    Narayanasamy, B.; Jeyakumar, N.; Manoharan, D. K.; Energy Sources, Part A 2018, 40, 680.
  • 428
    Nivetha, S.; Roy, D. V.; J. Energy Chem. 2013, 22, 935.
  • 429
    Kang, S.; Li, X.; Li, B.; Fan, J.; Chang, J.; Energy Fuels 2011, 25, 2746.
  • 430
    Barsberg, S.; Thygesen, L. G.; Sanadi, A. R.; Energy Fuels 2014, 28, 4539.
  • 431
    Chandrasekaran, S. R.; Murali, D.; Marley, K. A.; Larson, R. A.; Doll, K. M.; Moser, B. R.; Scott, J.; Sharma, B. K.; ACS Sustainable Chem. Eng. 2016, 4, 1414.
  • 432
    Gil-Lalaguna, N.; Bautista, A.; Gonzalo, A.; Sánchez, J. L.; Arauzo, J.; Fuel Process. Technol. 2017, 166, 1.
  • 433
    Larson, R. A.; Sharma, B. K.; Marley, K. A.; Kunwar, B.; Murali, D.; Scott, J.; Ind. Crops Prod. 2017, 109, 476.
  • 434
    da Silva-Araújo, F. D.; de Moura, C. V. R.; Chaves, M. H.; Quim. Nova 2010, 33, 1671.
  • 435
    Sánchez, L.; Chávez, J.; Ríos, L. A.; Cardona, S. M.; Inf. Tecnol. 2015, 26, 19.
  • 436
    Kleinberg, M. N.; Rios, M. A. S.; Buarque, H. L. B.; Parente, M. M. V.; Cavalcante, C. L.; Luna, F. M. T.; Waste Biomass Valorization 2017, 10, 797.
  • 437
    Bastos, F. A.; Tubino, M.; J. Braz. Chem. Soc. 2017, 28, 747.
  • 438
    Rodrigues, F. M. G.; Souza, A. G.; Santos, I. M. G.; Bicudo, T. C.; Silva, M. C. D.; Sinfrônio, F. S. M.; Vasconselos, A. F. F.; J. Therm. Anal. Calorim. 2009, 97, 605.
  • 439
    Lomonaco, D.; Maia, F. J. N.; Clemente, C. S.; Mota, J. P. F.; Costa, A. E.; Mazzetto, S. E.; Fuel 2012, 97, 552.
  • 440
    Maia, F. J. N.; Ribeiro, F. W. P.; Rangel, J. H. G.; Lomonaco, D.; Luna, F. M. T.; de Lima-Neto, P.; Correia, A. N.; Mazzetto, S. E.; Ind. Crops Prod. 2015, 67, 281.
  • 441
    dos Santos, R. C.; Amorim, A. D. G. N.; Thomasi, S. S.; Figueiredo, F. C.; Carneiro, C. S.; da Silva, P. R. P.; de Vasconcelos Neto, W. R.; Ferreira, A. G.; dos Santos Jr., J. R.; Leite, J. R. D. S. D. A.; Fuel 2015, 144, 415.
  • 442
    Liu, Z.; Chen, J.; Knothe, G.; Nie, X.; Jiang, J.; ACS Sustainable Chem. Eng. 2016, 4, 901.
  • 443
    Costa, K. P.; de Viveiros, B. M.; Schmidt Jr., M. A. S.; Suarez, P. A. Z.; Rezende, M. J. C.; Fuel 2019, 235, 1010.
  • 444
    Bento, F. M.; Gaylarde, C. C.; Int. Biodeterior. Biodegrad. 2001, 47, 107.
  • 445
    Bücker, F.; Barbosa, C. S.; Quadros, P. D.; Bueno, M. K.; Fiori, P.; Huang, C.; Frazzon, A. P. G.; Ferrão, M. F.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 346.
  • 446
    Gaylarde, C. C.; Bento, F. M.; Kelley, J.; Rev. Microbiol. 1999, 30, 1.
  • 447
    Bautista, L. F.; Vargas, C.; González, N.; Molina, M. C.; Simarro, R.; Salmerón, A.; Murillo, Y.; Fuel Process. Technol. 2016, 152, 56.
  • 448
    Meyer, D. D.; Beker, S. A.; Bücker, F.; Peralba, M. C. R.; Frazzon, A. P. G.; Osti, J. F.; Andreazza, R.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 356.
  • 449
    Pasqualino, J. C.; Montané, D.; Salvadó, J.; Biomass Bioenergy 2006, 30, 874.
  • 450
    Jakeria, M. R.; Fazal, M. A.; Haseeb, A. S. M. A.; Renewable Sustainable Energy Rev. 2014, 30, 154.
  • 451
    Chao, Y.; Liu, N.; Zhang, T.; Chen, S.; Fuel 2010, 89, 3358.
  • 452
    Cazarolli, J. C.; Boelter, G.; de Lima, A. M. D. L.; Hengles, T.; Correa, C.; Peralba, M. C. R.; Ferrão, M. F.; Cavalcanti, E. H. S.; Bisol, M. V.; Bezerra, K. S.; Antoniosi Filho, N. R.; Bento, F. M.; J. Braz. Chem. Soc. 2018, 29, 2034.
  • 453
    Schleicher, T.; Werkmeister, R.; Russ, W.; Meyer-Pittroff, R.; Bioresour. Technol. 2009, 100, 724.
  • 454
    Bücker, F.; Santestevan, N. A.; Roesch, L. F.; Jacques, R. J. S.; Peralba, M. C. R.; Camargo, F. A. O.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2011, 65, 172.
  • 455
    Sørensen, G.; Pedersen, D. V.; Nørgaard, A. K.; Sørensen, K. B.; Nygaard, S. D.; Bioresour. Technol. 2011, 102, 5259.
  • 456
    Cazarolli, J. C.; Bücker, F.; Manique, M. C.; Krause, L. C.; Maciel, G. P. S.; Onorevoli, B.; Caramão, E. B.; Cavalcanti, E. H. S.; Samios, D.; Peralba, M. C. R.; Bento, F. M.; Rev. Bras. Bioci. 2012, 10, 251.
  • 457
    Cazarolli, J. C.; Guzatto, R.; Samios, D.; Peralba, M. C. R.; Cavalcanti, E. H. S.; Bento, F. M.; Int. Biodeterior. Biodegrad. 2014, 95, 364.
  • 458
    Soriano, A. U.; Martins, L. F.; Ventura, E. S. A.; Landa, F. H. T. G.; Valoni, E. A.; Faria, F. R. D.; Ferreira, R. F.; Faller, M. C. K.; Valério, R. R.; Leite, D. C. A.; Carmo, F. L.; Peixoto, R. S.; Int. Biodeterior. Biodegrad. 2015, 99, 102.
  • 459
    Cavalcanti, E. H. S.; Zimmer, A. R.; Bento, F. M.; Ferrão, M. F.; Fuel 2019, 236, 993.
  • 460
    Military Specification, Stabilizer Additive, Diesel Fuel, MIL-S-53021A, 1988, available at http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MIL-S-53021A_8396/, accessed in March 2021.
    » http://everyspec.com/MIL-SPECS/MIL-SPECS-MIL-S/MIL-S-53021A_8396/
  • 461
    Zimmer, A.; Cazarolli, J.; Teixeira, R. M.; Viscardi, S. L. C.; Cavalcanti, E. S. H.; Gerbase, A. E.; Ferrão, M. F.; Piatnicki, C. M. S.; Bento, F. M.; Fuel 2013, 112, 153.
  • 462
    Zimmer, A. R.; Oliboni, A.; Viscardi, S. L. C.; Teixeira, R. M.; Ferrão, M. F.; Bento, F. M.; Biofuel Res. J. 2017, 14, 627.
  • 463
    ASTM E1259-10: Standard Practice for Evaluation of Antimicrobials in Liquid Fuels Boiling Below 390 ºC, West Conshohocken, PA, 2010.
  • 464
    Santos, G. A.; Vila, M. M. D. C.; Chaud, M. V.; Silva, W. L.; Castro, A. G.; Oliveira Jr., J. M.; Tubino, M.; Balcão, V. M.; Biofuels 2016, 7, 581.
  • 465
    Ramalho, H. F.; Ferreira, K. M. C.; Machado, P. M. A.; Silva, T. B.; Rangel, E. T.; Prauchner, M. J.; Suarez, P. A. Z.; J. Braz. Chem. Soc. 2016, 27, 321.
  • 466
    Oliveira, R. S.; Machado, P. M. A.; Ramalho, H. F.; Rangel, E. T.; Suarez, P. A. Z.; Ind. Crops Prod. 2017, 104, 201.
  • 467
    Costa, K. P.; do Valle, S. F.; dos Santos, T. F. L.; Rangel, E. T.; Pinto, A. C.; Suarez, P. A. Z.; Rezende, M. J. C.; J. Braz. Chem. Soc. 2018, 29, 2605.
  • 468
    http://www.who.int/airpollution/en/, accessed in February 2021; https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/ambient-air-pollution, accessed in February 2021; https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths, accessed in February 2021.
    » http://www.who.int/airpollution/en/» https://www.who.int/data/gho/data/themes/topics/indicator-groups/indicator-group-details/GHO/ambient-air-pollution» https://www.euro.who.int/en/health-topics/environment-and-health/urban-health/news/news/2013/10/outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths
  • 469
    https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf, accessed in March 2021.
    » https://www.iarc.who.int/wp-content/uploads/2018/07/pr221_E.pdf
  • 470
    Mofijur, M.; Rasul, M. G.; Hyde, J.; Azad, A. K.; Mamat, R.; Bhuiya, M. M. K. Renewable Sustainable Energy Rev. 2016, 53, 265.
  • 471
    Shamuna, S.; Belgiornob, G.; Di Blasiob, G.; Beatriceb, C.; Tunéra, M.; Tuneståla, P.; Appl. Therm. Eng. 2018, 145, 444.
  • 472
    Zheng, Z.; Xia, M.; Liu, H.; Wang, X.; Yao, M.; Energy 2018, 148, 824.
  • 473
    Wei, L; Cheung, C. S.; Ning, Z.; Energy 2018, 155, 957.
  • 474
    Bayındır, H.; Zerrakki, M.; Argunhan, Z.; Yücel, H. L.; Aydın, H.; Energy 2017, 123, 241.
  • 475
    Guarieiro, L. L. N.; Guerreiro, E. T. A.; Amparo, K. K. S.; Manera, V. B.; Regis, A. C. D.; Santos, A. G.; Ferreira, V. P.; Leão, D. J.; Torres, E. A.; de Andrade, J. B.; Microchem. J. 2014, 117, 94.
  • 476
    Melo, C. I. M.; Sousa, E. T.; da Rocha, G. O.; dos Anjos, J. P.; de Andrade, J. B.; Talanta 2020, 217, 121033.
  • 477
    de Jesus, R. M.; Mosca, A. C.; Guarieiro, A. L. N.; da Rocha, G. O.; de Andrade, J. B.; J. Braz. Chem. Soc. 2018, 29, 1268.
  • 478
    Santos, A. G.; Regis, A. C. D.; da Rocha, G. O.; Bezerra, M.; de Jesus, R. M.; de Andrade, J. B.; J. Chromatogr., A 2016, 1435, 6.
  • 479
    Sousa, E. T.; Cardoso, M. P.; Silva, L.A.; de Andrade, J. B.; Microchem. J. 2015, 118, 26.
  • 480
    Guarieiro, A. L. N.; Santos, J. V. S.; Fernandez, A. E.; Torres, E. A.; da Rocha, G. O.; de Andrade, J. B.; Fuel 2014, 116, 490.
  • 481
    Martins, L. D.; Júnior, C. R. S.; Solci, M. C.; Pinto, J. P.; Souza, D. Z.; Vasconcellos, P.; Guarieiro, A. L. N.; Guarieiro, L. L. N.; Sousa, E. T.; de Andrade, J. B.; Environ. Monit. Assess. 2012, 184, 2663.
  • 482
    da Rocha, G. O.; Lopes, W. A.; Pereira, P. A. P.; Vasconcellos, P. C.; Oliveira, F. S.; Carvalho, L. S.; Conceição, L. S.; de Andrade, J. B.; J. Braz. Chem. Soc. 2009, 20, 680.
  • 483
    Guarieiro, L. L. N.; de Souza, A. F.; Torres, E. A.; de Andrade, J. B.; Atmos. Environ. 2009, 43, 2754.
  • 484
    Rodrigues, M. C.; Guarieiro, L. L. N.; Cardoso, M. P.; Carvalho, L. S.; da Rocha, G. O.; de Andrade, J. B.; Fuel 2011, 92, 258.
  • 485
    Yilmaz, N.; Davis, S. M.; Fuel 2016, 181, 729.
  • 486
    Allen, A. G.; da Rocha, G. O.; Cardoso, A. A.; Paterlini, W. C.; Machado, C. M. D.; de Andrade, J. B.; Transp. Res. D 2008, 13, 483.
  • 487
    Machado, M. C. S.; Loyola, J.; Quiterio, S. L.; da Rocha, G. O.; de Andrade, J. B.; Arbilla, C.; J. Braz. Chem. Soc. 2009, 20, 1565.
  • 488
    Guarieiro, L. L. N.; Pereira, P. A P.; Torres, E. A.; da Rocha, G. O.; de Andrade, J. B.; Atmos. Environ. 2008, 42, 8211.
  • 489
    Corrêa, S. M.; Arbilla, G.; Atmos. Environ. 2008, 42, 769.
  • 490
    He, C.; Ge, Y.; Tan, J.; You, K.; Han, X.; Wang, J.; You, Q.; Shah, A. N.; Atmos. Environ. 2009, 43, 3657.
  • 491
    Santos, A. G.; da Rocha, G. O.; de Andrade, J. B.; Sci. Rep. 2019, 9, 1.
  • 492
    Mkoma, S. L.; da Rocha, G. O.; Regis, A. C. D.; Domingos, J. S. S.; Santos, J. V. S.; de Andrade, S. J.; Carvalho, L. S.; de Andrade, J. B.; Fuel 2014, 115, 109.
  • 493
    Karavalakis, G.; Boutsika, V.; Stournas, S.; Bakeas, E.; Sci. Total Environ. 2011, 409, 738.
  • 494
    Tadano, Y.; Borillo, G.; Godoi, A.; Cichon, A.; Silva, T.; Valebona, F.; Errera, M.; Neto, R.; Rempel, D.; Martin, L.; Yamamoto, C.; Godoi R.; Sci. Total Environ. 2014, 500-501, 64.
  • 495
    Ballesteros, R.; Flores, J. G.; Martinez, J. D.; Chemosphere 2014, 96, 155.
  • 496
    Huang, L.; Bohac, S. V.; Chernyak, S. M.; Batterman, S. A.; Atmos. Environ. 2015, 102, 228.
  • 497
    Huber, C. S.; Vale, M. G. R.; Welz, B.; de Andrade, J. B.; Dessuy, M. B.; Spectrochim. Acta, Part B 2015, 108, 68.
  • 498
    Agarwal, A. K.; Shukla, P. C.; Patel, C.; Gupta, J. G.; Sharma, N.; Prasad, R. K.; Agarwal, R. A.; Renewable Energy 2016, 98, 283.
  • 499
    Guarieiro, A. L. N.; Fernandez, A. E.; da Rocha, G. O.; de Andrade, J. B.; J. Braz. Chem. Soc. 2017, 28, 1351.
  • 500
    Tan, P.-Q.; Zhong, Y.-M.; Hu, Z.-Y.; Lou, D.-M.; Energy 2017, 141, 898.
  • 501
    Wei, L.; Cheung, C. S.; Ning, Z.; Energy 2017, 127, 175.
  • 502
    Borillo, G. C.; Tadano, Y. S.; Godoi, A. F. L.; Pauliquevis, T.; Sarmiento, H.; Rempel, D.; Yamamoto, C. I.; Marchi, M. R. R.; Vermaak, S. P.; Godoi, R. H. M.; Sci. Total Environ. 2018, 644, 675.
  • 503
    Ghadikolaei, M. A.; Wei, L.; Cheung, C. S.; Yung, K.-F.; Sci. Total Environ. 2019, 658, 1117.
  • 504
    Zhang, Y.; Lou, D.; Hu, Z.; Tan, P.; J. Cleaner Production 2019, 225, 627.
  • 505
    Placencia, F.; Fadic, X.; Yáñez, K.; Balic, F. C.; Sci. Total Environ. 2019, 651, 2597.
  • 506
    Cheruiyot, N. K.; Hou, W. C.; Wang, L. C.; Chen, C. Y.; Chemosphere 2019, 235, 726.
  • 507
    Ballesteros, R.; Ramos, A.; Sánchez-Valdepeñas, J.; J. Energy Inst. 2020, 93, 1970.
  • 508
    https://clarivate.com/derwent/solutions/derwent-innovation/, accessed in April 2021.
    » https://clarivate.com/derwent/solutions/derwent-innovation/
  • 509
    https://news.trust.org/item/20201118095737-8h1uh, accessed in February 2021.
    » https://news.trust.org/item/20201118095737-8h1uh

Publication Dates

  • Publication in this collection
    02 July 2021
  • Date of issue
    July 2021

History

  • Received
    30 Nov 2020
  • Accepted
    08 Apr 2021
Sociedade Brasileira de Química Instituto de Química - UNICAMP, Caixa Postal 6154, 13083-970 Campinas SP - Brazil, Tel./FAX.: +55 19 3521-3151 - São Paulo - SP - Brazil
E-mail: office@jbcs.sbq.org.br